ui: convert common input code to keycodemapdb
[qemu/ar7.git] / migration / postcopy-ram.c
blob0de68e8b25be42e0b668fdb6af191fee7e9321ba
1 /*
2 * Postcopy migration for RAM
4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Dave Gilbert <dgilbert@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
15 * Postcopy is a migration technique where the execution flips from the
16 * source to the destination before all the data has been copied.
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "savevm.h"
24 #include "postcopy-ram.h"
25 #include "ram.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/balloon.h"
28 #include "qemu/error-report.h"
29 #include "trace.h"
31 /* Arbitrary limit on size of each discard command,
32 * keeps them around ~200 bytes
34 #define MAX_DISCARDS_PER_COMMAND 12
36 struct PostcopyDiscardState {
37 const char *ramblock_name;
38 uint16_t cur_entry;
40 * Start and length of a discard range (bytes)
42 uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
43 uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
44 unsigned int nsentwords;
45 unsigned int nsentcmds;
48 /* Postcopy needs to detect accesses to pages that haven't yet been copied
49 * across, and efficiently map new pages in, the techniques for doing this
50 * are target OS specific.
52 #if defined(__linux__)
54 #include <poll.h>
55 #include <sys/ioctl.h>
56 #include <sys/syscall.h>
57 #include <asm/types.h> /* for __u64 */
58 #endif
60 #if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
61 #include <sys/eventfd.h>
62 #include <linux/userfaultfd.h>
65 /**
66 * receive_ufd_features: check userfault fd features, to request only supported
67 * features in the future.
69 * Returns: true on success
71 * __NR_userfaultfd - should be checked before
72 * @features: out parameter will contain uffdio_api.features provided by kernel
73 * in case of success
75 static bool receive_ufd_features(uint64_t *features)
77 struct uffdio_api api_struct = {0};
78 int ufd;
79 bool ret = true;
81 /* if we are here __NR_userfaultfd should exists */
82 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
83 if (ufd == -1) {
84 error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
85 strerror(errno));
86 return false;
89 /* ask features */
90 api_struct.api = UFFD_API;
91 api_struct.features = 0;
92 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
93 error_report("%s: UFFDIO_API failed: %s", __func__,
94 strerror(errno));
95 ret = false;
96 goto release_ufd;
99 *features = api_struct.features;
101 release_ufd:
102 close(ufd);
103 return ret;
107 * request_ufd_features: this function should be called only once on a newly
108 * opened ufd, subsequent calls will lead to error.
110 * Returns: true on succes
112 * @ufd: fd obtained from userfaultfd syscall
113 * @features: bit mask see UFFD_API_FEATURES
115 static bool request_ufd_features(int ufd, uint64_t features)
117 struct uffdio_api api_struct = {0};
118 uint64_t ioctl_mask;
120 api_struct.api = UFFD_API;
121 api_struct.features = features;
122 if (ioctl(ufd, UFFDIO_API, &api_struct)) {
123 error_report("%s failed: UFFDIO_API failed: %s", __func__,
124 strerror(errno));
125 return false;
128 ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
129 (__u64)1 << _UFFDIO_UNREGISTER;
130 if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
131 error_report("Missing userfault features: %" PRIx64,
132 (uint64_t)(~api_struct.ioctls & ioctl_mask));
133 return false;
136 return true;
139 static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
141 uint64_t asked_features = 0;
142 static uint64_t supported_features;
145 * it's not possible to
146 * request UFFD_API twice per one fd
147 * userfault fd features is persistent
149 if (!supported_features) {
150 if (!receive_ufd_features(&supported_features)) {
151 error_report("%s failed", __func__);
152 return false;
157 * request features, even if asked_features is 0, due to
158 * kernel expects UFFD_API before UFFDIO_REGISTER, per
159 * userfault file descriptor
161 if (!request_ufd_features(ufd, asked_features)) {
162 error_report("%s failed: features %" PRIu64, __func__,
163 asked_features);
164 return false;
167 if (getpagesize() != ram_pagesize_summary()) {
168 bool have_hp = false;
169 /* We've got a huge page */
170 #ifdef UFFD_FEATURE_MISSING_HUGETLBFS
171 have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
172 #endif
173 if (!have_hp) {
174 error_report("Userfault on this host does not support huge pages");
175 return false;
178 return true;
181 /* Callback from postcopy_ram_supported_by_host block iterator.
183 static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
184 ram_addr_t offset, ram_addr_t length, void *opaque)
186 RAMBlock *rb = qemu_ram_block_by_name(block_name);
187 size_t pagesize = qemu_ram_pagesize(rb);
189 if (qemu_ram_is_shared(rb)) {
190 error_report("Postcopy on shared RAM (%s) is not yet supported",
191 block_name);
192 return 1;
195 if (length % pagesize) {
196 error_report("Postcopy requires RAM blocks to be a page size multiple,"
197 " block %s is 0x" RAM_ADDR_FMT " bytes with a "
198 "page size of 0x%zx", block_name, length, pagesize);
199 return 1;
201 return 0;
205 * Note: This has the side effect of munlock'ing all of RAM, that's
206 * normally fine since if the postcopy succeeds it gets turned back on at the
207 * end.
209 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
211 long pagesize = getpagesize();
212 int ufd = -1;
213 bool ret = false; /* Error unless we change it */
214 void *testarea = NULL;
215 struct uffdio_register reg_struct;
216 struct uffdio_range range_struct;
217 uint64_t feature_mask;
219 if (qemu_target_page_size() > pagesize) {
220 error_report("Target page size bigger than host page size");
221 goto out;
224 ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
225 if (ufd == -1) {
226 error_report("%s: userfaultfd not available: %s", __func__,
227 strerror(errno));
228 goto out;
231 /* Version and features check */
232 if (!ufd_check_and_apply(ufd, mis)) {
233 goto out;
236 /* We don't support postcopy with shared RAM yet */
237 if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
238 goto out;
242 * userfault and mlock don't go together; we'll put it back later if
243 * it was enabled.
245 if (munlockall()) {
246 error_report("%s: munlockall: %s", __func__, strerror(errno));
247 return -1;
251 * We need to check that the ops we need are supported on anon memory
252 * To do that we need to register a chunk and see the flags that
253 * are returned.
255 testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
256 MAP_ANONYMOUS, -1, 0);
257 if (testarea == MAP_FAILED) {
258 error_report("%s: Failed to map test area: %s", __func__,
259 strerror(errno));
260 goto out;
262 g_assert(((size_t)testarea & (pagesize-1)) == 0);
264 reg_struct.range.start = (uintptr_t)testarea;
265 reg_struct.range.len = pagesize;
266 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
268 if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
269 error_report("%s userfault register: %s", __func__, strerror(errno));
270 goto out;
273 range_struct.start = (uintptr_t)testarea;
274 range_struct.len = pagesize;
275 if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
276 error_report("%s userfault unregister: %s", __func__, strerror(errno));
277 goto out;
280 feature_mask = (__u64)1 << _UFFDIO_WAKE |
281 (__u64)1 << _UFFDIO_COPY |
282 (__u64)1 << _UFFDIO_ZEROPAGE;
283 if ((reg_struct.ioctls & feature_mask) != feature_mask) {
284 error_report("Missing userfault map features: %" PRIx64,
285 (uint64_t)(~reg_struct.ioctls & feature_mask));
286 goto out;
289 /* Success! */
290 ret = true;
291 out:
292 if (testarea) {
293 munmap(testarea, pagesize);
295 if (ufd != -1) {
296 close(ufd);
298 return ret;
302 * Setup an area of RAM so that it *can* be used for postcopy later; this
303 * must be done right at the start prior to pre-copy.
304 * opaque should be the MIS.
306 static int init_range(const char *block_name, void *host_addr,
307 ram_addr_t offset, ram_addr_t length, void *opaque)
309 trace_postcopy_init_range(block_name, host_addr, offset, length);
312 * We need the whole of RAM to be truly empty for postcopy, so things
313 * like ROMs and any data tables built during init must be zero'd
314 * - we're going to get the copy from the source anyway.
315 * (Precopy will just overwrite this data, so doesn't need the discard)
317 if (ram_discard_range(block_name, 0, length)) {
318 return -1;
321 return 0;
325 * At the end of migration, undo the effects of init_range
326 * opaque should be the MIS.
328 static int cleanup_range(const char *block_name, void *host_addr,
329 ram_addr_t offset, ram_addr_t length, void *opaque)
331 MigrationIncomingState *mis = opaque;
332 struct uffdio_range range_struct;
333 trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
336 * We turned off hugepage for the precopy stage with postcopy enabled
337 * we can turn it back on now.
339 qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
342 * We can also turn off userfault now since we should have all the
343 * pages. It can be useful to leave it on to debug postcopy
344 * if you're not sure it's always getting every page.
346 range_struct.start = (uintptr_t)host_addr;
347 range_struct.len = length;
349 if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
350 error_report("%s: userfault unregister %s", __func__, strerror(errno));
352 return -1;
355 return 0;
359 * Initialise postcopy-ram, setting the RAM to a state where we can go into
360 * postcopy later; must be called prior to any precopy.
361 * called from arch_init's similarly named ram_postcopy_incoming_init
363 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
365 if (qemu_ram_foreach_block(init_range, NULL)) {
366 return -1;
369 return 0;
373 * At the end of a migration where postcopy_ram_incoming_init was called.
375 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
377 trace_postcopy_ram_incoming_cleanup_entry();
379 if (mis->have_fault_thread) {
380 uint64_t tmp64;
382 if (qemu_ram_foreach_block(cleanup_range, mis)) {
383 return -1;
386 * Tell the fault_thread to exit, it's an eventfd that should
387 * currently be at 0, we're going to increment it to 1
389 tmp64 = 1;
390 if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) {
391 trace_postcopy_ram_incoming_cleanup_join();
392 qemu_thread_join(&mis->fault_thread);
393 } else {
394 /* Not much we can do here, but may as well report it */
395 error_report("%s: incrementing userfault_quit_fd: %s", __func__,
396 strerror(errno));
398 trace_postcopy_ram_incoming_cleanup_closeuf();
399 close(mis->userfault_fd);
400 close(mis->userfault_quit_fd);
401 mis->have_fault_thread = false;
404 qemu_balloon_inhibit(false);
406 if (enable_mlock) {
407 if (os_mlock() < 0) {
408 error_report("mlock: %s", strerror(errno));
410 * It doesn't feel right to fail at this point, we have a valid
411 * VM state.
416 postcopy_state_set(POSTCOPY_INCOMING_END);
418 if (mis->postcopy_tmp_page) {
419 munmap(mis->postcopy_tmp_page, mis->largest_page_size);
420 mis->postcopy_tmp_page = NULL;
422 if (mis->postcopy_tmp_zero_page) {
423 munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
424 mis->postcopy_tmp_zero_page = NULL;
426 trace_postcopy_ram_incoming_cleanup_exit();
427 return 0;
431 * Disable huge pages on an area
433 static int nhp_range(const char *block_name, void *host_addr,
434 ram_addr_t offset, ram_addr_t length, void *opaque)
436 trace_postcopy_nhp_range(block_name, host_addr, offset, length);
439 * Before we do discards we need to ensure those discards really
440 * do delete areas of the page, even if THP thinks a hugepage would
441 * be a good idea, so force hugepages off.
443 qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
445 return 0;
449 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
450 * however leaving it until after precopy means that most of the precopy
451 * data is still THPd
453 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
455 if (qemu_ram_foreach_block(nhp_range, mis)) {
456 return -1;
459 postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
461 return 0;
465 * Mark the given area of RAM as requiring notification to unwritten areas
466 * Used as a callback on qemu_ram_foreach_block.
467 * host_addr: Base of area to mark
468 * offset: Offset in the whole ram arena
469 * length: Length of the section
470 * opaque: MigrationIncomingState pointer
471 * Returns 0 on success
473 static int ram_block_enable_notify(const char *block_name, void *host_addr,
474 ram_addr_t offset, ram_addr_t length,
475 void *opaque)
477 MigrationIncomingState *mis = opaque;
478 struct uffdio_register reg_struct;
480 reg_struct.range.start = (uintptr_t)host_addr;
481 reg_struct.range.len = length;
482 reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
484 /* Now tell our userfault_fd that it's responsible for this area */
485 if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
486 error_report("%s userfault register: %s", __func__, strerror(errno));
487 return -1;
489 if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
490 error_report("%s userfault: Region doesn't support COPY", __func__);
491 return -1;
494 return 0;
498 * Handle faults detected by the USERFAULT markings
500 static void *postcopy_ram_fault_thread(void *opaque)
502 MigrationIncomingState *mis = opaque;
503 struct uffd_msg msg;
504 int ret;
505 RAMBlock *rb = NULL;
506 RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
508 trace_postcopy_ram_fault_thread_entry();
509 qemu_sem_post(&mis->fault_thread_sem);
511 while (true) {
512 ram_addr_t rb_offset;
513 struct pollfd pfd[2];
516 * We're mainly waiting for the kernel to give us a faulting HVA,
517 * however we can be told to quit via userfault_quit_fd which is
518 * an eventfd
520 pfd[0].fd = mis->userfault_fd;
521 pfd[0].events = POLLIN;
522 pfd[0].revents = 0;
523 pfd[1].fd = mis->userfault_quit_fd;
524 pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
525 pfd[1].revents = 0;
527 if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
528 error_report("%s: userfault poll: %s", __func__, strerror(errno));
529 break;
532 if (pfd[1].revents) {
533 trace_postcopy_ram_fault_thread_quit();
534 break;
537 ret = read(mis->userfault_fd, &msg, sizeof(msg));
538 if (ret != sizeof(msg)) {
539 if (errno == EAGAIN) {
541 * if a wake up happens on the other thread just after
542 * the poll, there is nothing to read.
544 continue;
546 if (ret < 0) {
547 error_report("%s: Failed to read full userfault message: %s",
548 __func__, strerror(errno));
549 break;
550 } else {
551 error_report("%s: Read %d bytes from userfaultfd expected %zd",
552 __func__, ret, sizeof(msg));
553 break; /* Lost alignment, don't know what we'd read next */
556 if (msg.event != UFFD_EVENT_PAGEFAULT) {
557 error_report("%s: Read unexpected event %ud from userfaultfd",
558 __func__, msg.event);
559 continue; /* It's not a page fault, shouldn't happen */
562 rb = qemu_ram_block_from_host(
563 (void *)(uintptr_t)msg.arg.pagefault.address,
564 true, &rb_offset);
565 if (!rb) {
566 error_report("postcopy_ram_fault_thread: Fault outside guest: %"
567 PRIx64, (uint64_t)msg.arg.pagefault.address);
568 break;
571 rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
572 trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
573 qemu_ram_get_idstr(rb),
574 rb_offset);
577 * Send the request to the source - we want to request one
578 * of our host page sizes (which is >= TPS)
580 if (rb != last_rb) {
581 last_rb = rb;
582 migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
583 rb_offset, qemu_ram_pagesize(rb));
584 } else {
585 /* Save some space */
586 migrate_send_rp_req_pages(mis, NULL,
587 rb_offset, qemu_ram_pagesize(rb));
590 trace_postcopy_ram_fault_thread_exit();
591 return NULL;
594 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
596 /* Open the fd for the kernel to give us userfaults */
597 mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
598 if (mis->userfault_fd == -1) {
599 error_report("%s: Failed to open userfault fd: %s", __func__,
600 strerror(errno));
601 return -1;
605 * Although the host check already tested the API, we need to
606 * do the check again as an ABI handshake on the new fd.
608 if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
609 return -1;
612 /* Now an eventfd we use to tell the fault-thread to quit */
613 mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC);
614 if (mis->userfault_quit_fd == -1) {
615 error_report("%s: Opening userfault_quit_fd: %s", __func__,
616 strerror(errno));
617 close(mis->userfault_fd);
618 return -1;
621 qemu_sem_init(&mis->fault_thread_sem, 0);
622 qemu_thread_create(&mis->fault_thread, "postcopy/fault",
623 postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
624 qemu_sem_wait(&mis->fault_thread_sem);
625 qemu_sem_destroy(&mis->fault_thread_sem);
626 mis->have_fault_thread = true;
628 /* Mark so that we get notified of accesses to unwritten areas */
629 if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
630 return -1;
634 * Ballooning can mark pages as absent while we're postcopying
635 * that would cause false userfaults.
637 qemu_balloon_inhibit(true);
639 trace_postcopy_ram_enable_notify();
641 return 0;
645 * Place a host page (from) at (host) atomically
646 * returns 0 on success
648 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
649 size_t pagesize)
651 struct uffdio_copy copy_struct;
653 copy_struct.dst = (uint64_t)(uintptr_t)host;
654 copy_struct.src = (uint64_t)(uintptr_t)from;
655 copy_struct.len = pagesize;
656 copy_struct.mode = 0;
658 /* copy also acks to the kernel waking the stalled thread up
659 * TODO: We can inhibit that ack and only do it if it was requested
660 * which would be slightly cheaper, but we'd have to be careful
661 * of the order of updating our page state.
663 if (ioctl(mis->userfault_fd, UFFDIO_COPY, &copy_struct)) {
664 int e = errno;
665 error_report("%s: %s copy host: %p from: %p (size: %zd)",
666 __func__, strerror(e), host, from, pagesize);
668 return -e;
671 trace_postcopy_place_page(host);
672 return 0;
676 * Place a zero page at (host) atomically
677 * returns 0 on success
679 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
680 size_t pagesize)
682 trace_postcopy_place_page_zero(host);
684 if (pagesize == getpagesize()) {
685 struct uffdio_zeropage zero_struct;
686 zero_struct.range.start = (uint64_t)(uintptr_t)host;
687 zero_struct.range.len = getpagesize();
688 zero_struct.mode = 0;
690 if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) {
691 int e = errno;
692 error_report("%s: %s zero host: %p",
693 __func__, strerror(e), host);
695 return -e;
697 } else {
698 /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
699 if (!mis->postcopy_tmp_zero_page) {
700 mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
701 PROT_READ | PROT_WRITE,
702 MAP_PRIVATE | MAP_ANONYMOUS,
703 -1, 0);
704 if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
705 int e = errno;
706 mis->postcopy_tmp_zero_page = NULL;
707 error_report("%s: %s mapping large zero page",
708 __func__, strerror(e));
709 return -e;
711 memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
713 return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
714 pagesize);
717 return 0;
721 * Returns a target page of memory that can be mapped at a later point in time
722 * using postcopy_place_page
723 * The same address is used repeatedly, postcopy_place_page just takes the
724 * backing page away.
725 * Returns: Pointer to allocated page
728 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
730 if (!mis->postcopy_tmp_page) {
731 mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
732 PROT_READ | PROT_WRITE, MAP_PRIVATE |
733 MAP_ANONYMOUS, -1, 0);
734 if (mis->postcopy_tmp_page == MAP_FAILED) {
735 mis->postcopy_tmp_page = NULL;
736 error_report("%s: %s", __func__, strerror(errno));
737 return NULL;
741 return mis->postcopy_tmp_page;
744 #else
745 /* No target OS support, stubs just fail */
746 bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
748 error_report("%s: No OS support", __func__);
749 return false;
752 int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
754 error_report("postcopy_ram_incoming_init: No OS support");
755 return -1;
758 int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
760 assert(0);
761 return -1;
764 int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
766 assert(0);
767 return -1;
770 int postcopy_ram_enable_notify(MigrationIncomingState *mis)
772 assert(0);
773 return -1;
776 int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
777 size_t pagesize)
779 assert(0);
780 return -1;
783 int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
784 size_t pagesize)
786 assert(0);
787 return -1;
790 void *postcopy_get_tmp_page(MigrationIncomingState *mis)
792 assert(0);
793 return NULL;
796 #endif
798 /* ------------------------------------------------------------------------- */
801 * postcopy_discard_send_init: Called at the start of each RAMBlock before
802 * asking to discard individual ranges.
804 * @ms: The current migration state.
805 * @offset: the bitmap offset of the named RAMBlock in the migration
806 * bitmap.
807 * @name: RAMBlock that discards will operate on.
809 * returns: a new PDS.
811 PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
812 const char *name)
814 PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
816 if (res) {
817 res->ramblock_name = name;
820 return res;
824 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
825 * discard. May send a discard message, may just leave it queued to
826 * be sent later.
828 * @ms: Current migration state.
829 * @pds: Structure initialised by postcopy_discard_send_init().
830 * @start,@length: a range of pages in the migration bitmap in the
831 * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
833 void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
834 unsigned long start, unsigned long length)
836 size_t tp_size = qemu_target_page_size();
837 /* Convert to byte offsets within the RAM block */
838 pds->start_list[pds->cur_entry] = start * tp_size;
839 pds->length_list[pds->cur_entry] = length * tp_size;
840 trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
841 pds->cur_entry++;
842 pds->nsentwords++;
844 if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
845 /* Full set, ship it! */
846 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
847 pds->ramblock_name,
848 pds->cur_entry,
849 pds->start_list,
850 pds->length_list);
851 pds->nsentcmds++;
852 pds->cur_entry = 0;
857 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
858 * bitmap code. Sends any outstanding discard messages, frees the PDS
860 * @ms: Current migration state.
861 * @pds: Structure initialised by postcopy_discard_send_init().
863 void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
865 /* Anything unsent? */
866 if (pds->cur_entry) {
867 qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
868 pds->ramblock_name,
869 pds->cur_entry,
870 pds->start_list,
871 pds->length_list);
872 pds->nsentcmds++;
875 trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
876 pds->nsentcmds);
878 g_free(pds);
882 * Current state of incoming postcopy; note this is not part of
883 * MigrationIncomingState since it's state is used during cleanup
884 * at the end as MIS is being freed.
886 static PostcopyState incoming_postcopy_state;
888 PostcopyState postcopy_state_get(void)
890 return atomic_mb_read(&incoming_postcopy_state);
893 /* Set the state and return the old state */
894 PostcopyState postcopy_state_set(PostcopyState new_state)
896 return atomic_xchg(&incoming_postcopy_state, new_state);