ui: convert common input code to keycodemapdb
[qemu/ar7.git] / block / qcow2-cluster.c
blob0e5aec81cb0df5fb3b6df2d3efb982e88fc9490d
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h>
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
33 #include "trace.h"
35 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
37 BDRVQcow2State *s = bs->opaque;
38 int new_l1_size, i, ret;
40 if (exact_size >= s->l1_size) {
41 return 0;
44 new_l1_size = exact_size;
46 #ifdef DEBUG_ALLOC2
47 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
48 #endif
50 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
51 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
52 new_l1_size * sizeof(uint64_t),
53 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
54 if (ret < 0) {
55 goto fail;
58 ret = bdrv_flush(bs->file->bs);
59 if (ret < 0) {
60 goto fail;
63 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
64 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
65 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
66 continue;
68 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
69 s->cluster_size, QCOW2_DISCARD_ALWAYS);
70 s->l1_table[i] = 0;
72 return 0;
74 fail:
76 * If the write in the l1_table failed the image may contain a partially
77 * overwritten l1_table. In this case it would be better to clear the
78 * l1_table in memory to avoid possible image corruption.
80 memset(s->l1_table + new_l1_size, 0,
81 (s->l1_size - new_l1_size) * sizeof(uint64_t));
82 return ret;
85 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
86 bool exact_size)
88 BDRVQcow2State *s = bs->opaque;
89 int new_l1_size2, ret, i;
90 uint64_t *new_l1_table;
91 int64_t old_l1_table_offset, old_l1_size;
92 int64_t new_l1_table_offset, new_l1_size;
93 uint8_t data[12];
95 if (min_size <= s->l1_size)
96 return 0;
98 /* Do a sanity check on min_size before trying to calculate new_l1_size
99 * (this prevents overflows during the while loop for the calculation of
100 * new_l1_size) */
101 if (min_size > INT_MAX / sizeof(uint64_t)) {
102 return -EFBIG;
105 if (exact_size) {
106 new_l1_size = min_size;
107 } else {
108 /* Bump size up to reduce the number of times we have to grow */
109 new_l1_size = s->l1_size;
110 if (new_l1_size == 0) {
111 new_l1_size = 1;
113 while (min_size > new_l1_size) {
114 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
118 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
119 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
120 return -EFBIG;
123 #ifdef DEBUG_ALLOC2
124 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
125 s->l1_size, new_l1_size);
126 #endif
128 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
129 new_l1_table = qemu_try_blockalign(bs->file->bs,
130 align_offset(new_l1_size2, 512));
131 if (new_l1_table == NULL) {
132 return -ENOMEM;
134 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
136 if (s->l1_size) {
137 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
140 /* write new table (align to cluster) */
141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143 if (new_l1_table_offset < 0) {
144 qemu_vfree(new_l1_table);
145 return new_l1_table_offset;
148 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149 if (ret < 0) {
150 goto fail;
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156 new_l1_size2);
157 if (ret < 0) {
158 goto fail;
161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162 for(i = 0; i < s->l1_size; i++)
163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
165 new_l1_table, new_l1_size2);
166 if (ret < 0)
167 goto fail;
168 for(i = 0; i < s->l1_size; i++)
169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
171 /* set new table */
172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173 stl_be_p(data, new_l1_size);
174 stq_be_p(data + 4, new_l1_table_offset);
175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176 data, sizeof(data));
177 if (ret < 0) {
178 goto fail;
180 qemu_vfree(s->l1_table);
181 old_l1_table_offset = s->l1_table_offset;
182 s->l1_table_offset = new_l1_table_offset;
183 s->l1_table = new_l1_table;
184 old_l1_size = s->l1_size;
185 s->l1_size = new_l1_size;
186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
187 QCOW2_DISCARD_OTHER);
188 return 0;
189 fail:
190 qemu_vfree(new_l1_table);
191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192 QCOW2_DISCARD_OTHER);
193 return ret;
197 * l2_load
199 * Loads a L2 table into memory. If the table is in the cache, the cache
200 * is used; otherwise the L2 table is loaded from the image file.
202 * Returns a pointer to the L2 table on success, or NULL if the read from
203 * the image file failed.
206 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
207 uint64_t **l2_table)
209 BDRVQcow2State *s = bs->opaque;
211 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
212 (void **)l2_table);
216 * Writes one sector of the L1 table to the disk (can't update single entries
217 * and we really don't want bdrv_pread to perform a read-modify-write)
219 #define L1_ENTRIES_PER_SECTOR (512 / 8)
220 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
222 BDRVQcow2State *s = bs->opaque;
223 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
224 int l1_start_index;
225 int i, ret;
227 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
228 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
229 i++)
231 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
234 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
235 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
236 if (ret < 0) {
237 return ret;
240 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
241 ret = bdrv_pwrite_sync(bs->file,
242 s->l1_table_offset + 8 * l1_start_index,
243 buf, sizeof(buf));
244 if (ret < 0) {
245 return ret;
248 return 0;
252 * l2_allocate
254 * Allocate a new l2 entry in the file. If l1_index points to an already
255 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
256 * table) copy the contents of the old L2 table into the newly allocated one.
257 * Otherwise the new table is initialized with zeros.
261 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
263 BDRVQcow2State *s = bs->opaque;
264 uint64_t old_l2_offset;
265 uint64_t *l2_table = NULL;
266 int64_t l2_offset;
267 int ret;
269 old_l2_offset = s->l1_table[l1_index];
271 trace_qcow2_l2_allocate(bs, l1_index);
273 /* allocate a new l2 entry */
275 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
276 if (l2_offset < 0) {
277 ret = l2_offset;
278 goto fail;
281 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
282 if (ret < 0) {
283 goto fail;
286 /* allocate a new entry in the l2 cache */
288 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
289 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
290 if (ret < 0) {
291 goto fail;
294 l2_table = *table;
296 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
297 /* if there was no old l2 table, clear the new table */
298 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
299 } else {
300 uint64_t* old_table;
302 /* if there was an old l2 table, read it from the disk */
303 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
304 ret = qcow2_cache_get(bs, s->l2_table_cache,
305 old_l2_offset & L1E_OFFSET_MASK,
306 (void**) &old_table);
307 if (ret < 0) {
308 goto fail;
311 memcpy(l2_table, old_table, s->cluster_size);
313 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
316 /* write the l2 table to the file */
317 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
319 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
320 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
321 ret = qcow2_cache_flush(bs, s->l2_table_cache);
322 if (ret < 0) {
323 goto fail;
326 /* update the L1 entry */
327 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
328 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
329 ret = qcow2_write_l1_entry(bs, l1_index);
330 if (ret < 0) {
331 goto fail;
334 *table = l2_table;
335 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
336 return 0;
338 fail:
339 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
340 if (l2_table != NULL) {
341 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
343 s->l1_table[l1_index] = old_l2_offset;
344 if (l2_offset > 0) {
345 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
346 QCOW2_DISCARD_ALWAYS);
348 return ret;
352 * Checks how many clusters in a given L2 table are contiguous in the image
353 * file. As soon as one of the flags in the bitmask stop_flags changes compared
354 * to the first cluster, the search is stopped and the cluster is not counted
355 * as contiguous. (This allows it, for example, to stop at the first compressed
356 * cluster which may require a different handling)
358 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
359 uint64_t *l2_table, uint64_t stop_flags)
361 int i;
362 QCow2ClusterType first_cluster_type;
363 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
364 uint64_t first_entry = be64_to_cpu(l2_table[0]);
365 uint64_t offset = first_entry & mask;
367 if (!offset) {
368 return 0;
371 /* must be allocated */
372 first_cluster_type = qcow2_get_cluster_type(first_entry);
373 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
374 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
376 for (i = 0; i < nb_clusters; i++) {
377 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
378 if (offset + (uint64_t) i * cluster_size != l2_entry) {
379 break;
383 return i;
387 * Checks how many consecutive unallocated clusters in a given L2
388 * table have the same cluster type.
390 static int count_contiguous_clusters_unallocated(int nb_clusters,
391 uint64_t *l2_table,
392 QCow2ClusterType wanted_type)
394 int i;
396 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
397 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
398 for (i = 0; i < nb_clusters; i++) {
399 uint64_t entry = be64_to_cpu(l2_table[i]);
400 QCow2ClusterType type = qcow2_get_cluster_type(entry);
402 if (type != wanted_type) {
403 break;
407 return i;
410 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
411 uint64_t src_cluster_offset,
412 unsigned offset_in_cluster,
413 QEMUIOVector *qiov)
415 int ret;
417 if (qiov->size == 0) {
418 return 0;
421 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
423 if (!bs->drv) {
424 return -ENOMEDIUM;
427 /* Call .bdrv_co_readv() directly instead of using the public block-layer
428 * interface. This avoids double I/O throttling and request tracking,
429 * which can lead to deadlock when block layer copy-on-read is enabled.
431 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
432 qiov->size, qiov, 0);
433 if (ret < 0) {
434 return ret;
437 return 0;
440 static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
441 uint64_t src_cluster_offset,
442 uint64_t cluster_offset,
443 unsigned offset_in_cluster,
444 uint8_t *buffer,
445 unsigned bytes)
447 if (bytes && bs->encrypted) {
448 BDRVQcow2State *s = bs->opaque;
449 int64_t offset = (s->crypt_physical_offset ?
450 (cluster_offset + offset_in_cluster) :
451 (src_cluster_offset + offset_in_cluster));
452 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
453 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
454 assert(s->crypto);
455 if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
456 return false;
459 return true;
462 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
463 uint64_t cluster_offset,
464 unsigned offset_in_cluster,
465 QEMUIOVector *qiov)
467 int ret;
469 if (qiov->size == 0) {
470 return 0;
473 ret = qcow2_pre_write_overlap_check(bs, 0,
474 cluster_offset + offset_in_cluster, qiov->size);
475 if (ret < 0) {
476 return ret;
479 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
480 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
481 qiov->size, qiov, 0);
482 if (ret < 0) {
483 return ret;
486 return 0;
491 * get_cluster_offset
493 * For a given offset of the virtual disk, find the cluster type and offset in
494 * the qcow2 file. The offset is stored in *cluster_offset.
496 * On entry, *bytes is the maximum number of contiguous bytes starting at
497 * offset that we are interested in.
499 * On exit, *bytes is the number of bytes starting at offset that have the same
500 * cluster type and (if applicable) are stored contiguously in the image file.
501 * Compressed clusters are always returned one by one.
503 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
504 * cases.
506 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
507 unsigned int *bytes, uint64_t *cluster_offset)
509 BDRVQcow2State *s = bs->opaque;
510 unsigned int l2_index;
511 uint64_t l1_index, l2_offset, *l2_table;
512 int l1_bits, c;
513 unsigned int offset_in_cluster;
514 uint64_t bytes_available, bytes_needed, nb_clusters;
515 QCow2ClusterType type;
516 int ret;
518 offset_in_cluster = offset_into_cluster(s, offset);
519 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
521 l1_bits = s->l2_bits + s->cluster_bits;
523 /* compute how many bytes there are between the start of the cluster
524 * containing offset and the end of the l1 entry */
525 bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
526 + offset_in_cluster;
528 if (bytes_needed > bytes_available) {
529 bytes_needed = bytes_available;
532 *cluster_offset = 0;
534 /* seek to the l2 offset in the l1 table */
536 l1_index = offset >> l1_bits;
537 if (l1_index >= s->l1_size) {
538 type = QCOW2_CLUSTER_UNALLOCATED;
539 goto out;
542 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
543 if (!l2_offset) {
544 type = QCOW2_CLUSTER_UNALLOCATED;
545 goto out;
548 if (offset_into_cluster(s, l2_offset)) {
549 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
550 " unaligned (L1 index: %#" PRIx64 ")",
551 l2_offset, l1_index);
552 return -EIO;
555 /* load the l2 table in memory */
557 ret = l2_load(bs, l2_offset, &l2_table);
558 if (ret < 0) {
559 return ret;
562 /* find the cluster offset for the given disk offset */
564 l2_index = offset_to_l2_index(s, offset);
565 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
567 nb_clusters = size_to_clusters(s, bytes_needed);
568 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
569 * integers; the minimum cluster size is 512, so this assertion is always
570 * true */
571 assert(nb_clusters <= INT_MAX);
573 type = qcow2_get_cluster_type(*cluster_offset);
574 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
575 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
576 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
577 " in pre-v3 image (L2 offset: %#" PRIx64
578 ", L2 index: %#x)", l2_offset, l2_index);
579 ret = -EIO;
580 goto fail;
582 switch (type) {
583 case QCOW2_CLUSTER_COMPRESSED:
584 /* Compressed clusters can only be processed one by one */
585 c = 1;
586 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
587 break;
588 case QCOW2_CLUSTER_ZERO_PLAIN:
589 case QCOW2_CLUSTER_UNALLOCATED:
590 /* how many empty clusters ? */
591 c = count_contiguous_clusters_unallocated(nb_clusters,
592 &l2_table[l2_index], type);
593 *cluster_offset = 0;
594 break;
595 case QCOW2_CLUSTER_ZERO_ALLOC:
596 case QCOW2_CLUSTER_NORMAL:
597 /* how many allocated clusters ? */
598 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
599 &l2_table[l2_index], QCOW_OFLAG_ZERO);
600 *cluster_offset &= L2E_OFFSET_MASK;
601 if (offset_into_cluster(s, *cluster_offset)) {
602 qcow2_signal_corruption(bs, true, -1, -1,
603 "Cluster allocation offset %#"
604 PRIx64 " unaligned (L2 offset: %#" PRIx64
605 ", L2 index: %#x)", *cluster_offset,
606 l2_offset, l2_index);
607 ret = -EIO;
608 goto fail;
610 break;
611 default:
612 abort();
615 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
617 bytes_available = (int64_t)c * s->cluster_size;
619 out:
620 if (bytes_available > bytes_needed) {
621 bytes_available = bytes_needed;
624 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
625 * subtracting offset_in_cluster will therefore definitely yield something
626 * not exceeding UINT_MAX */
627 assert(bytes_available - offset_in_cluster <= UINT_MAX);
628 *bytes = bytes_available - offset_in_cluster;
630 return type;
632 fail:
633 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
634 return ret;
638 * get_cluster_table
640 * for a given disk offset, load (and allocate if needed)
641 * the l2 table.
643 * the l2 table offset in the qcow2 file and the cluster index
644 * in the l2 table are given to the caller.
646 * Returns 0 on success, -errno in failure case
648 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
649 uint64_t **new_l2_table,
650 int *new_l2_index)
652 BDRVQcow2State *s = bs->opaque;
653 unsigned int l2_index;
654 uint64_t l1_index, l2_offset;
655 uint64_t *l2_table = NULL;
656 int ret;
658 /* seek to the l2 offset in the l1 table */
660 l1_index = offset >> (s->l2_bits + s->cluster_bits);
661 if (l1_index >= s->l1_size) {
662 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
663 if (ret < 0) {
664 return ret;
668 assert(l1_index < s->l1_size);
669 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
670 if (offset_into_cluster(s, l2_offset)) {
671 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
672 " unaligned (L1 index: %#" PRIx64 ")",
673 l2_offset, l1_index);
674 return -EIO;
677 /* seek the l2 table of the given l2 offset */
679 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
680 /* load the l2 table in memory */
681 ret = l2_load(bs, l2_offset, &l2_table);
682 if (ret < 0) {
683 return ret;
685 } else {
686 /* First allocate a new L2 table (and do COW if needed) */
687 ret = l2_allocate(bs, l1_index, &l2_table);
688 if (ret < 0) {
689 return ret;
692 /* Then decrease the refcount of the old table */
693 if (l2_offset) {
694 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
695 QCOW2_DISCARD_OTHER);
699 /* find the cluster offset for the given disk offset */
701 l2_index = offset_to_l2_index(s, offset);
703 *new_l2_table = l2_table;
704 *new_l2_index = l2_index;
706 return 0;
710 * alloc_compressed_cluster_offset
712 * For a given offset of the disk image, return cluster offset in
713 * qcow2 file.
715 * If the offset is not found, allocate a new compressed cluster.
717 * Return the cluster offset if successful,
718 * Return 0, otherwise.
722 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
723 uint64_t offset,
724 int compressed_size)
726 BDRVQcow2State *s = bs->opaque;
727 int l2_index, ret;
728 uint64_t *l2_table;
729 int64_t cluster_offset;
730 int nb_csectors;
732 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
733 if (ret < 0) {
734 return 0;
737 /* Compression can't overwrite anything. Fail if the cluster was already
738 * allocated. */
739 cluster_offset = be64_to_cpu(l2_table[l2_index]);
740 if (cluster_offset & L2E_OFFSET_MASK) {
741 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
742 return 0;
745 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
746 if (cluster_offset < 0) {
747 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
748 return 0;
751 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
752 (cluster_offset >> 9);
754 cluster_offset |= QCOW_OFLAG_COMPRESSED |
755 ((uint64_t)nb_csectors << s->csize_shift);
757 /* update L2 table */
759 /* compressed clusters never have the copied flag */
761 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
762 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
763 l2_table[l2_index] = cpu_to_be64(cluster_offset);
764 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
766 return cluster_offset;
769 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
771 BDRVQcow2State *s = bs->opaque;
772 Qcow2COWRegion *start = &m->cow_start;
773 Qcow2COWRegion *end = &m->cow_end;
774 unsigned buffer_size;
775 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
776 bool merge_reads;
777 uint8_t *start_buffer, *end_buffer;
778 QEMUIOVector qiov;
779 int ret;
781 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
782 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
783 assert(start->offset + start->nb_bytes <= end->offset);
784 assert(!m->data_qiov || m->data_qiov->size == data_bytes);
786 if (start->nb_bytes == 0 && end->nb_bytes == 0) {
787 return 0;
790 /* If we have to read both the start and end COW regions and the
791 * middle region is not too large then perform just one read
792 * operation */
793 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
794 if (merge_reads) {
795 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
796 } else {
797 /* If we have to do two reads, add some padding in the middle
798 * if necessary to make sure that the end region is optimally
799 * aligned. */
800 size_t align = bdrv_opt_mem_align(bs);
801 assert(align > 0 && align <= UINT_MAX);
802 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
803 UINT_MAX - end->nb_bytes);
804 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
807 /* Reserve a buffer large enough to store all the data that we're
808 * going to read */
809 start_buffer = qemu_try_blockalign(bs, buffer_size);
810 if (start_buffer == NULL) {
811 return -ENOMEM;
813 /* The part of the buffer where the end region is located */
814 end_buffer = start_buffer + buffer_size - end->nb_bytes;
816 qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
818 qemu_co_mutex_unlock(&s->lock);
819 /* First we read the existing data from both COW regions. We
820 * either read the whole region in one go, or the start and end
821 * regions separately. */
822 if (merge_reads) {
823 qemu_iovec_add(&qiov, start_buffer, buffer_size);
824 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
825 } else {
826 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
827 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
828 if (ret < 0) {
829 goto fail;
832 qemu_iovec_reset(&qiov);
833 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
834 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
836 if (ret < 0) {
837 goto fail;
840 /* Encrypt the data if necessary before writing it */
841 if (bs->encrypted) {
842 if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
843 start->offset, start_buffer,
844 start->nb_bytes) ||
845 !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
846 end->offset, end_buffer, end->nb_bytes)) {
847 ret = -EIO;
848 goto fail;
852 /* And now we can write everything. If we have the guest data we
853 * can write everything in one single operation */
854 if (m->data_qiov) {
855 qemu_iovec_reset(&qiov);
856 if (start->nb_bytes) {
857 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
859 qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
860 if (end->nb_bytes) {
861 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
863 /* NOTE: we have a write_aio blkdebug event here followed by
864 * a cow_write one in do_perform_cow_write(), but there's only
865 * one single I/O operation */
866 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
867 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
868 } else {
869 /* If there's no guest data then write both COW regions separately */
870 qemu_iovec_reset(&qiov);
871 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
872 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
873 if (ret < 0) {
874 goto fail;
877 qemu_iovec_reset(&qiov);
878 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
879 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
882 fail:
883 qemu_co_mutex_lock(&s->lock);
886 * Before we update the L2 table to actually point to the new cluster, we
887 * need to be sure that the refcounts have been increased and COW was
888 * handled.
890 if (ret == 0) {
891 qcow2_cache_depends_on_flush(s->l2_table_cache);
894 qemu_vfree(start_buffer);
895 qemu_iovec_destroy(&qiov);
896 return ret;
899 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
901 BDRVQcow2State *s = bs->opaque;
902 int i, j = 0, l2_index, ret;
903 uint64_t *old_cluster, *l2_table;
904 uint64_t cluster_offset = m->alloc_offset;
906 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
907 assert(m->nb_clusters > 0);
909 old_cluster = g_try_new(uint64_t, m->nb_clusters);
910 if (old_cluster == NULL) {
911 ret = -ENOMEM;
912 goto err;
915 /* copy content of unmodified sectors */
916 ret = perform_cow(bs, m);
917 if (ret < 0) {
918 goto err;
921 /* Update L2 table. */
922 if (s->use_lazy_refcounts) {
923 qcow2_mark_dirty(bs);
925 if (qcow2_need_accurate_refcounts(s)) {
926 qcow2_cache_set_dependency(bs, s->l2_table_cache,
927 s->refcount_block_cache);
930 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
931 if (ret < 0) {
932 goto err;
934 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
936 assert(l2_index + m->nb_clusters <= s->l2_size);
937 for (i = 0; i < m->nb_clusters; i++) {
938 /* if two concurrent writes happen to the same unallocated cluster
939 * each write allocates separate cluster and writes data concurrently.
940 * The first one to complete updates l2 table with pointer to its
941 * cluster the second one has to do RMW (which is done above by
942 * perform_cow()), update l2 table with its cluster pointer and free
943 * old cluster. This is what this loop does */
944 if (l2_table[l2_index + i] != 0) {
945 old_cluster[j++] = l2_table[l2_index + i];
948 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
949 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
953 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
956 * If this was a COW, we need to decrease the refcount of the old cluster.
958 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
959 * clusters), the next write will reuse them anyway.
961 if (!m->keep_old_clusters && j != 0) {
962 for (i = 0; i < j; i++) {
963 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
964 QCOW2_DISCARD_NEVER);
968 ret = 0;
969 err:
970 g_free(old_cluster);
971 return ret;
975 * Returns the number of contiguous clusters that can be used for an allocating
976 * write, but require COW to be performed (this includes yet unallocated space,
977 * which must copy from the backing file)
979 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
980 uint64_t *l2_table, int l2_index)
982 int i;
984 for (i = 0; i < nb_clusters; i++) {
985 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
986 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
988 switch(cluster_type) {
989 case QCOW2_CLUSTER_NORMAL:
990 if (l2_entry & QCOW_OFLAG_COPIED) {
991 goto out;
993 break;
994 case QCOW2_CLUSTER_UNALLOCATED:
995 case QCOW2_CLUSTER_COMPRESSED:
996 case QCOW2_CLUSTER_ZERO_PLAIN:
997 case QCOW2_CLUSTER_ZERO_ALLOC:
998 break;
999 default:
1000 abort();
1004 out:
1005 assert(i <= nb_clusters);
1006 return i;
1010 * Check if there already is an AIO write request in flight which allocates
1011 * the same cluster. In this case we need to wait until the previous
1012 * request has completed and updated the L2 table accordingly.
1014 * Returns:
1015 * 0 if there was no dependency. *cur_bytes indicates the number of
1016 * bytes from guest_offset that can be read before the next
1017 * dependency must be processed (or the request is complete)
1019 * -EAGAIN if we had to wait for another request, previously gathered
1020 * information on cluster allocation may be invalid now. The caller
1021 * must start over anyway, so consider *cur_bytes undefined.
1023 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1024 uint64_t *cur_bytes, QCowL2Meta **m)
1026 BDRVQcow2State *s = bs->opaque;
1027 QCowL2Meta *old_alloc;
1028 uint64_t bytes = *cur_bytes;
1030 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1032 uint64_t start = guest_offset;
1033 uint64_t end = start + bytes;
1034 uint64_t old_start = l2meta_cow_start(old_alloc);
1035 uint64_t old_end = l2meta_cow_end(old_alloc);
1037 if (end <= old_start || start >= old_end) {
1038 /* No intersection */
1039 } else {
1040 if (start < old_start) {
1041 /* Stop at the start of a running allocation */
1042 bytes = old_start - start;
1043 } else {
1044 bytes = 0;
1047 /* Stop if already an l2meta exists. After yielding, it wouldn't
1048 * be valid any more, so we'd have to clean up the old L2Metas
1049 * and deal with requests depending on them before starting to
1050 * gather new ones. Not worth the trouble. */
1051 if (bytes == 0 && *m) {
1052 *cur_bytes = 0;
1053 return 0;
1056 if (bytes == 0) {
1057 /* Wait for the dependency to complete. We need to recheck
1058 * the free/allocated clusters when we continue. */
1059 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1060 return -EAGAIN;
1065 /* Make sure that existing clusters and new allocations are only used up to
1066 * the next dependency if we shortened the request above */
1067 *cur_bytes = bytes;
1069 return 0;
1073 * Checks how many already allocated clusters that don't require a copy on
1074 * write there are at the given guest_offset (up to *bytes). If
1075 * *host_offset is not zero, only physically contiguous clusters beginning at
1076 * this host offset are counted.
1078 * Note that guest_offset may not be cluster aligned. In this case, the
1079 * returned *host_offset points to exact byte referenced by guest_offset and
1080 * therefore isn't cluster aligned as well.
1082 * Returns:
1083 * 0: if no allocated clusters are available at the given offset.
1084 * *bytes is normally unchanged. It is set to 0 if the cluster
1085 * is allocated and doesn't need COW, but doesn't have the right
1086 * physical offset.
1088 * 1: if allocated clusters that don't require a COW are available at
1089 * the requested offset. *bytes may have decreased and describes
1090 * the length of the area that can be written to.
1092 * -errno: in error cases
1094 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1095 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1097 BDRVQcow2State *s = bs->opaque;
1098 int l2_index;
1099 uint64_t cluster_offset;
1100 uint64_t *l2_table;
1101 uint64_t nb_clusters;
1102 unsigned int keep_clusters;
1103 int ret;
1105 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1106 *bytes);
1108 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
1109 == offset_into_cluster(s, *host_offset));
1112 * Calculate the number of clusters to look for. We stop at L2 table
1113 * boundaries to keep things simple.
1115 nb_clusters =
1116 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1118 l2_index = offset_to_l2_index(s, guest_offset);
1119 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1120 assert(nb_clusters <= INT_MAX);
1122 /* Find L2 entry for the first involved cluster */
1123 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1124 if (ret < 0) {
1125 return ret;
1128 cluster_offset = be64_to_cpu(l2_table[l2_index]);
1130 /* Check how many clusters are already allocated and don't need COW */
1131 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1132 && (cluster_offset & QCOW_OFLAG_COPIED))
1134 /* If a specific host_offset is required, check it */
1135 bool offset_matches =
1136 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1138 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1139 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1140 "%#llx unaligned (guest offset: %#" PRIx64
1141 ")", cluster_offset & L2E_OFFSET_MASK,
1142 guest_offset);
1143 ret = -EIO;
1144 goto out;
1147 if (*host_offset != 0 && !offset_matches) {
1148 *bytes = 0;
1149 ret = 0;
1150 goto out;
1153 /* We keep all QCOW_OFLAG_COPIED clusters */
1154 keep_clusters =
1155 count_contiguous_clusters(nb_clusters, s->cluster_size,
1156 &l2_table[l2_index],
1157 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1158 assert(keep_clusters <= nb_clusters);
1160 *bytes = MIN(*bytes,
1161 keep_clusters * s->cluster_size
1162 - offset_into_cluster(s, guest_offset));
1164 ret = 1;
1165 } else {
1166 ret = 0;
1169 /* Cleanup */
1170 out:
1171 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1173 /* Only return a host offset if we actually made progress. Otherwise we
1174 * would make requirements for handle_alloc() that it can't fulfill */
1175 if (ret > 0) {
1176 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1177 + offset_into_cluster(s, guest_offset);
1180 return ret;
1184 * Allocates new clusters for the given guest_offset.
1186 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1187 * contain the number of clusters that have been allocated and are contiguous
1188 * in the image file.
1190 * If *host_offset is non-zero, it specifies the offset in the image file at
1191 * which the new clusters must start. *nb_clusters can be 0 on return in this
1192 * case if the cluster at host_offset is already in use. If *host_offset is
1193 * zero, the clusters can be allocated anywhere in the image file.
1195 * *host_offset is updated to contain the offset into the image file at which
1196 * the first allocated cluster starts.
1198 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1199 * function has been waiting for another request and the allocation must be
1200 * restarted, but the whole request should not be failed.
1202 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1203 uint64_t *host_offset, uint64_t *nb_clusters)
1205 BDRVQcow2State *s = bs->opaque;
1207 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1208 *host_offset, *nb_clusters);
1210 /* Allocate new clusters */
1211 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1212 if (*host_offset == 0) {
1213 int64_t cluster_offset =
1214 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1215 if (cluster_offset < 0) {
1216 return cluster_offset;
1218 *host_offset = cluster_offset;
1219 return 0;
1220 } else {
1221 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1222 if (ret < 0) {
1223 return ret;
1225 *nb_clusters = ret;
1226 return 0;
1231 * Allocates new clusters for an area that either is yet unallocated or needs a
1232 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1233 * the new allocation can match the specified host offset.
1235 * Note that guest_offset may not be cluster aligned. In this case, the
1236 * returned *host_offset points to exact byte referenced by guest_offset and
1237 * therefore isn't cluster aligned as well.
1239 * Returns:
1240 * 0: if no clusters could be allocated. *bytes is set to 0,
1241 * *host_offset is left unchanged.
1243 * 1: if new clusters were allocated. *bytes may be decreased if the
1244 * new allocation doesn't cover all of the requested area.
1245 * *host_offset is updated to contain the host offset of the first
1246 * newly allocated cluster.
1248 * -errno: in error cases
1250 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1251 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1253 BDRVQcow2State *s = bs->opaque;
1254 int l2_index;
1255 uint64_t *l2_table;
1256 uint64_t entry;
1257 uint64_t nb_clusters;
1258 int ret;
1259 bool keep_old_clusters = false;
1261 uint64_t alloc_cluster_offset = 0;
1263 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1264 *bytes);
1265 assert(*bytes > 0);
1268 * Calculate the number of clusters to look for. We stop at L2 table
1269 * boundaries to keep things simple.
1271 nb_clusters =
1272 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1274 l2_index = offset_to_l2_index(s, guest_offset);
1275 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1276 assert(nb_clusters <= INT_MAX);
1278 /* Find L2 entry for the first involved cluster */
1279 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1280 if (ret < 0) {
1281 return ret;
1284 entry = be64_to_cpu(l2_table[l2_index]);
1286 /* For the moment, overwrite compressed clusters one by one */
1287 if (entry & QCOW_OFLAG_COMPRESSED) {
1288 nb_clusters = 1;
1289 } else {
1290 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1293 /* This function is only called when there were no non-COW clusters, so if
1294 * we can't find any unallocated or COW clusters either, something is
1295 * wrong with our code. */
1296 assert(nb_clusters > 0);
1298 if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1299 (entry & QCOW_OFLAG_COPIED) &&
1300 (!*host_offset ||
1301 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1303 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1304 * would be fine, too, but count_cow_clusters() above has limited
1305 * nb_clusters already to a range of COW clusters */
1306 int preallocated_nb_clusters =
1307 count_contiguous_clusters(nb_clusters, s->cluster_size,
1308 &l2_table[l2_index], QCOW_OFLAG_COPIED);
1309 assert(preallocated_nb_clusters > 0);
1311 nb_clusters = preallocated_nb_clusters;
1312 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1314 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1315 * should not free them. */
1316 keep_old_clusters = true;
1319 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1321 if (!alloc_cluster_offset) {
1322 /* Allocate, if necessary at a given offset in the image file */
1323 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1324 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1325 &nb_clusters);
1326 if (ret < 0) {
1327 goto fail;
1330 /* Can't extend contiguous allocation */
1331 if (nb_clusters == 0) {
1332 *bytes = 0;
1333 return 0;
1336 /* !*host_offset would overwrite the image header and is reserved for
1337 * "no host offset preferred". If 0 was a valid host offset, it'd
1338 * trigger the following overlap check; do that now to avoid having an
1339 * invalid value in *host_offset. */
1340 if (!alloc_cluster_offset) {
1341 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1342 nb_clusters * s->cluster_size);
1343 assert(ret < 0);
1344 goto fail;
1349 * Save info needed for meta data update.
1351 * requested_bytes: Number of bytes from the start of the first
1352 * newly allocated cluster to the end of the (possibly shortened
1353 * before) write request.
1355 * avail_bytes: Number of bytes from the start of the first
1356 * newly allocated to the end of the last newly allocated cluster.
1358 * nb_bytes: The number of bytes from the start of the first
1359 * newly allocated cluster to the end of the area that the write
1360 * request actually writes to (excluding COW at the end)
1362 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1363 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1364 int nb_bytes = MIN(requested_bytes, avail_bytes);
1365 QCowL2Meta *old_m = *m;
1367 *m = g_malloc0(sizeof(**m));
1369 **m = (QCowL2Meta) {
1370 .next = old_m,
1372 .alloc_offset = alloc_cluster_offset,
1373 .offset = start_of_cluster(s, guest_offset),
1374 .nb_clusters = nb_clusters,
1376 .keep_old_clusters = keep_old_clusters,
1378 .cow_start = {
1379 .offset = 0,
1380 .nb_bytes = offset_into_cluster(s, guest_offset),
1382 .cow_end = {
1383 .offset = nb_bytes,
1384 .nb_bytes = avail_bytes - nb_bytes,
1387 qemu_co_queue_init(&(*m)->dependent_requests);
1388 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1390 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1391 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1392 assert(*bytes != 0);
1394 return 1;
1396 fail:
1397 if (*m && (*m)->nb_clusters > 0) {
1398 QLIST_REMOVE(*m, next_in_flight);
1400 return ret;
1404 * alloc_cluster_offset
1406 * For a given offset on the virtual disk, find the cluster offset in qcow2
1407 * file. If the offset is not found, allocate a new cluster.
1409 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1410 * other fields in m are meaningless.
1412 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1413 * contiguous clusters that have been allocated. In this case, the other
1414 * fields of m are valid and contain information about the first allocated
1415 * cluster.
1417 * If the request conflicts with another write request in flight, the coroutine
1418 * is queued and will be reentered when the dependency has completed.
1420 * Return 0 on success and -errno in error cases
1422 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1423 unsigned int *bytes, uint64_t *host_offset,
1424 QCowL2Meta **m)
1426 BDRVQcow2State *s = bs->opaque;
1427 uint64_t start, remaining;
1428 uint64_t cluster_offset;
1429 uint64_t cur_bytes;
1430 int ret;
1432 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1434 again:
1435 start = offset;
1436 remaining = *bytes;
1437 cluster_offset = 0;
1438 *host_offset = 0;
1439 cur_bytes = 0;
1440 *m = NULL;
1442 while (true) {
1444 if (!*host_offset) {
1445 *host_offset = start_of_cluster(s, cluster_offset);
1448 assert(remaining >= cur_bytes);
1450 start += cur_bytes;
1451 remaining -= cur_bytes;
1452 cluster_offset += cur_bytes;
1454 if (remaining == 0) {
1455 break;
1458 cur_bytes = remaining;
1461 * Now start gathering as many contiguous clusters as possible:
1463 * 1. Check for overlaps with in-flight allocations
1465 * a) Overlap not in the first cluster -> shorten this request and
1466 * let the caller handle the rest in its next loop iteration.
1468 * b) Real overlaps of two requests. Yield and restart the search
1469 * for contiguous clusters (the situation could have changed
1470 * while we were sleeping)
1472 * c) TODO: Request starts in the same cluster as the in-flight
1473 * allocation ends. Shorten the COW of the in-fight allocation,
1474 * set cluster_offset to write to the same cluster and set up
1475 * the right synchronisation between the in-flight request and
1476 * the new one.
1478 ret = handle_dependencies(bs, start, &cur_bytes, m);
1479 if (ret == -EAGAIN) {
1480 /* Currently handle_dependencies() doesn't yield if we already had
1481 * an allocation. If it did, we would have to clean up the L2Meta
1482 * structs before starting over. */
1483 assert(*m == NULL);
1484 goto again;
1485 } else if (ret < 0) {
1486 return ret;
1487 } else if (cur_bytes == 0) {
1488 break;
1489 } else {
1490 /* handle_dependencies() may have decreased cur_bytes (shortened
1491 * the allocations below) so that the next dependency is processed
1492 * correctly during the next loop iteration. */
1496 * 2. Count contiguous COPIED clusters.
1498 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1499 if (ret < 0) {
1500 return ret;
1501 } else if (ret) {
1502 continue;
1503 } else if (cur_bytes == 0) {
1504 break;
1508 * 3. If the request still hasn't completed, allocate new clusters,
1509 * considering any cluster_offset of steps 1c or 2.
1511 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1512 if (ret < 0) {
1513 return ret;
1514 } else if (ret) {
1515 continue;
1516 } else {
1517 assert(cur_bytes == 0);
1518 break;
1522 *bytes -= remaining;
1523 assert(*bytes > 0);
1524 assert(*host_offset != 0);
1526 return 0;
1529 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1530 const uint8_t *buf, int buf_size)
1532 z_stream strm1, *strm = &strm1;
1533 int ret, out_len;
1535 memset(strm, 0, sizeof(*strm));
1537 strm->next_in = (uint8_t *)buf;
1538 strm->avail_in = buf_size;
1539 strm->next_out = out_buf;
1540 strm->avail_out = out_buf_size;
1542 ret = inflateInit2(strm, -12);
1543 if (ret != Z_OK)
1544 return -1;
1545 ret = inflate(strm, Z_FINISH);
1546 out_len = strm->next_out - out_buf;
1547 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1548 out_len != out_buf_size) {
1549 inflateEnd(strm);
1550 return -1;
1552 inflateEnd(strm);
1553 return 0;
1556 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1558 BDRVQcow2State *s = bs->opaque;
1559 int ret, csize, nb_csectors, sector_offset;
1560 uint64_t coffset;
1562 coffset = cluster_offset & s->cluster_offset_mask;
1563 if (s->cluster_cache_offset != coffset) {
1564 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1565 sector_offset = coffset & 511;
1566 csize = nb_csectors * 512 - sector_offset;
1568 /* Allocate buffers on first decompress operation, most images are
1569 * uncompressed and the memory overhead can be avoided. The buffers
1570 * are freed in .bdrv_close().
1572 if (!s->cluster_data) {
1573 /* one more sector for decompressed data alignment */
1574 s->cluster_data = qemu_try_blockalign(bs->file->bs,
1575 QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size + 512);
1576 if (!s->cluster_data) {
1577 return -ENOMEM;
1580 if (!s->cluster_cache) {
1581 s->cluster_cache = g_malloc(s->cluster_size);
1584 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1585 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1586 nb_csectors);
1587 if (ret < 0) {
1588 return ret;
1590 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1591 s->cluster_data + sector_offset, csize) < 0) {
1592 return -EIO;
1594 s->cluster_cache_offset = coffset;
1596 return 0;
1600 * This discards as many clusters of nb_clusters as possible at once (i.e.
1601 * all clusters in the same L2 table) and returns the number of discarded
1602 * clusters.
1604 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1605 uint64_t nb_clusters, enum qcow2_discard_type type,
1606 bool full_discard)
1608 BDRVQcow2State *s = bs->opaque;
1609 uint64_t *l2_table;
1610 int l2_index;
1611 int ret;
1612 int i;
1614 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1615 if (ret < 0) {
1616 return ret;
1619 /* Limit nb_clusters to one L2 table */
1620 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1621 assert(nb_clusters <= INT_MAX);
1623 for (i = 0; i < nb_clusters; i++) {
1624 uint64_t old_l2_entry;
1626 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1629 * If full_discard is false, make sure that a discarded area reads back
1630 * as zeroes for v3 images (we cannot do it for v2 without actually
1631 * writing a zero-filled buffer). We can skip the operation if the
1632 * cluster is already marked as zero, or if it's unallocated and we
1633 * don't have a backing file.
1635 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1636 * holding s->lock, so that doesn't work today.
1638 * If full_discard is true, the sector should not read back as zeroes,
1639 * but rather fall through to the backing file.
1641 switch (qcow2_get_cluster_type(old_l2_entry)) {
1642 case QCOW2_CLUSTER_UNALLOCATED:
1643 if (full_discard || !bs->backing) {
1644 continue;
1646 break;
1648 case QCOW2_CLUSTER_ZERO_PLAIN:
1649 if (!full_discard) {
1650 continue;
1652 break;
1654 case QCOW2_CLUSTER_ZERO_ALLOC:
1655 case QCOW2_CLUSTER_NORMAL:
1656 case QCOW2_CLUSTER_COMPRESSED:
1657 break;
1659 default:
1660 abort();
1663 /* First remove L2 entries */
1664 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1665 if (!full_discard && s->qcow_version >= 3) {
1666 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1667 } else {
1668 l2_table[l2_index + i] = cpu_to_be64(0);
1671 /* Then decrease the refcount */
1672 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1675 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1677 return nb_clusters;
1680 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1681 uint64_t bytes, enum qcow2_discard_type type,
1682 bool full_discard)
1684 BDRVQcow2State *s = bs->opaque;
1685 uint64_t end_offset = offset + bytes;
1686 uint64_t nb_clusters;
1687 int64_t cleared;
1688 int ret;
1690 /* Caller must pass aligned values, except at image end */
1691 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1692 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1693 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1695 nb_clusters = size_to_clusters(s, bytes);
1697 s->cache_discards = true;
1699 /* Each L2 table is handled by its own loop iteration */
1700 while (nb_clusters > 0) {
1701 cleared = discard_single_l2(bs, offset, nb_clusters, type,
1702 full_discard);
1703 if (cleared < 0) {
1704 ret = cleared;
1705 goto fail;
1708 nb_clusters -= cleared;
1709 offset += (cleared * s->cluster_size);
1712 ret = 0;
1713 fail:
1714 s->cache_discards = false;
1715 qcow2_process_discards(bs, ret);
1717 return ret;
1721 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1722 * all clusters in the same L2 table) and returns the number of zeroed
1723 * clusters.
1725 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1726 uint64_t nb_clusters, int flags)
1728 BDRVQcow2State *s = bs->opaque;
1729 uint64_t *l2_table;
1730 int l2_index;
1731 int ret;
1732 int i;
1733 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1735 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1736 if (ret < 0) {
1737 return ret;
1740 /* Limit nb_clusters to one L2 table */
1741 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1742 assert(nb_clusters <= INT_MAX);
1744 for (i = 0; i < nb_clusters; i++) {
1745 uint64_t old_offset;
1746 QCow2ClusterType cluster_type;
1748 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1751 * Minimize L2 changes if the cluster already reads back as
1752 * zeroes with correct allocation.
1754 cluster_type = qcow2_get_cluster_type(old_offset);
1755 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1756 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1757 continue;
1760 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1761 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1762 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1763 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1764 } else {
1765 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1769 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1771 return nb_clusters;
1774 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1775 uint64_t bytes, int flags)
1777 BDRVQcow2State *s = bs->opaque;
1778 uint64_t end_offset = offset + bytes;
1779 uint64_t nb_clusters;
1780 int64_t cleared;
1781 int ret;
1783 /* Caller must pass aligned values, except at image end */
1784 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1785 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1786 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1788 /* The zero flag is only supported by version 3 and newer */
1789 if (s->qcow_version < 3) {
1790 return -ENOTSUP;
1793 /* Each L2 table is handled by its own loop iteration */
1794 nb_clusters = size_to_clusters(s, bytes);
1796 s->cache_discards = true;
1798 while (nb_clusters > 0) {
1799 cleared = zero_single_l2(bs, offset, nb_clusters, flags);
1800 if (cleared < 0) {
1801 ret = cleared;
1802 goto fail;
1805 nb_clusters -= cleared;
1806 offset += (cleared * s->cluster_size);
1809 ret = 0;
1810 fail:
1811 s->cache_discards = false;
1812 qcow2_process_discards(bs, ret);
1814 return ret;
1818 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1819 * non-backed non-pre-allocated zero clusters).
1821 * l1_entries and *visited_l1_entries are used to keep track of progress for
1822 * status_cb(). l1_entries contains the total number of L1 entries and
1823 * *visited_l1_entries counts all visited L1 entries.
1825 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1826 int l1_size, int64_t *visited_l1_entries,
1827 int64_t l1_entries,
1828 BlockDriverAmendStatusCB *status_cb,
1829 void *cb_opaque)
1831 BDRVQcow2State *s = bs->opaque;
1832 bool is_active_l1 = (l1_table == s->l1_table);
1833 uint64_t *l2_table = NULL;
1834 int ret;
1835 int i, j;
1837 if (!is_active_l1) {
1838 /* inactive L2 tables require a buffer to be stored in when loading
1839 * them from disk */
1840 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1841 if (l2_table == NULL) {
1842 return -ENOMEM;
1846 for (i = 0; i < l1_size; i++) {
1847 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1848 bool l2_dirty = false;
1849 uint64_t l2_refcount;
1851 if (!l2_offset) {
1852 /* unallocated */
1853 (*visited_l1_entries)++;
1854 if (status_cb) {
1855 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1857 continue;
1860 if (offset_into_cluster(s, l2_offset)) {
1861 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1862 PRIx64 " unaligned (L1 index: %#x)",
1863 l2_offset, i);
1864 ret = -EIO;
1865 goto fail;
1868 if (is_active_l1) {
1869 /* get active L2 tables from cache */
1870 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1871 (void **)&l2_table);
1872 } else {
1873 /* load inactive L2 tables from disk */
1874 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1875 (void *)l2_table, s->cluster_sectors);
1877 if (ret < 0) {
1878 goto fail;
1881 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1882 &l2_refcount);
1883 if (ret < 0) {
1884 goto fail;
1887 for (j = 0; j < s->l2_size; j++) {
1888 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1889 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1890 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1892 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1893 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1894 continue;
1897 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1898 if (!bs->backing) {
1899 /* not backed; therefore we can simply deallocate the
1900 * cluster */
1901 l2_table[j] = 0;
1902 l2_dirty = true;
1903 continue;
1906 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1907 if (offset < 0) {
1908 ret = offset;
1909 goto fail;
1912 if (l2_refcount > 1) {
1913 /* For shared L2 tables, set the refcount accordingly (it is
1914 * already 1 and needs to be l2_refcount) */
1915 ret = qcow2_update_cluster_refcount(bs,
1916 offset >> s->cluster_bits,
1917 refcount_diff(1, l2_refcount), false,
1918 QCOW2_DISCARD_OTHER);
1919 if (ret < 0) {
1920 qcow2_free_clusters(bs, offset, s->cluster_size,
1921 QCOW2_DISCARD_OTHER);
1922 goto fail;
1927 if (offset_into_cluster(s, offset)) {
1928 qcow2_signal_corruption(bs, true, -1, -1,
1929 "Cluster allocation offset "
1930 "%#" PRIx64 " unaligned (L2 offset: %#"
1931 PRIx64 ", L2 index: %#x)", offset,
1932 l2_offset, j);
1933 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1934 qcow2_free_clusters(bs, offset, s->cluster_size,
1935 QCOW2_DISCARD_ALWAYS);
1937 ret = -EIO;
1938 goto fail;
1941 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1942 if (ret < 0) {
1943 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1944 qcow2_free_clusters(bs, offset, s->cluster_size,
1945 QCOW2_DISCARD_ALWAYS);
1947 goto fail;
1950 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1951 if (ret < 0) {
1952 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1953 qcow2_free_clusters(bs, offset, s->cluster_size,
1954 QCOW2_DISCARD_ALWAYS);
1956 goto fail;
1959 if (l2_refcount == 1) {
1960 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1961 } else {
1962 l2_table[j] = cpu_to_be64(offset);
1964 l2_dirty = true;
1967 if (is_active_l1) {
1968 if (l2_dirty) {
1969 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1970 qcow2_cache_depends_on_flush(s->l2_table_cache);
1972 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1973 } else {
1974 if (l2_dirty) {
1975 ret = qcow2_pre_write_overlap_check(bs,
1976 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1977 s->cluster_size);
1978 if (ret < 0) {
1979 goto fail;
1982 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1983 (void *)l2_table, s->cluster_sectors);
1984 if (ret < 0) {
1985 goto fail;
1990 (*visited_l1_entries)++;
1991 if (status_cb) {
1992 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1996 ret = 0;
1998 fail:
1999 if (l2_table) {
2000 if (!is_active_l1) {
2001 qemu_vfree(l2_table);
2002 } else {
2003 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
2006 return ret;
2010 * For backed images, expands all zero clusters on the image. For non-backed
2011 * images, deallocates all non-pre-allocated zero clusters (and claims the
2012 * allocation for pre-allocated ones). This is important for downgrading to a
2013 * qcow2 version which doesn't yet support metadata zero clusters.
2015 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2016 BlockDriverAmendStatusCB *status_cb,
2017 void *cb_opaque)
2019 BDRVQcow2State *s = bs->opaque;
2020 uint64_t *l1_table = NULL;
2021 int64_t l1_entries = 0, visited_l1_entries = 0;
2022 int ret;
2023 int i, j;
2025 if (status_cb) {
2026 l1_entries = s->l1_size;
2027 for (i = 0; i < s->nb_snapshots; i++) {
2028 l1_entries += s->snapshots[i].l1_size;
2032 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2033 &visited_l1_entries, l1_entries,
2034 status_cb, cb_opaque);
2035 if (ret < 0) {
2036 goto fail;
2039 /* Inactive L1 tables may point to active L2 tables - therefore it is
2040 * necessary to flush the L2 table cache before trying to access the L2
2041 * tables pointed to by inactive L1 entries (else we might try to expand
2042 * zero clusters that have already been expanded); furthermore, it is also
2043 * necessary to empty the L2 table cache, since it may contain tables which
2044 * are now going to be modified directly on disk, bypassing the cache.
2045 * qcow2_cache_empty() does both for us. */
2046 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2047 if (ret < 0) {
2048 goto fail;
2051 for (i = 0; i < s->nb_snapshots; i++) {
2052 int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
2053 sizeof(uint64_t), BDRV_SECTOR_SIZE);
2055 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
2057 ret = bdrv_read(bs->file,
2058 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
2059 (void *)l1_table, l1_sectors);
2060 if (ret < 0) {
2061 goto fail;
2064 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2065 be64_to_cpus(&l1_table[j]);
2068 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2069 &visited_l1_entries, l1_entries,
2070 status_cb, cb_opaque);
2071 if (ret < 0) {
2072 goto fail;
2076 ret = 0;
2078 fail:
2079 g_free(l1_table);
2080 return ret;