Merge remote-tracking branch '0xabu/raspi'
[qemu/ar7.git] / translate-all.c
blob222fbc769cfb436ae2064f5464b0a93c6764ba16
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "config.h"
30 #include "qemu-common.h"
31 #define NO_CPU_IO_DEFS
32 #include "cpu.h"
33 #include "trace.h"
34 #include "disas/disas.h"
35 #include "tcg.h"
36 #if defined(CONFIG_USER_ONLY)
37 #include "qemu.h"
38 #if defined(TARGET_X86_64)
39 #include "vsyscall.h"
40 #endif
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
66 //#define DEBUG_TB_INVALIDATE
67 //#define DEBUG_FLUSH
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
73 #undef DEBUG_TB_CHECK
74 #endif
76 #define SMC_BITMAP_USE_THRESHOLD 10
78 typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
84 unsigned long *code_bitmap;
85 #if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87 #endif
88 } PageDesc;
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95 #else
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97 #endif
98 #else
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100 #endif
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define V_L2_BITS 10
104 #define V_L2_SIZE (1 << V_L2_BITS)
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
112 #else
113 #define V_L1_BITS V_L1_BITS_REM
114 #endif
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
120 uintptr_t qemu_host_page_size;
121 intptr_t qemu_host_page_mask;
123 /* The bottom level has pointers to PageDesc */
124 static void *l1_map[V_L1_SIZE];
126 /* code generation context */
127 TCGContext tcg_ctx;
129 /* translation block context */
130 #ifdef CONFIG_USER_ONLY
131 __thread int have_tb_lock;
132 #endif
134 void tb_lock(void)
136 #ifdef CONFIG_USER_ONLY
137 assert(!have_tb_lock);
138 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
139 have_tb_lock++;
140 #endif
143 void tb_unlock(void)
145 #ifdef CONFIG_USER_ONLY
146 assert(have_tb_lock);
147 have_tb_lock--;
148 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
149 #endif
152 void tb_lock_reset(void)
154 #ifdef CONFIG_USER_ONLY
155 if (have_tb_lock) {
156 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
157 have_tb_lock = 0;
159 #endif
162 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
163 tb_page_addr_t phys_page2);
164 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
166 void cpu_gen_init(void)
168 tcg_context_init(&tcg_ctx);
171 /* Encode VAL as a signed leb128 sequence at P.
172 Return P incremented past the encoded value. */
173 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
175 int more, byte;
177 do {
178 byte = val & 0x7f;
179 val >>= 7;
180 more = !((val == 0 && (byte & 0x40) == 0)
181 || (val == -1 && (byte & 0x40) != 0));
182 if (more) {
183 byte |= 0x80;
185 *p++ = byte;
186 } while (more);
188 return p;
191 /* Decode a signed leb128 sequence at *PP; increment *PP past the
192 decoded value. Return the decoded value. */
193 static target_long decode_sleb128(uint8_t **pp)
195 uint8_t *p = *pp;
196 target_long val = 0;
197 int byte, shift = 0;
199 do {
200 byte = *p++;
201 val |= (target_ulong)(byte & 0x7f) << shift;
202 shift += 7;
203 } while (byte & 0x80);
204 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
205 val |= -(target_ulong)1 << shift;
208 *pp = p;
209 return val;
212 /* Encode the data collected about the instructions while compiling TB.
213 Place the data at BLOCK, and return the number of bytes consumed.
215 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
216 which come from the target's insn_start data, followed by a uintptr_t
217 which comes from the host pc of the end of the code implementing the insn.
219 Each line of the table is encoded as sleb128 deltas from the previous
220 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
221 That is, the first column is seeded with the guest pc, the last column
222 with the host pc, and the middle columns with zeros. */
224 static int encode_search(TranslationBlock *tb, uint8_t *block)
226 uint8_t *highwater = tcg_ctx.code_gen_highwater;
227 uint8_t *p = block;
228 int i, j, n;
230 tb->tc_search = block;
232 for (i = 0, n = tb->icount; i < n; ++i) {
233 target_ulong prev;
235 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
236 if (i == 0) {
237 prev = (j == 0 ? tb->pc : 0);
238 } else {
239 prev = tcg_ctx.gen_insn_data[i - 1][j];
241 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
243 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
244 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
246 /* Test for (pending) buffer overflow. The assumption is that any
247 one row beginning below the high water mark cannot overrun
248 the buffer completely. Thus we can test for overflow after
249 encoding a row without having to check during encoding. */
250 if (unlikely(p > highwater)) {
251 return -1;
255 return p - block;
258 /* The cpu state corresponding to 'searched_pc' is restored. */
259 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
260 uintptr_t searched_pc)
262 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
263 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
264 CPUArchState *env = cpu->env_ptr;
265 uint8_t *p = tb->tc_search;
266 int i, j, num_insns = tb->icount;
267 #ifdef CONFIG_PROFILER
268 int64_t ti = profile_getclock();
269 #endif
271 if (searched_pc < host_pc) {
272 return -1;
275 /* Reconstruct the stored insn data while looking for the point at
276 which the end of the insn exceeds the searched_pc. */
277 for (i = 0; i < num_insns; ++i) {
278 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
279 data[j] += decode_sleb128(&p);
281 host_pc += decode_sleb128(&p);
282 if (host_pc > searched_pc) {
283 goto found;
286 return -1;
288 found:
289 if (tb->cflags & CF_USE_ICOUNT) {
290 assert(use_icount);
291 /* Reset the cycle counter to the start of the block. */
292 cpu->icount_decr.u16.low += num_insns;
293 /* Clear the IO flag. */
294 cpu->can_do_io = 0;
296 cpu->icount_decr.u16.low -= i;
297 restore_state_to_opc(env, tb, data);
299 #ifdef CONFIG_PROFILER
300 tcg_ctx.restore_time += profile_getclock() - ti;
301 tcg_ctx.restore_count++;
302 #endif
303 return 0;
306 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
308 TranslationBlock *tb;
310 tb = tb_find_pc(retaddr);
311 if (tb) {
312 cpu_restore_state_from_tb(cpu, tb, retaddr);
313 if (tb->cflags & CF_NOCACHE) {
314 /* one-shot translation, invalidate it immediately */
315 cpu->current_tb = NULL;
316 tb_phys_invalidate(tb, -1);
317 tb_free(tb);
319 return true;
321 return false;
324 void page_size_init(void)
326 /* NOTE: we can always suppose that qemu_host_page_size >=
327 TARGET_PAGE_SIZE */
328 qemu_real_host_page_size = getpagesize();
329 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
330 if (qemu_host_page_size == 0) {
331 qemu_host_page_size = qemu_real_host_page_size;
333 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
334 qemu_host_page_size = TARGET_PAGE_SIZE;
336 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
339 static void page_init(void)
341 page_size_init();
342 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
344 #ifdef HAVE_KINFO_GETVMMAP
345 struct kinfo_vmentry *freep;
346 int i, cnt;
348 freep = kinfo_getvmmap(getpid(), &cnt);
349 if (freep) {
350 mmap_lock();
351 for (i = 0; i < cnt; i++) {
352 unsigned long startaddr, endaddr;
354 startaddr = freep[i].kve_start;
355 endaddr = freep[i].kve_end;
356 if (h2g_valid(startaddr)) {
357 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
359 if (h2g_valid(endaddr)) {
360 endaddr = h2g(endaddr);
361 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
362 } else {
363 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
364 endaddr = ~0ul;
365 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
366 #endif
370 free(freep);
371 mmap_unlock();
373 #else
374 FILE *f;
376 last_brk = (unsigned long)sbrk(0);
378 f = fopen("/compat/linux/proc/self/maps", "r");
379 if (f) {
380 mmap_lock();
382 do {
383 unsigned long startaddr, endaddr;
384 int n;
386 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
388 if (n == 2 && h2g_valid(startaddr)) {
389 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
391 if (h2g_valid(endaddr)) {
392 endaddr = h2g(endaddr);
393 } else {
394 endaddr = ~0ul;
396 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
398 } while (!feof(f));
400 fclose(f);
401 mmap_unlock();
403 #endif
405 #endif
408 /* If alloc=1:
409 * Called with mmap_lock held for user-mode emulation.
411 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
413 PageDesc *pd;
414 void **lp;
415 int i;
417 /* Level 1. Always allocated. */
418 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
420 /* Level 2..N-1. */
421 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
422 void **p = atomic_rcu_read(lp);
424 if (p == NULL) {
425 if (!alloc) {
426 return NULL;
428 p = g_new0(void *, V_L2_SIZE);
429 atomic_rcu_set(lp, p);
432 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
435 pd = atomic_rcu_read(lp);
436 if (pd == NULL) {
437 if (!alloc) {
438 return NULL;
440 pd = g_new0(PageDesc, V_L2_SIZE);
441 atomic_rcu_set(lp, pd);
444 return pd + (index & (V_L2_SIZE - 1));
447 static inline PageDesc *page_find(tb_page_addr_t index)
449 return page_find_alloc(index, 0);
452 #if defined(CONFIG_USER_ONLY)
453 /* Currently it is not recommended to allocate big chunks of data in
454 user mode. It will change when a dedicated libc will be used. */
455 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
456 region in which the guest needs to run. Revisit this. */
457 #define USE_STATIC_CODE_GEN_BUFFER
458 #endif
460 /* Minimum size of the code gen buffer. This number is randomly chosen,
461 but not so small that we can't have a fair number of TB's live. */
462 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
464 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
465 indicated, this is constrained by the range of direct branches on the
466 host cpu, as used by the TCG implementation of goto_tb. */
467 #if defined(__x86_64__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
469 #elif defined(__sparc__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
471 #elif defined(__powerpc64__)
472 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
473 #elif defined(__aarch64__)
474 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
475 #elif defined(__arm__)
476 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
477 #elif defined(__s390x__)
478 /* We have a +- 4GB range on the branches; leave some slop. */
479 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
480 #elif defined(__mips__)
481 /* We have a 256MB branch region, but leave room to make sure the
482 main executable is also within that region. */
483 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
484 #else
485 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
486 #endif
488 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
490 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
491 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
492 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
494 static inline size_t size_code_gen_buffer(size_t tb_size)
496 /* Size the buffer. */
497 if (tb_size == 0) {
498 #ifdef USE_STATIC_CODE_GEN_BUFFER
499 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
500 #else
501 /* ??? Needs adjustments. */
502 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
503 static buffer, we could size this on RESERVED_VA, on the text
504 segment size of the executable, or continue to use the default. */
505 tb_size = (unsigned long)(ram_size / 4);
506 #endif
508 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
509 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
511 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
512 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
514 tcg_ctx.code_gen_buffer_size = tb_size;
515 return tb_size;
518 #ifdef __mips__
519 /* In order to use J and JAL within the code_gen_buffer, we require
520 that the buffer not cross a 256MB boundary. */
521 static inline bool cross_256mb(void *addr, size_t size)
523 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
526 /* We weren't able to allocate a buffer without crossing that boundary,
527 so make do with the larger portion of the buffer that doesn't cross.
528 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
529 static inline void *split_cross_256mb(void *buf1, size_t size1)
531 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
532 size_t size2 = buf1 + size1 - buf2;
534 size1 = buf2 - buf1;
535 if (size1 < size2) {
536 size1 = size2;
537 buf1 = buf2;
540 tcg_ctx.code_gen_buffer_size = size1;
541 return buf1;
543 #endif
545 #ifdef USE_STATIC_CODE_GEN_BUFFER
546 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
547 __attribute__((aligned(CODE_GEN_ALIGN)));
549 # ifdef _WIN32
550 static inline void do_protect(void *addr, long size, int prot)
552 DWORD old_protect;
553 VirtualProtect(addr, size, prot, &old_protect);
556 static inline void map_exec(void *addr, long size)
558 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
561 static inline void map_none(void *addr, long size)
563 do_protect(addr, size, PAGE_NOACCESS);
565 # else
566 static inline void do_protect(void *addr, long size, int prot)
568 uintptr_t start, end;
570 start = (uintptr_t)addr;
571 start &= qemu_real_host_page_mask;
573 end = (uintptr_t)addr + size;
574 end = ROUND_UP(end, qemu_real_host_page_size);
576 mprotect((void *)start, end - start, prot);
579 static inline void map_exec(void *addr, long size)
581 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
584 static inline void map_none(void *addr, long size)
586 do_protect(addr, size, PROT_NONE);
588 # endif /* WIN32 */
590 static inline void *alloc_code_gen_buffer(void)
592 void *buf = static_code_gen_buffer;
593 size_t full_size, size;
595 /* The size of the buffer, rounded down to end on a page boundary. */
596 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
597 & qemu_real_host_page_mask) - (uintptr_t)buf;
599 /* Reserve a guard page. */
600 size = full_size - qemu_real_host_page_size;
602 /* Honor a command-line option limiting the size of the buffer. */
603 if (size > tcg_ctx.code_gen_buffer_size) {
604 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
605 & qemu_real_host_page_mask) - (uintptr_t)buf;
607 tcg_ctx.code_gen_buffer_size = size;
609 #ifdef __mips__
610 if (cross_256mb(buf, size)) {
611 buf = split_cross_256mb(buf, size);
612 size = tcg_ctx.code_gen_buffer_size;
614 #endif
616 map_exec(buf, size);
617 map_none(buf + size, qemu_real_host_page_size);
618 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
620 return buf;
622 #elif defined(_WIN32)
623 static inline void *alloc_code_gen_buffer(void)
625 size_t size = tcg_ctx.code_gen_buffer_size;
626 void *buf1, *buf2;
628 /* Perform the allocation in two steps, so that the guard page
629 is reserved but uncommitted. */
630 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
631 MEM_RESERVE, PAGE_NOACCESS);
632 if (buf1 != NULL) {
633 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
634 assert(buf1 == buf2);
637 return buf1;
639 #else
640 static inline void *alloc_code_gen_buffer(void)
642 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
643 uintptr_t start = 0;
644 size_t size = tcg_ctx.code_gen_buffer_size;
645 void *buf;
647 /* Constrain the position of the buffer based on the host cpu.
648 Note that these addresses are chosen in concert with the
649 addresses assigned in the relevant linker script file. */
650 # if defined(__PIE__) || defined(__PIC__)
651 /* Don't bother setting a preferred location if we're building
652 a position-independent executable. We're more likely to get
653 an address near the main executable if we let the kernel
654 choose the address. */
655 # elif defined(__x86_64__) && defined(MAP_32BIT)
656 /* Force the memory down into low memory with the executable.
657 Leave the choice of exact location with the kernel. */
658 flags |= MAP_32BIT;
659 /* Cannot expect to map more than 800MB in low memory. */
660 if (size > 800u * 1024 * 1024) {
661 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
663 # elif defined(__sparc__)
664 start = 0x40000000ul;
665 # elif defined(__s390x__)
666 start = 0x90000000ul;
667 # elif defined(__mips__)
668 # if _MIPS_SIM == _ABI64
669 start = 0x128000000ul;
670 # else
671 start = 0x08000000ul;
672 # endif
673 # endif
675 buf = mmap((void *)start, size + qemu_real_host_page_size,
676 PROT_NONE, flags, -1, 0);
677 if (buf == MAP_FAILED) {
678 return NULL;
681 #ifdef __mips__
682 if (cross_256mb(buf, size)) {
683 /* Try again, with the original still mapped, to avoid re-acquiring
684 that 256mb crossing. This time don't specify an address. */
685 size_t size2;
686 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
687 PROT_NONE, flags, -1, 0);
688 switch (buf2 != MAP_FAILED) {
689 case 1:
690 if (!cross_256mb(buf2, size)) {
691 /* Success! Use the new buffer. */
692 munmap(buf, size);
693 break;
695 /* Failure. Work with what we had. */
696 munmap(buf2, size);
697 /* fallthru */
698 default:
699 /* Split the original buffer. Free the smaller half. */
700 buf2 = split_cross_256mb(buf, size);
701 size2 = tcg_ctx.code_gen_buffer_size;
702 if (buf == buf2) {
703 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
704 } else {
705 munmap(buf, size - size2);
707 size = size2;
708 break;
710 buf = buf2;
712 #endif
714 /* Make the final buffer accessible. The guard page at the end
715 will remain inaccessible with PROT_NONE. */
716 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
718 /* Request large pages for the buffer. */
719 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
721 return buf;
723 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
725 static inline void code_gen_alloc(size_t tb_size)
727 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
728 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
729 if (tcg_ctx.code_gen_buffer == NULL) {
730 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
731 exit(1);
734 /* Estimate a good size for the number of TBs we can support. We
735 still haven't deducted the prologue from the buffer size here,
736 but that's minimal and won't affect the estimate much. */
737 tcg_ctx.code_gen_max_blocks
738 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
739 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
741 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
744 /* Must be called before using the QEMU cpus. 'tb_size' is the size
745 (in bytes) allocated to the translation buffer. Zero means default
746 size. */
747 void tcg_exec_init(uintptr_t tb_size)
749 cpu_gen_init();
750 page_init();
751 code_gen_alloc(tb_size);
752 #if defined(CONFIG_SOFTMMU)
753 /* There's no guest base to take into account, so go ahead and
754 initialize the prologue now. */
755 tcg_prologue_init(&tcg_ctx);
756 #endif
759 bool tcg_enabled(void)
761 return tcg_ctx.code_gen_buffer != NULL;
764 /* Allocate a new translation block. Flush the translation buffer if
765 too many translation blocks or too much generated code. */
766 static TranslationBlock *tb_alloc(target_ulong pc)
768 TranslationBlock *tb;
770 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
771 return NULL;
773 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
774 tb->pc = pc;
775 tb->cflags = 0;
776 return tb;
779 void tb_free(TranslationBlock *tb)
781 /* In practice this is mostly used for single use temporary TB
782 Ignore the hard cases and just back up if this TB happens to
783 be the last one generated. */
784 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
785 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
786 tcg_ctx.code_gen_ptr = tb->tc_ptr;
787 tcg_ctx.tb_ctx.nb_tbs--;
791 static inline void invalidate_page_bitmap(PageDesc *p)
793 g_free(p->code_bitmap);
794 p->code_bitmap = NULL;
795 p->code_write_count = 0;
798 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
799 static void page_flush_tb_1(int level, void **lp)
801 int i;
803 if (*lp == NULL) {
804 return;
806 if (level == 0) {
807 PageDesc *pd = *lp;
809 for (i = 0; i < V_L2_SIZE; ++i) {
810 pd[i].first_tb = NULL;
811 invalidate_page_bitmap(pd + i);
813 } else {
814 void **pp = *lp;
816 for (i = 0; i < V_L2_SIZE; ++i) {
817 page_flush_tb_1(level - 1, pp + i);
822 static void page_flush_tb(void)
824 int i;
826 for (i = 0; i < V_L1_SIZE; i++) {
827 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
831 /* flush all the translation blocks */
832 /* XXX: tb_flush is currently not thread safe */
833 void tb_flush(CPUState *cpu)
835 #if defined(DEBUG_FLUSH)
836 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
837 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
838 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
839 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
840 tcg_ctx.tb_ctx.nb_tbs : 0);
841 #endif
842 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
843 > tcg_ctx.code_gen_buffer_size) {
844 cpu_abort(cpu, "Internal error: code buffer overflow\n");
846 tcg_ctx.tb_ctx.nb_tbs = 0;
848 CPU_FOREACH(cpu) {
849 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
852 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
853 page_flush_tb();
855 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
856 /* XXX: flush processor icache at this point if cache flush is
857 expensive */
858 tcg_ctx.tb_ctx.tb_flush_count++;
861 #ifdef DEBUG_TB_CHECK
863 static void tb_invalidate_check(target_ulong address)
865 TranslationBlock *tb;
866 int i;
868 address &= TARGET_PAGE_MASK;
869 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
870 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
871 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
872 address >= tb->pc + tb->size)) {
873 printf("ERROR invalidate: address=" TARGET_FMT_lx
874 " PC=%08lx size=%04x\n",
875 address, (long)tb->pc, tb->size);
881 /* verify that all the pages have correct rights for code */
882 static void tb_page_check(void)
884 TranslationBlock *tb;
885 int i, flags1, flags2;
887 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
888 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
889 tb = tb->phys_hash_next) {
890 flags1 = page_get_flags(tb->pc);
891 flags2 = page_get_flags(tb->pc + tb->size - 1);
892 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
893 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
894 (long)tb->pc, tb->size, flags1, flags2);
900 #endif
902 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
904 TranslationBlock *tb1;
906 for (;;) {
907 tb1 = *ptb;
908 if (tb1 == tb) {
909 *ptb = tb1->phys_hash_next;
910 break;
912 ptb = &tb1->phys_hash_next;
916 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
918 TranslationBlock *tb1;
919 unsigned int n1;
921 for (;;) {
922 tb1 = *ptb;
923 n1 = (uintptr_t)tb1 & 3;
924 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
925 if (tb1 == tb) {
926 *ptb = tb1->page_next[n1];
927 break;
929 ptb = &tb1->page_next[n1];
933 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
935 TranslationBlock *tb1, **ptb;
936 unsigned int n1;
938 ptb = &tb->jmp_next[n];
939 tb1 = *ptb;
940 if (tb1) {
941 /* find tb(n) in circular list */
942 for (;;) {
943 tb1 = *ptb;
944 n1 = (uintptr_t)tb1 & 3;
945 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
946 if (n1 == n && tb1 == tb) {
947 break;
949 if (n1 == 2) {
950 ptb = &tb1->jmp_first;
951 } else {
952 ptb = &tb1->jmp_next[n1];
955 /* now we can suppress tb(n) from the list */
956 *ptb = tb->jmp_next[n];
958 tb->jmp_next[n] = NULL;
962 /* reset the jump entry 'n' of a TB so that it is not chained to
963 another TB */
964 static inline void tb_reset_jump(TranslationBlock *tb, int n)
966 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
969 /* invalidate one TB */
970 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
972 CPUState *cpu;
973 PageDesc *p;
974 unsigned int h, n1;
975 tb_page_addr_t phys_pc;
976 TranslationBlock *tb1, *tb2;
978 /* remove the TB from the hash list */
979 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
980 h = tb_phys_hash_func(phys_pc);
981 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
983 /* remove the TB from the page list */
984 if (tb->page_addr[0] != page_addr) {
985 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
986 tb_page_remove(&p->first_tb, tb);
987 invalidate_page_bitmap(p);
989 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
990 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
991 tb_page_remove(&p->first_tb, tb);
992 invalidate_page_bitmap(p);
995 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
997 /* remove the TB from the hash list */
998 h = tb_jmp_cache_hash_func(tb->pc);
999 CPU_FOREACH(cpu) {
1000 if (cpu->tb_jmp_cache[h] == tb) {
1001 cpu->tb_jmp_cache[h] = NULL;
1005 /* suppress this TB from the two jump lists */
1006 tb_jmp_remove(tb, 0);
1007 tb_jmp_remove(tb, 1);
1009 /* suppress any remaining jumps to this TB */
1010 tb1 = tb->jmp_first;
1011 for (;;) {
1012 n1 = (uintptr_t)tb1 & 3;
1013 if (n1 == 2) {
1014 break;
1016 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1017 tb2 = tb1->jmp_next[n1];
1018 tb_reset_jump(tb1, n1);
1019 tb1->jmp_next[n1] = NULL;
1020 tb1 = tb2;
1022 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1024 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1027 static void build_page_bitmap(PageDesc *p)
1029 int n, tb_start, tb_end;
1030 TranslationBlock *tb;
1032 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1034 tb = p->first_tb;
1035 while (tb != NULL) {
1036 n = (uintptr_t)tb & 3;
1037 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1038 /* NOTE: this is subtle as a TB may span two physical pages */
1039 if (n == 0) {
1040 /* NOTE: tb_end may be after the end of the page, but
1041 it is not a problem */
1042 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1043 tb_end = tb_start + tb->size;
1044 if (tb_end > TARGET_PAGE_SIZE) {
1045 tb_end = TARGET_PAGE_SIZE;
1047 } else {
1048 tb_start = 0;
1049 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1051 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1052 tb = tb->page_next[n];
1056 /* Called with mmap_lock held for user mode emulation. */
1057 TranslationBlock *tb_gen_code(CPUState *cpu,
1058 target_ulong pc, target_ulong cs_base,
1059 int flags, int cflags)
1061 CPUArchState *env = cpu->env_ptr;
1062 TranslationBlock *tb;
1063 tb_page_addr_t phys_pc, phys_page2;
1064 target_ulong virt_page2;
1065 tcg_insn_unit *gen_code_buf;
1066 int gen_code_size, search_size;
1067 #ifdef CONFIG_PROFILER
1068 int64_t ti;
1069 #endif
1071 phys_pc = get_page_addr_code(env, pc);
1072 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1073 cflags |= CF_USE_ICOUNT;
1076 tb = tb_alloc(pc);
1077 if (unlikely(!tb)) {
1078 buffer_overflow:
1079 /* flush must be done */
1080 tb_flush(cpu);
1081 /* cannot fail at this point */
1082 tb = tb_alloc(pc);
1083 assert(tb != NULL);
1084 /* Don't forget to invalidate previous TB info. */
1085 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1088 gen_code_buf = tcg_ctx.code_gen_ptr;
1089 tb->tc_ptr = gen_code_buf;
1090 tb->cs_base = cs_base;
1091 tb->flags = flags;
1092 tb->cflags = cflags;
1094 #ifdef CONFIG_PROFILER
1095 tcg_ctx.tb_count1++; /* includes aborted translations because of
1096 exceptions */
1097 ti = profile_getclock();
1098 #endif
1100 tcg_func_start(&tcg_ctx);
1102 gen_intermediate_code(env, tb);
1104 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1106 /* generate machine code */
1107 tb->tb_next_offset[0] = 0xffff;
1108 tb->tb_next_offset[1] = 0xffff;
1109 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1110 #ifdef USE_DIRECT_JUMP
1111 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1112 tcg_ctx.tb_next = NULL;
1113 #else
1114 tcg_ctx.tb_jmp_offset = NULL;
1115 tcg_ctx.tb_next = tb->tb_next;
1116 #endif
1118 #ifdef CONFIG_PROFILER
1119 tcg_ctx.tb_count++;
1120 tcg_ctx.interm_time += profile_getclock() - ti;
1121 tcg_ctx.code_time -= profile_getclock();
1122 #endif
1124 /* ??? Overflow could be handled better here. In particular, we
1125 don't need to re-do gen_intermediate_code, nor should we re-do
1126 the tcg optimization currently hidden inside tcg_gen_code. All
1127 that should be required is to flush the TBs, allocate a new TB,
1128 re-initialize it per above, and re-do the actual code generation. */
1129 gen_code_size = tcg_gen_code(&tcg_ctx, gen_code_buf);
1130 if (unlikely(gen_code_size < 0)) {
1131 goto buffer_overflow;
1133 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1134 if (unlikely(search_size < 0)) {
1135 goto buffer_overflow;
1138 #ifdef CONFIG_PROFILER
1139 tcg_ctx.code_time += profile_getclock();
1140 tcg_ctx.code_in_len += tb->size;
1141 tcg_ctx.code_out_len += gen_code_size;
1142 tcg_ctx.search_out_len += search_size;
1143 #endif
1145 #ifdef DEBUG_DISAS
1146 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1147 qemu_log("OUT: [size=%d]\n", gen_code_size);
1148 log_disas(tb->tc_ptr, gen_code_size);
1149 qemu_log("\n");
1150 qemu_log_flush();
1152 #endif
1154 tcg_ctx.code_gen_ptr = (void *)
1155 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1156 CODE_GEN_ALIGN);
1158 #if defined(CONFIG_USER_ONLY) && defined(TARGET_X86_64)
1159 /* if we are doing vsyscall don't link the page as it lies in high memory
1160 and tb_alloc_page will abort due to page_l1_map returning NULL */
1161 if (unlikely(phys_pc >= TARGET_VSYSCALL_START
1162 && phys_pc < TARGET_VSYSCALL_END))
1163 return tb;
1164 #endif
1166 /* check next page if needed */
1167 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1168 phys_page2 = -1;
1169 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1170 phys_page2 = get_page_addr_code(env, virt_page2);
1172 tb_link_page(tb, phys_pc, phys_page2);
1173 return tb;
1177 * Invalidate all TBs which intersect with the target physical address range
1178 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1179 * 'is_cpu_write_access' should be true if called from a real cpu write
1180 * access: the virtual CPU will exit the current TB if code is modified inside
1181 * this TB.
1183 * Called with mmap_lock held for user-mode emulation
1185 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1187 while (start < end) {
1188 tb_invalidate_phys_page_range(start, end, 0);
1189 start &= TARGET_PAGE_MASK;
1190 start += TARGET_PAGE_SIZE;
1195 * Invalidate all TBs which intersect with the target physical address range
1196 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1197 * 'is_cpu_write_access' should be true if called from a real cpu write
1198 * access: the virtual CPU will exit the current TB if code is modified inside
1199 * this TB.
1201 * Called with mmap_lock held for user-mode emulation
1203 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1204 int is_cpu_write_access)
1206 TranslationBlock *tb, *tb_next, *saved_tb;
1207 CPUState *cpu = current_cpu;
1208 #if defined(TARGET_HAS_PRECISE_SMC)
1209 CPUArchState *env = NULL;
1210 #endif
1211 tb_page_addr_t tb_start, tb_end;
1212 PageDesc *p;
1213 int n;
1214 #ifdef TARGET_HAS_PRECISE_SMC
1215 int current_tb_not_found = is_cpu_write_access;
1216 TranslationBlock *current_tb = NULL;
1217 int current_tb_modified = 0;
1218 target_ulong current_pc = 0;
1219 target_ulong current_cs_base = 0;
1220 int current_flags = 0;
1221 #endif /* TARGET_HAS_PRECISE_SMC */
1223 p = page_find(start >> TARGET_PAGE_BITS);
1224 if (!p) {
1225 return;
1227 #if defined(TARGET_HAS_PRECISE_SMC)
1228 if (cpu != NULL) {
1229 env = cpu->env_ptr;
1231 #endif
1233 /* we remove all the TBs in the range [start, end[ */
1234 /* XXX: see if in some cases it could be faster to invalidate all
1235 the code */
1236 tb = p->first_tb;
1237 while (tb != NULL) {
1238 n = (uintptr_t)tb & 3;
1239 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1240 tb_next = tb->page_next[n];
1241 /* NOTE: this is subtle as a TB may span two physical pages */
1242 if (n == 0) {
1243 /* NOTE: tb_end may be after the end of the page, but
1244 it is not a problem */
1245 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1246 tb_end = tb_start + tb->size;
1247 } else {
1248 tb_start = tb->page_addr[1];
1249 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1251 if (!(tb_end <= start || tb_start >= end)) {
1252 #ifdef TARGET_HAS_PRECISE_SMC
1253 if (current_tb_not_found) {
1254 current_tb_not_found = 0;
1255 current_tb = NULL;
1256 if (cpu->mem_io_pc) {
1257 /* now we have a real cpu fault */
1258 current_tb = tb_find_pc(cpu->mem_io_pc);
1261 if (current_tb == tb &&
1262 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1263 /* If we are modifying the current TB, we must stop
1264 its execution. We could be more precise by checking
1265 that the modification is after the current PC, but it
1266 would require a specialized function to partially
1267 restore the CPU state */
1269 current_tb_modified = 1;
1270 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1271 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1272 &current_flags);
1274 #endif /* TARGET_HAS_PRECISE_SMC */
1275 /* we need to do that to handle the case where a signal
1276 occurs while doing tb_phys_invalidate() */
1277 saved_tb = NULL;
1278 if (cpu != NULL) {
1279 saved_tb = cpu->current_tb;
1280 cpu->current_tb = NULL;
1282 tb_phys_invalidate(tb, -1);
1283 if (cpu != NULL) {
1284 cpu->current_tb = saved_tb;
1285 if (cpu->interrupt_request && cpu->current_tb) {
1286 cpu_interrupt(cpu, cpu->interrupt_request);
1290 tb = tb_next;
1292 #if !defined(CONFIG_USER_ONLY)
1293 /* if no code remaining, no need to continue to use slow writes */
1294 if (!p->first_tb) {
1295 invalidate_page_bitmap(p);
1296 tlb_unprotect_code(start);
1298 #endif
1299 #ifdef TARGET_HAS_PRECISE_SMC
1300 if (current_tb_modified) {
1301 /* we generate a block containing just the instruction
1302 modifying the memory. It will ensure that it cannot modify
1303 itself */
1304 cpu->current_tb = NULL;
1305 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1306 cpu_resume_from_signal(cpu, NULL);
1308 #endif
1311 /* len must be <= 8 and start must be a multiple of len */
1312 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1314 PageDesc *p;
1316 #if 0
1317 if (1) {
1318 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1319 cpu_single_env->mem_io_vaddr, len,
1320 cpu_single_env->eip,
1321 cpu_single_env->eip +
1322 (intptr_t)cpu_single_env->segs[R_CS].base);
1324 #endif
1325 p = page_find(start >> TARGET_PAGE_BITS);
1326 if (!p) {
1327 return;
1329 if (!p->code_bitmap &&
1330 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1331 /* build code bitmap */
1332 build_page_bitmap(p);
1334 if (p->code_bitmap) {
1335 unsigned int nr;
1336 unsigned long b;
1338 nr = start & ~TARGET_PAGE_MASK;
1339 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1340 if (b & ((1 << len) - 1)) {
1341 goto do_invalidate;
1343 } else {
1344 do_invalidate:
1345 tb_invalidate_phys_page_range(start, start + len, 1);
1349 #if !defined(CONFIG_SOFTMMU)
1350 /* Called with mmap_lock held. */
1351 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1352 uintptr_t pc, void *puc,
1353 bool locked)
1355 TranslationBlock *tb;
1356 PageDesc *p;
1357 int n;
1358 #ifdef TARGET_HAS_PRECISE_SMC
1359 TranslationBlock *current_tb = NULL;
1360 CPUState *cpu = current_cpu;
1361 CPUArchState *env = NULL;
1362 int current_tb_modified = 0;
1363 target_ulong current_pc = 0;
1364 target_ulong current_cs_base = 0;
1365 int current_flags = 0;
1366 #endif
1368 addr &= TARGET_PAGE_MASK;
1369 p = page_find(addr >> TARGET_PAGE_BITS);
1370 if (!p) {
1371 return;
1373 tb = p->first_tb;
1374 #ifdef TARGET_HAS_PRECISE_SMC
1375 if (tb && pc != 0) {
1376 current_tb = tb_find_pc(pc);
1378 if (cpu != NULL) {
1379 env = cpu->env_ptr;
1381 #endif
1382 while (tb != NULL) {
1383 n = (uintptr_t)tb & 3;
1384 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1385 #ifdef TARGET_HAS_PRECISE_SMC
1386 if (current_tb == tb &&
1387 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1388 /* If we are modifying the current TB, we must stop
1389 its execution. We could be more precise by checking
1390 that the modification is after the current PC, but it
1391 would require a specialized function to partially
1392 restore the CPU state */
1394 current_tb_modified = 1;
1395 cpu_restore_state_from_tb(cpu, current_tb, pc);
1396 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1397 &current_flags);
1399 #endif /* TARGET_HAS_PRECISE_SMC */
1400 tb_phys_invalidate(tb, addr);
1401 tb = tb->page_next[n];
1403 p->first_tb = NULL;
1404 #ifdef TARGET_HAS_PRECISE_SMC
1405 if (current_tb_modified) {
1406 /* we generate a block containing just the instruction
1407 modifying the memory. It will ensure that it cannot modify
1408 itself */
1409 cpu->current_tb = NULL;
1410 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1411 if (locked) {
1412 mmap_unlock();
1414 cpu_resume_from_signal(cpu, puc);
1416 #endif
1418 #endif
1420 /* add the tb in the target page and protect it if necessary
1422 * Called with mmap_lock held for user-mode emulation.
1424 static inline void tb_alloc_page(TranslationBlock *tb,
1425 unsigned int n, tb_page_addr_t page_addr)
1427 PageDesc *p;
1428 #ifndef CONFIG_USER_ONLY
1429 bool page_already_protected;
1430 #endif
1432 tb->page_addr[n] = page_addr;
1433 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1434 tb->page_next[n] = p->first_tb;
1435 #ifndef CONFIG_USER_ONLY
1436 page_already_protected = p->first_tb != NULL;
1437 #endif
1438 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1439 invalidate_page_bitmap(p);
1441 #if defined(CONFIG_USER_ONLY)
1442 if (p->flags & PAGE_WRITE) {
1443 target_ulong addr;
1444 PageDesc *p2;
1445 int prot;
1447 /* force the host page as non writable (writes will have a
1448 page fault + mprotect overhead) */
1449 page_addr &= qemu_host_page_mask;
1450 prot = 0;
1451 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1452 addr += TARGET_PAGE_SIZE) {
1454 p2 = page_find(addr >> TARGET_PAGE_BITS);
1455 if (!p2) {
1456 continue;
1458 prot |= p2->flags;
1459 p2->flags &= ~PAGE_WRITE;
1461 mprotect(g2h(page_addr), qemu_host_page_size,
1462 (prot & PAGE_BITS) & ~PAGE_WRITE);
1463 #ifdef DEBUG_TB_INVALIDATE
1464 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1465 page_addr);
1466 #endif
1468 #else
1469 /* if some code is already present, then the pages are already
1470 protected. So we handle the case where only the first TB is
1471 allocated in a physical page */
1472 if (!page_already_protected) {
1473 tlb_protect_code(page_addr);
1475 #endif
1478 /* add a new TB and link it to the physical page tables. phys_page2 is
1479 * (-1) to indicate that only one page contains the TB.
1481 * Called with mmap_lock held for user-mode emulation.
1483 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1484 tb_page_addr_t phys_page2)
1486 unsigned int h;
1487 TranslationBlock **ptb;
1489 /* add in the physical hash table */
1490 h = tb_phys_hash_func(phys_pc);
1491 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1492 tb->phys_hash_next = *ptb;
1493 *ptb = tb;
1495 /* add in the page list */
1496 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1497 if (phys_page2 != -1) {
1498 tb_alloc_page(tb, 1, phys_page2);
1499 } else {
1500 tb->page_addr[1] = -1;
1503 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1504 tb->jmp_next[0] = NULL;
1505 tb->jmp_next[1] = NULL;
1507 /* init original jump addresses */
1508 if (tb->tb_next_offset[0] != 0xffff) {
1509 tb_reset_jump(tb, 0);
1511 if (tb->tb_next_offset[1] != 0xffff) {
1512 tb_reset_jump(tb, 1);
1515 #ifdef DEBUG_TB_CHECK
1516 tb_page_check();
1517 #endif
1520 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1521 tb[1].tc_ptr. Return NULL if not found */
1522 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1524 int m_min, m_max, m;
1525 uintptr_t v;
1526 TranslationBlock *tb;
1528 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1529 return NULL;
1531 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1532 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1533 return NULL;
1535 /* binary search (cf Knuth) */
1536 m_min = 0;
1537 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1538 while (m_min <= m_max) {
1539 m = (m_min + m_max) >> 1;
1540 tb = &tcg_ctx.tb_ctx.tbs[m];
1541 v = (uintptr_t)tb->tc_ptr;
1542 if (v == tc_ptr) {
1543 return tb;
1544 } else if (tc_ptr < v) {
1545 m_max = m - 1;
1546 } else {
1547 m_min = m + 1;
1550 return &tcg_ctx.tb_ctx.tbs[m_max];
1553 #if !defined(CONFIG_USER_ONLY)
1554 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1556 ram_addr_t ram_addr;
1557 MemoryRegion *mr;
1558 hwaddr l = 1;
1560 rcu_read_lock();
1561 mr = address_space_translate(as, addr, &addr, &l, false);
1562 if (!(memory_region_is_ram(mr)
1563 || memory_region_is_romd(mr))) {
1564 rcu_read_unlock();
1565 return;
1567 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1568 + addr;
1569 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1570 rcu_read_unlock();
1572 #endif /* !defined(CONFIG_USER_ONLY) */
1574 void tb_check_watchpoint(CPUState *cpu)
1576 TranslationBlock *tb;
1578 tb = tb_find_pc(cpu->mem_io_pc);
1579 if (tb) {
1580 /* We can use retranslation to find the PC. */
1581 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1582 tb_phys_invalidate(tb, -1);
1583 } else {
1584 /* The exception probably happened in a helper. The CPU state should
1585 have been saved before calling it. Fetch the PC from there. */
1586 CPUArchState *env = cpu->env_ptr;
1587 target_ulong pc, cs_base;
1588 tb_page_addr_t addr;
1589 int flags;
1591 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1592 addr = get_page_addr_code(env, pc);
1593 tb_invalidate_phys_range(addr, addr + 1);
1597 #ifndef CONFIG_USER_ONLY
1598 /* in deterministic execution mode, instructions doing device I/Os
1599 must be at the end of the TB */
1600 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1602 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1603 CPUArchState *env = cpu->env_ptr;
1604 #endif
1605 TranslationBlock *tb;
1606 uint32_t n, cflags;
1607 target_ulong pc, cs_base;
1608 uint64_t flags;
1610 tb = tb_find_pc(retaddr);
1611 if (!tb) {
1612 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1613 (void *)retaddr);
1615 n = cpu->icount_decr.u16.low + tb->icount;
1616 cpu_restore_state_from_tb(cpu, tb, retaddr);
1617 /* Calculate how many instructions had been executed before the fault
1618 occurred. */
1619 n = n - cpu->icount_decr.u16.low;
1620 /* Generate a new TB ending on the I/O insn. */
1621 n++;
1622 /* On MIPS and SH, delay slot instructions can only be restarted if
1623 they were already the first instruction in the TB. If this is not
1624 the first instruction in a TB then re-execute the preceding
1625 branch. */
1626 #if defined(TARGET_MIPS)
1627 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1628 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1629 cpu->icount_decr.u16.low++;
1630 env->hflags &= ~MIPS_HFLAG_BMASK;
1632 #elif defined(TARGET_SH4)
1633 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1634 && n > 1) {
1635 env->pc -= 2;
1636 cpu->icount_decr.u16.low++;
1637 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1639 #endif
1640 /* This should never happen. */
1641 if (n > CF_COUNT_MASK) {
1642 cpu_abort(cpu, "TB too big during recompile");
1645 cflags = n | CF_LAST_IO;
1646 pc = tb->pc;
1647 cs_base = tb->cs_base;
1648 flags = tb->flags;
1649 tb_phys_invalidate(tb, -1);
1650 if (tb->cflags & CF_NOCACHE) {
1651 if (tb->orig_tb) {
1652 /* Invalidate original TB if this TB was generated in
1653 * cpu_exec_nocache() */
1654 tb_phys_invalidate(tb->orig_tb, -1);
1656 tb_free(tb);
1658 /* FIXME: In theory this could raise an exception. In practice
1659 we have already translated the block once so it's probably ok. */
1660 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1661 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1662 the first in the TB) then we end up generating a whole new TB and
1663 repeating the fault, which is horribly inefficient.
1664 Better would be to execute just this insn uncached, or generate a
1665 second new TB. */
1666 cpu_resume_from_signal(cpu, NULL);
1669 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1671 unsigned int i;
1673 /* Discard jump cache entries for any tb which might potentially
1674 overlap the flushed page. */
1675 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1676 memset(&cpu->tb_jmp_cache[i], 0,
1677 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1679 i = tb_jmp_cache_hash_page(addr);
1680 memset(&cpu->tb_jmp_cache[i], 0,
1681 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1684 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1686 int i, target_code_size, max_target_code_size;
1687 int direct_jmp_count, direct_jmp2_count, cross_page;
1688 TranslationBlock *tb;
1690 target_code_size = 0;
1691 max_target_code_size = 0;
1692 cross_page = 0;
1693 direct_jmp_count = 0;
1694 direct_jmp2_count = 0;
1695 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1696 tb = &tcg_ctx.tb_ctx.tbs[i];
1697 target_code_size += tb->size;
1698 if (tb->size > max_target_code_size) {
1699 max_target_code_size = tb->size;
1701 if (tb->page_addr[1] != -1) {
1702 cross_page++;
1704 if (tb->tb_next_offset[0] != 0xffff) {
1705 direct_jmp_count++;
1706 if (tb->tb_next_offset[1] != 0xffff) {
1707 direct_jmp2_count++;
1711 /* XXX: avoid using doubles ? */
1712 cpu_fprintf(f, "Translation buffer state:\n");
1713 cpu_fprintf(f, "gen code size %td/%zd\n",
1714 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1715 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1716 cpu_fprintf(f, "TB count %d/%d\n",
1717 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1718 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1719 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1720 tcg_ctx.tb_ctx.nb_tbs : 0,
1721 max_target_code_size);
1722 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1723 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1724 tcg_ctx.code_gen_buffer) /
1725 tcg_ctx.tb_ctx.nb_tbs : 0,
1726 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1727 tcg_ctx.code_gen_buffer) /
1728 target_code_size : 0);
1729 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1730 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1731 tcg_ctx.tb_ctx.nb_tbs : 0);
1732 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1733 direct_jmp_count,
1734 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1735 tcg_ctx.tb_ctx.nb_tbs : 0,
1736 direct_jmp2_count,
1737 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1738 tcg_ctx.tb_ctx.nb_tbs : 0);
1739 cpu_fprintf(f, "\nStatistics:\n");
1740 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1741 cpu_fprintf(f, "TB invalidate count %d\n",
1742 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1743 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1744 tcg_dump_info(f, cpu_fprintf);
1747 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1749 tcg_dump_op_count(f, cpu_fprintf);
1752 #else /* CONFIG_USER_ONLY */
1754 void cpu_interrupt(CPUState *cpu, int mask)
1756 cpu->interrupt_request |= mask;
1757 cpu->tcg_exit_req = 1;
1761 * Walks guest process memory "regions" one by one
1762 * and calls callback function 'fn' for each region.
1764 struct walk_memory_regions_data {
1765 walk_memory_regions_fn fn;
1766 void *priv;
1767 target_ulong start;
1768 int prot;
1771 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1772 target_ulong end, int new_prot)
1774 if (data->start != -1u) {
1775 int rc = data->fn(data->priv, data->start, end, data->prot);
1776 if (rc != 0) {
1777 return rc;
1781 data->start = (new_prot ? end : -1u);
1782 data->prot = new_prot;
1784 return 0;
1787 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1788 target_ulong base, int level, void **lp)
1790 target_ulong pa;
1791 int i, rc;
1793 if (*lp == NULL) {
1794 return walk_memory_regions_end(data, base, 0);
1797 if (level == 0) {
1798 PageDesc *pd = *lp;
1800 for (i = 0; i < V_L2_SIZE; ++i) {
1801 int prot = pd[i].flags;
1803 pa = base | (i << TARGET_PAGE_BITS);
1804 if (prot != data->prot) {
1805 rc = walk_memory_regions_end(data, pa, prot);
1806 if (rc != 0) {
1807 return rc;
1811 } else {
1812 void **pp = *lp;
1814 for (i = 0; i < V_L2_SIZE; ++i) {
1815 pa = base | ((target_ulong)i <<
1816 (TARGET_PAGE_BITS + V_L2_BITS * level));
1817 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1818 if (rc != 0) {
1819 return rc;
1824 return 0;
1827 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1829 struct walk_memory_regions_data data;
1830 uintptr_t i;
1832 data.fn = fn;
1833 data.priv = priv;
1834 data.start = -1u;
1835 data.prot = 0;
1837 for (i = 0; i < V_L1_SIZE; i++) {
1838 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1839 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1840 if (rc != 0) {
1841 return rc;
1845 return walk_memory_regions_end(&data, 0, 0);
1848 static int dump_region(void *priv, target_ulong start,
1849 target_ulong end, abi_ulong prot)
1851 FILE *f = (FILE *)priv;
1853 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1854 " "TARGET_FMT_lx" %c%c%c\n",
1855 start, end, end - start,
1856 ((prot & PAGE_READ) ? 'r' : '-'),
1857 ((prot & PAGE_WRITE) ? 'w' : '-'),
1858 ((prot & PAGE_EXEC) ? 'x' : '-'));
1860 return 0;
1863 /* dump memory mappings */
1864 void page_dump(FILE *f)
1866 const int length = sizeof(target_ulong) * 2;
1867 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1868 length, "start", length, "end", length, "size", "prot");
1869 walk_memory_regions(f, dump_region);
1872 int page_get_flags(target_ulong address)
1874 PageDesc *p;
1876 p = page_find(address >> TARGET_PAGE_BITS);
1877 if (!p) {
1878 return 0;
1880 return p->flags;
1883 /* Modify the flags of a page and invalidate the code if necessary.
1884 The flag PAGE_WRITE_ORG is positioned automatically depending
1885 on PAGE_WRITE. The mmap_lock should already be held. */
1886 void page_set_flags(target_ulong start, target_ulong end, int flags)
1888 target_ulong addr, len;
1890 /* This function should never be called with addresses outside the
1891 guest address space. If this assert fires, it probably indicates
1892 a missing call to h2g_valid. */
1893 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1894 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1895 #endif
1896 assert(start < end);
1898 start = start & TARGET_PAGE_MASK;
1899 end = TARGET_PAGE_ALIGN(end);
1901 if (flags & PAGE_WRITE) {
1902 flags |= PAGE_WRITE_ORG;
1905 for (addr = start, len = end - start;
1906 len != 0;
1907 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1908 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1910 /* If the write protection bit is set, then we invalidate
1911 the code inside. */
1912 if (!(p->flags & PAGE_WRITE) &&
1913 (flags & PAGE_WRITE) &&
1914 p->first_tb) {
1915 tb_invalidate_phys_page(addr, 0, NULL, false);
1917 p->flags = flags;
1921 int page_check_range(target_ulong start, target_ulong len, int flags)
1923 PageDesc *p;
1924 target_ulong end;
1925 target_ulong addr;
1927 /* This function should never be called with addresses outside the
1928 guest address space. If this assert fires, it probably indicates
1929 a missing call to h2g_valid. */
1930 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1931 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1932 #endif
1934 if (len == 0) {
1935 return 0;
1937 if (start + len - 1 < start) {
1938 /* We've wrapped around. */
1939 return -1;
1942 /* must do before we loose bits in the next step */
1943 end = TARGET_PAGE_ALIGN(start + len);
1944 start = start & TARGET_PAGE_MASK;
1946 for (addr = start, len = end - start;
1947 len != 0;
1948 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1949 p = page_find(addr >> TARGET_PAGE_BITS);
1950 if (!p) {
1951 return -1;
1953 if (!(p->flags & PAGE_VALID)) {
1954 return -1;
1957 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1958 return -1;
1960 if (flags & PAGE_WRITE) {
1961 if (!(p->flags & PAGE_WRITE_ORG)) {
1962 return -1;
1964 /* unprotect the page if it was put read-only because it
1965 contains translated code */
1966 if (!(p->flags & PAGE_WRITE)) {
1967 if (!page_unprotect(addr, 0, NULL)) {
1968 return -1;
1973 return 0;
1976 /* called from signal handler: invalidate the code and unprotect the
1977 page. Return TRUE if the fault was successfully handled. */
1978 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1980 unsigned int prot;
1981 PageDesc *p;
1982 target_ulong host_start, host_end, addr;
1984 /* Technically this isn't safe inside a signal handler. However we
1985 know this only ever happens in a synchronous SEGV handler, so in
1986 practice it seems to be ok. */
1987 mmap_lock();
1989 p = page_find(address >> TARGET_PAGE_BITS);
1990 if (!p) {
1991 mmap_unlock();
1992 return 0;
1995 /* if the page was really writable, then we change its
1996 protection back to writable */
1997 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1998 host_start = address & qemu_host_page_mask;
1999 host_end = host_start + qemu_host_page_size;
2001 prot = 0;
2002 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2003 p = page_find(addr >> TARGET_PAGE_BITS);
2004 p->flags |= PAGE_WRITE;
2005 prot |= p->flags;
2007 /* and since the content will be modified, we must invalidate
2008 the corresponding translated code. */
2009 tb_invalidate_phys_page(addr, pc, puc, true);
2010 #ifdef DEBUG_TB_CHECK
2011 tb_invalidate_check(addr);
2012 #endif
2014 mprotect((void *)g2h(host_start), qemu_host_page_size,
2015 prot & PAGE_BITS);
2017 mmap_unlock();
2018 return 1;
2020 mmap_unlock();
2021 return 0;
2023 #endif /* CONFIG_USER_ONLY */