ui: convert common input code to keycodemapdb
[qemu/ar7.git] / block / io.c
blob8e419070b5a183f13e5ea15c38b8a62d329fae9f
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
38 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
41 int64_t offset, int bytes, BdrvRequestFlags flags);
43 void bdrv_parent_drained_begin(BlockDriverState *bs)
45 BdrvChild *c;
47 QLIST_FOREACH(c, &bs->parents, next_parent) {
48 if (c->role->drained_begin) {
49 c->role->drained_begin(c);
54 void bdrv_parent_drained_end(BlockDriverState *bs)
56 BdrvChild *c;
58 QLIST_FOREACH(c, &bs->parents, next_parent) {
59 if (c->role->drained_end) {
60 c->role->drained_end(c);
65 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
67 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
68 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
69 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
70 src->opt_mem_alignment);
71 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
72 src->min_mem_alignment);
73 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
76 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
78 BlockDriver *drv = bs->drv;
79 Error *local_err = NULL;
81 memset(&bs->bl, 0, sizeof(bs->bl));
83 if (!drv) {
84 return;
87 /* Default alignment based on whether driver has byte interface */
88 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
90 /* Take some limits from the children as a default */
91 if (bs->file) {
92 bdrv_refresh_limits(bs->file->bs, &local_err);
93 if (local_err) {
94 error_propagate(errp, local_err);
95 return;
97 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
98 } else {
99 bs->bl.min_mem_alignment = 512;
100 bs->bl.opt_mem_alignment = getpagesize();
102 /* Safe default since most protocols use readv()/writev()/etc */
103 bs->bl.max_iov = IOV_MAX;
106 if (bs->backing) {
107 bdrv_refresh_limits(bs->backing->bs, &local_err);
108 if (local_err) {
109 error_propagate(errp, local_err);
110 return;
112 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
115 /* Then let the driver override it */
116 if (drv->bdrv_refresh_limits) {
117 drv->bdrv_refresh_limits(bs, errp);
122 * The copy-on-read flag is actually a reference count so multiple users may
123 * use the feature without worrying about clobbering its previous state.
124 * Copy-on-read stays enabled until all users have called to disable it.
126 void bdrv_enable_copy_on_read(BlockDriverState *bs)
128 atomic_inc(&bs->copy_on_read);
131 void bdrv_disable_copy_on_read(BlockDriverState *bs)
133 int old = atomic_fetch_dec(&bs->copy_on_read);
134 assert(old >= 1);
137 /* Check if any requests are in-flight (including throttled requests) */
138 bool bdrv_requests_pending(BlockDriverState *bs)
140 BdrvChild *child;
142 if (atomic_read(&bs->in_flight)) {
143 return true;
146 QLIST_FOREACH(child, &bs->children, next) {
147 if (bdrv_requests_pending(child->bs)) {
148 return true;
152 return false;
155 typedef struct {
156 Coroutine *co;
157 BlockDriverState *bs;
158 bool done;
159 } BdrvCoDrainData;
161 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
163 BdrvCoDrainData *data = opaque;
164 BlockDriverState *bs = data->bs;
166 bs->drv->bdrv_co_drain(bs);
168 /* Set data->done before reading bs->wakeup. */
169 atomic_mb_set(&data->done, true);
170 bdrv_wakeup(bs);
173 static void bdrv_drain_invoke(BlockDriverState *bs)
175 BdrvCoDrainData data = { .bs = bs, .done = false };
177 if (!bs->drv || !bs->drv->bdrv_co_drain) {
178 return;
181 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
182 bdrv_coroutine_enter(bs, data.co);
183 BDRV_POLL_WHILE(bs, !data.done);
186 static bool bdrv_drain_recurse(BlockDriverState *bs)
188 BdrvChild *child, *tmp;
189 bool waited;
191 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
193 /* Ensure any pending metadata writes are submitted to bs->file. */
194 bdrv_drain_invoke(bs);
196 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
197 BlockDriverState *bs = child->bs;
198 bool in_main_loop =
199 qemu_get_current_aio_context() == qemu_get_aio_context();
200 assert(bs->refcnt > 0);
201 if (in_main_loop) {
202 /* In case the recursive bdrv_drain_recurse processes a
203 * block_job_defer_to_main_loop BH and modifies the graph,
204 * let's hold a reference to bs until we are done.
206 * IOThread doesn't have such a BH, and it is not safe to call
207 * bdrv_unref without BQL, so skip doing it there.
209 bdrv_ref(bs);
211 waited |= bdrv_drain_recurse(bs);
212 if (in_main_loop) {
213 bdrv_unref(bs);
217 return waited;
220 static void bdrv_co_drain_bh_cb(void *opaque)
222 BdrvCoDrainData *data = opaque;
223 Coroutine *co = data->co;
224 BlockDriverState *bs = data->bs;
226 bdrv_dec_in_flight(bs);
227 bdrv_drained_begin(bs);
228 data->done = true;
229 aio_co_wake(co);
232 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
234 BdrvCoDrainData data;
236 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
237 * other coroutines run if they were queued from
238 * qemu_co_queue_run_restart(). */
240 assert(qemu_in_coroutine());
241 data = (BdrvCoDrainData) {
242 .co = qemu_coroutine_self(),
243 .bs = bs,
244 .done = false,
246 bdrv_inc_in_flight(bs);
247 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
248 bdrv_co_drain_bh_cb, &data);
250 qemu_coroutine_yield();
251 /* If we are resumed from some other event (such as an aio completion or a
252 * timer callback), it is a bug in the caller that should be fixed. */
253 assert(data.done);
256 void bdrv_drained_begin(BlockDriverState *bs)
258 if (qemu_in_coroutine()) {
259 bdrv_co_yield_to_drain(bs);
260 return;
263 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
264 aio_disable_external(bdrv_get_aio_context(bs));
265 bdrv_parent_drained_begin(bs);
268 bdrv_drain_recurse(bs);
271 void bdrv_drained_end(BlockDriverState *bs)
273 assert(bs->quiesce_counter > 0);
274 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
275 return;
278 bdrv_parent_drained_end(bs);
279 aio_enable_external(bdrv_get_aio_context(bs));
283 * Wait for pending requests to complete on a single BlockDriverState subtree,
284 * and suspend block driver's internal I/O until next request arrives.
286 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
287 * AioContext.
289 * Only this BlockDriverState's AioContext is run, so in-flight requests must
290 * not depend on events in other AioContexts. In that case, use
291 * bdrv_drain_all() instead.
293 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
295 assert(qemu_in_coroutine());
296 bdrv_drained_begin(bs);
297 bdrv_drained_end(bs);
300 void bdrv_drain(BlockDriverState *bs)
302 bdrv_drained_begin(bs);
303 bdrv_drained_end(bs);
307 * Wait for pending requests to complete across all BlockDriverStates
309 * This function does not flush data to disk, use bdrv_flush_all() for that
310 * after calling this function.
312 * This pauses all block jobs and disables external clients. It must
313 * be paired with bdrv_drain_all_end().
315 * NOTE: no new block jobs or BlockDriverStates can be created between
316 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
318 void bdrv_drain_all_begin(void)
320 /* Always run first iteration so any pending completion BHs run */
321 bool waited = true;
322 BlockDriverState *bs;
323 BdrvNextIterator it;
324 GSList *aio_ctxs = NULL, *ctx;
326 block_job_pause_all();
328 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
329 AioContext *aio_context = bdrv_get_aio_context(bs);
331 aio_context_acquire(aio_context);
332 bdrv_parent_drained_begin(bs);
333 aio_disable_external(aio_context);
334 aio_context_release(aio_context);
336 if (!g_slist_find(aio_ctxs, aio_context)) {
337 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
341 /* Note that completion of an asynchronous I/O operation can trigger any
342 * number of other I/O operations on other devices---for example a
343 * coroutine can submit an I/O request to another device in response to
344 * request completion. Therefore we must keep looping until there was no
345 * more activity rather than simply draining each device independently.
347 while (waited) {
348 waited = false;
350 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
351 AioContext *aio_context = ctx->data;
353 aio_context_acquire(aio_context);
354 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
355 if (aio_context == bdrv_get_aio_context(bs)) {
356 waited |= bdrv_drain_recurse(bs);
359 aio_context_release(aio_context);
363 g_slist_free(aio_ctxs);
366 void bdrv_drain_all_end(void)
368 BlockDriverState *bs;
369 BdrvNextIterator it;
371 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
372 AioContext *aio_context = bdrv_get_aio_context(bs);
374 aio_context_acquire(aio_context);
375 aio_enable_external(aio_context);
376 bdrv_parent_drained_end(bs);
377 aio_context_release(aio_context);
380 block_job_resume_all();
383 void bdrv_drain_all(void)
385 bdrv_drain_all_begin();
386 bdrv_drain_all_end();
390 * Remove an active request from the tracked requests list
392 * This function should be called when a tracked request is completing.
394 static void tracked_request_end(BdrvTrackedRequest *req)
396 if (req->serialising) {
397 atomic_dec(&req->bs->serialising_in_flight);
400 qemu_co_mutex_lock(&req->bs->reqs_lock);
401 QLIST_REMOVE(req, list);
402 qemu_co_queue_restart_all(&req->wait_queue);
403 qemu_co_mutex_unlock(&req->bs->reqs_lock);
407 * Add an active request to the tracked requests list
409 static void tracked_request_begin(BdrvTrackedRequest *req,
410 BlockDriverState *bs,
411 int64_t offset,
412 unsigned int bytes,
413 enum BdrvTrackedRequestType type)
415 *req = (BdrvTrackedRequest){
416 .bs = bs,
417 .offset = offset,
418 .bytes = bytes,
419 .type = type,
420 .co = qemu_coroutine_self(),
421 .serialising = false,
422 .overlap_offset = offset,
423 .overlap_bytes = bytes,
426 qemu_co_queue_init(&req->wait_queue);
428 qemu_co_mutex_lock(&bs->reqs_lock);
429 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
430 qemu_co_mutex_unlock(&bs->reqs_lock);
433 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
435 int64_t overlap_offset = req->offset & ~(align - 1);
436 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
437 - overlap_offset;
439 if (!req->serialising) {
440 atomic_inc(&req->bs->serialising_in_flight);
441 req->serialising = true;
444 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
445 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
449 * Round a region to cluster boundaries
451 void bdrv_round_to_clusters(BlockDriverState *bs,
452 int64_t offset, unsigned int bytes,
453 int64_t *cluster_offset,
454 unsigned int *cluster_bytes)
456 BlockDriverInfo bdi;
458 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
459 *cluster_offset = offset;
460 *cluster_bytes = bytes;
461 } else {
462 int64_t c = bdi.cluster_size;
463 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
464 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
468 static int bdrv_get_cluster_size(BlockDriverState *bs)
470 BlockDriverInfo bdi;
471 int ret;
473 ret = bdrv_get_info(bs, &bdi);
474 if (ret < 0 || bdi.cluster_size == 0) {
475 return bs->bl.request_alignment;
476 } else {
477 return bdi.cluster_size;
481 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
482 int64_t offset, unsigned int bytes)
484 /* aaaa bbbb */
485 if (offset >= req->overlap_offset + req->overlap_bytes) {
486 return false;
488 /* bbbb aaaa */
489 if (req->overlap_offset >= offset + bytes) {
490 return false;
492 return true;
495 void bdrv_inc_in_flight(BlockDriverState *bs)
497 atomic_inc(&bs->in_flight);
500 static void dummy_bh_cb(void *opaque)
504 void bdrv_wakeup(BlockDriverState *bs)
506 /* The barrier (or an atomic op) is in the caller. */
507 if (atomic_read(&bs->wakeup)) {
508 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
512 void bdrv_dec_in_flight(BlockDriverState *bs)
514 atomic_dec(&bs->in_flight);
515 bdrv_wakeup(bs);
518 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
520 BlockDriverState *bs = self->bs;
521 BdrvTrackedRequest *req;
522 bool retry;
523 bool waited = false;
525 if (!atomic_read(&bs->serialising_in_flight)) {
526 return false;
529 do {
530 retry = false;
531 qemu_co_mutex_lock(&bs->reqs_lock);
532 QLIST_FOREACH(req, &bs->tracked_requests, list) {
533 if (req == self || (!req->serialising && !self->serialising)) {
534 continue;
536 if (tracked_request_overlaps(req, self->overlap_offset,
537 self->overlap_bytes))
539 /* Hitting this means there was a reentrant request, for
540 * example, a block driver issuing nested requests. This must
541 * never happen since it means deadlock.
543 assert(qemu_coroutine_self() != req->co);
545 /* If the request is already (indirectly) waiting for us, or
546 * will wait for us as soon as it wakes up, then just go on
547 * (instead of producing a deadlock in the former case). */
548 if (!req->waiting_for) {
549 self->waiting_for = req;
550 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
551 self->waiting_for = NULL;
552 retry = true;
553 waited = true;
554 break;
558 qemu_co_mutex_unlock(&bs->reqs_lock);
559 } while (retry);
561 return waited;
564 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
565 size_t size)
567 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
568 return -EIO;
571 if (!bdrv_is_inserted(bs)) {
572 return -ENOMEDIUM;
575 if (offset < 0) {
576 return -EIO;
579 return 0;
582 typedef struct RwCo {
583 BdrvChild *child;
584 int64_t offset;
585 QEMUIOVector *qiov;
586 bool is_write;
587 int ret;
588 BdrvRequestFlags flags;
589 } RwCo;
591 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
593 RwCo *rwco = opaque;
595 if (!rwco->is_write) {
596 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
597 rwco->qiov->size, rwco->qiov,
598 rwco->flags);
599 } else {
600 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
601 rwco->qiov->size, rwco->qiov,
602 rwco->flags);
607 * Process a vectored synchronous request using coroutines
609 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
610 QEMUIOVector *qiov, bool is_write,
611 BdrvRequestFlags flags)
613 Coroutine *co;
614 RwCo rwco = {
615 .child = child,
616 .offset = offset,
617 .qiov = qiov,
618 .is_write = is_write,
619 .ret = NOT_DONE,
620 .flags = flags,
623 if (qemu_in_coroutine()) {
624 /* Fast-path if already in coroutine context */
625 bdrv_rw_co_entry(&rwco);
626 } else {
627 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
628 bdrv_coroutine_enter(child->bs, co);
629 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
631 return rwco.ret;
635 * Process a synchronous request using coroutines
637 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
638 int nb_sectors, bool is_write, BdrvRequestFlags flags)
640 QEMUIOVector qiov;
641 struct iovec iov = {
642 .iov_base = (void *)buf,
643 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
646 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
647 return -EINVAL;
650 qemu_iovec_init_external(&qiov, &iov, 1);
651 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
652 &qiov, is_write, flags);
655 /* return < 0 if error. See bdrv_write() for the return codes */
656 int bdrv_read(BdrvChild *child, int64_t sector_num,
657 uint8_t *buf, int nb_sectors)
659 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
662 /* Return < 0 if error. Important errors are:
663 -EIO generic I/O error (may happen for all errors)
664 -ENOMEDIUM No media inserted.
665 -EINVAL Invalid sector number or nb_sectors
666 -EACCES Trying to write a read-only device
668 int bdrv_write(BdrvChild *child, int64_t sector_num,
669 const uint8_t *buf, int nb_sectors)
671 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
674 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
675 int bytes, BdrvRequestFlags flags)
677 QEMUIOVector qiov;
678 struct iovec iov = {
679 .iov_base = NULL,
680 .iov_len = bytes,
683 qemu_iovec_init_external(&qiov, &iov, 1);
684 return bdrv_prwv_co(child, offset, &qiov, true,
685 BDRV_REQ_ZERO_WRITE | flags);
689 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
690 * The operation is sped up by checking the block status and only writing
691 * zeroes to the device if they currently do not return zeroes. Optional
692 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
693 * BDRV_REQ_FUA).
695 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
697 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
699 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
700 BlockDriverState *bs = child->bs;
701 BlockDriverState *file;
702 int n;
704 target_sectors = bdrv_nb_sectors(bs);
705 if (target_sectors < 0) {
706 return target_sectors;
709 for (;;) {
710 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
711 if (nb_sectors <= 0) {
712 return 0;
714 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
715 if (ret < 0) {
716 error_report("error getting block status at sector %" PRId64 ": %s",
717 sector_num, strerror(-ret));
718 return ret;
720 if (ret & BDRV_BLOCK_ZERO) {
721 sector_num += n;
722 continue;
724 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
725 n << BDRV_SECTOR_BITS, flags);
726 if (ret < 0) {
727 error_report("error writing zeroes at sector %" PRId64 ": %s",
728 sector_num, strerror(-ret));
729 return ret;
731 sector_num += n;
735 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
737 int ret;
739 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
740 if (ret < 0) {
741 return ret;
744 return qiov->size;
747 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
749 QEMUIOVector qiov;
750 struct iovec iov = {
751 .iov_base = (void *)buf,
752 .iov_len = bytes,
755 if (bytes < 0) {
756 return -EINVAL;
759 qemu_iovec_init_external(&qiov, &iov, 1);
760 return bdrv_preadv(child, offset, &qiov);
763 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
765 int ret;
767 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
768 if (ret < 0) {
769 return ret;
772 return qiov->size;
775 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
777 QEMUIOVector qiov;
778 struct iovec iov = {
779 .iov_base = (void *) buf,
780 .iov_len = bytes,
783 if (bytes < 0) {
784 return -EINVAL;
787 qemu_iovec_init_external(&qiov, &iov, 1);
788 return bdrv_pwritev(child, offset, &qiov);
792 * Writes to the file and ensures that no writes are reordered across this
793 * request (acts as a barrier)
795 * Returns 0 on success, -errno in error cases.
797 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
798 const void *buf, int count)
800 int ret;
802 ret = bdrv_pwrite(child, offset, buf, count);
803 if (ret < 0) {
804 return ret;
807 ret = bdrv_flush(child->bs);
808 if (ret < 0) {
809 return ret;
812 return 0;
815 typedef struct CoroutineIOCompletion {
816 Coroutine *coroutine;
817 int ret;
818 } CoroutineIOCompletion;
820 static void bdrv_co_io_em_complete(void *opaque, int ret)
822 CoroutineIOCompletion *co = opaque;
824 co->ret = ret;
825 aio_co_wake(co->coroutine);
828 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
829 uint64_t offset, uint64_t bytes,
830 QEMUIOVector *qiov, int flags)
832 BlockDriver *drv = bs->drv;
833 int64_t sector_num;
834 unsigned int nb_sectors;
836 assert(!(flags & ~BDRV_REQ_MASK));
838 if (drv->bdrv_co_preadv) {
839 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
842 sector_num = offset >> BDRV_SECTOR_BITS;
843 nb_sectors = bytes >> BDRV_SECTOR_BITS;
845 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
846 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
847 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
849 if (drv->bdrv_co_readv) {
850 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
851 } else {
852 BlockAIOCB *acb;
853 CoroutineIOCompletion co = {
854 .coroutine = qemu_coroutine_self(),
857 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
858 bdrv_co_io_em_complete, &co);
859 if (acb == NULL) {
860 return -EIO;
861 } else {
862 qemu_coroutine_yield();
863 return co.ret;
868 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
869 uint64_t offset, uint64_t bytes,
870 QEMUIOVector *qiov, int flags)
872 BlockDriver *drv = bs->drv;
873 int64_t sector_num;
874 unsigned int nb_sectors;
875 int ret;
877 assert(!(flags & ~BDRV_REQ_MASK));
879 if (drv->bdrv_co_pwritev) {
880 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
881 flags & bs->supported_write_flags);
882 flags &= ~bs->supported_write_flags;
883 goto emulate_flags;
886 sector_num = offset >> BDRV_SECTOR_BITS;
887 nb_sectors = bytes >> BDRV_SECTOR_BITS;
889 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
890 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
891 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
893 if (drv->bdrv_co_writev_flags) {
894 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
895 flags & bs->supported_write_flags);
896 flags &= ~bs->supported_write_flags;
897 } else if (drv->bdrv_co_writev) {
898 assert(!bs->supported_write_flags);
899 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
900 } else {
901 BlockAIOCB *acb;
902 CoroutineIOCompletion co = {
903 .coroutine = qemu_coroutine_self(),
906 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
907 bdrv_co_io_em_complete, &co);
908 if (acb == NULL) {
909 ret = -EIO;
910 } else {
911 qemu_coroutine_yield();
912 ret = co.ret;
916 emulate_flags:
917 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
918 ret = bdrv_co_flush(bs);
921 return ret;
924 static int coroutine_fn
925 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
926 uint64_t bytes, QEMUIOVector *qiov)
928 BlockDriver *drv = bs->drv;
930 if (!drv->bdrv_co_pwritev_compressed) {
931 return -ENOTSUP;
934 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
937 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
938 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
940 BlockDriverState *bs = child->bs;
942 /* Perform I/O through a temporary buffer so that users who scribble over
943 * their read buffer while the operation is in progress do not end up
944 * modifying the image file. This is critical for zero-copy guest I/O
945 * where anything might happen inside guest memory.
947 void *bounce_buffer;
949 BlockDriver *drv = bs->drv;
950 struct iovec iov;
951 QEMUIOVector local_qiov;
952 int64_t cluster_offset;
953 unsigned int cluster_bytes;
954 size_t skip_bytes;
955 int ret;
956 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
957 BDRV_REQUEST_MAX_BYTES);
958 unsigned int progress = 0;
960 /* FIXME We cannot require callers to have write permissions when all they
961 * are doing is a read request. If we did things right, write permissions
962 * would be obtained anyway, but internally by the copy-on-read code. As
963 * long as it is implemented here rather than in a separate filter driver,
964 * the copy-on-read code doesn't have its own BdrvChild, however, for which
965 * it could request permissions. Therefore we have to bypass the permission
966 * system for the moment. */
967 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
969 /* Cover entire cluster so no additional backing file I/O is required when
970 * allocating cluster in the image file. Note that this value may exceed
971 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
972 * is one reason we loop rather than doing it all at once.
974 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
975 skip_bytes = offset - cluster_offset;
977 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
978 cluster_offset, cluster_bytes);
980 bounce_buffer = qemu_try_blockalign(bs,
981 MIN(MIN(max_transfer, cluster_bytes),
982 MAX_BOUNCE_BUFFER));
983 if (bounce_buffer == NULL) {
984 ret = -ENOMEM;
985 goto err;
988 while (cluster_bytes) {
989 int64_t pnum;
991 ret = bdrv_is_allocated(bs, cluster_offset,
992 MIN(cluster_bytes, max_transfer), &pnum);
993 if (ret < 0) {
994 /* Safe to treat errors in querying allocation as if
995 * unallocated; we'll probably fail again soon on the
996 * read, but at least that will set a decent errno.
998 pnum = MIN(cluster_bytes, max_transfer);
1001 assert(skip_bytes < pnum);
1003 if (ret <= 0) {
1004 /* Must copy-on-read; use the bounce buffer */
1005 iov.iov_base = bounce_buffer;
1006 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1007 qemu_iovec_init_external(&local_qiov, &iov, 1);
1009 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1010 &local_qiov, 0);
1011 if (ret < 0) {
1012 goto err;
1015 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1016 if (drv->bdrv_co_pwrite_zeroes &&
1017 buffer_is_zero(bounce_buffer, pnum)) {
1018 /* FIXME: Should we (perhaps conditionally) be setting
1019 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1020 * that still correctly reads as zero? */
1021 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
1022 } else {
1023 /* This does not change the data on the disk, it is not
1024 * necessary to flush even in cache=writethrough mode.
1026 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1027 &local_qiov, 0);
1030 if (ret < 0) {
1031 /* It might be okay to ignore write errors for guest
1032 * requests. If this is a deliberate copy-on-read
1033 * then we don't want to ignore the error. Simply
1034 * report it in all cases.
1036 goto err;
1039 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1040 pnum - skip_bytes);
1041 } else {
1042 /* Read directly into the destination */
1043 qemu_iovec_init(&local_qiov, qiov->niov);
1044 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1045 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1046 &local_qiov, 0);
1047 qemu_iovec_destroy(&local_qiov);
1048 if (ret < 0) {
1049 goto err;
1053 cluster_offset += pnum;
1054 cluster_bytes -= pnum;
1055 progress += pnum - skip_bytes;
1056 skip_bytes = 0;
1058 ret = 0;
1060 err:
1061 qemu_vfree(bounce_buffer);
1062 return ret;
1066 * Forwards an already correctly aligned request to the BlockDriver. This
1067 * handles copy on read, zeroing after EOF, and fragmentation of large
1068 * reads; any other features must be implemented by the caller.
1070 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1071 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1072 int64_t align, QEMUIOVector *qiov, int flags)
1074 BlockDriverState *bs = child->bs;
1075 int64_t total_bytes, max_bytes;
1076 int ret = 0;
1077 uint64_t bytes_remaining = bytes;
1078 int max_transfer;
1080 assert(is_power_of_2(align));
1081 assert((offset & (align - 1)) == 0);
1082 assert((bytes & (align - 1)) == 0);
1083 assert(!qiov || bytes == qiov->size);
1084 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1085 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1086 align);
1088 /* TODO: We would need a per-BDS .supported_read_flags and
1089 * potential fallback support, if we ever implement any read flags
1090 * to pass through to drivers. For now, there aren't any
1091 * passthrough flags. */
1092 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1094 /* Handle Copy on Read and associated serialisation */
1095 if (flags & BDRV_REQ_COPY_ON_READ) {
1096 /* If we touch the same cluster it counts as an overlap. This
1097 * guarantees that allocating writes will be serialized and not race
1098 * with each other for the same cluster. For example, in copy-on-read
1099 * it ensures that the CoR read and write operations are atomic and
1100 * guest writes cannot interleave between them. */
1101 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1104 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1105 wait_serialising_requests(req);
1108 if (flags & BDRV_REQ_COPY_ON_READ) {
1109 /* TODO: Simplify further once bdrv_is_allocated no longer
1110 * requires sector alignment */
1111 int64_t start = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
1112 int64_t end = QEMU_ALIGN_UP(offset + bytes, BDRV_SECTOR_SIZE);
1113 int64_t pnum;
1115 ret = bdrv_is_allocated(bs, start, end - start, &pnum);
1116 if (ret < 0) {
1117 goto out;
1120 if (!ret || pnum != end - start) {
1121 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1122 goto out;
1126 /* Forward the request to the BlockDriver, possibly fragmenting it */
1127 total_bytes = bdrv_getlength(bs);
1128 if (total_bytes < 0) {
1129 ret = total_bytes;
1130 goto out;
1133 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1134 if (bytes <= max_bytes && bytes <= max_transfer) {
1135 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1136 goto out;
1139 while (bytes_remaining) {
1140 int num;
1142 if (max_bytes) {
1143 QEMUIOVector local_qiov;
1145 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1146 assert(num);
1147 qemu_iovec_init(&local_qiov, qiov->niov);
1148 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1150 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1151 num, &local_qiov, 0);
1152 max_bytes -= num;
1153 qemu_iovec_destroy(&local_qiov);
1154 } else {
1155 num = bytes_remaining;
1156 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1157 bytes_remaining);
1159 if (ret < 0) {
1160 goto out;
1162 bytes_remaining -= num;
1165 out:
1166 return ret < 0 ? ret : 0;
1170 * Handle a read request in coroutine context
1172 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1173 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1174 BdrvRequestFlags flags)
1176 BlockDriverState *bs = child->bs;
1177 BlockDriver *drv = bs->drv;
1178 BdrvTrackedRequest req;
1180 uint64_t align = bs->bl.request_alignment;
1181 uint8_t *head_buf = NULL;
1182 uint8_t *tail_buf = NULL;
1183 QEMUIOVector local_qiov;
1184 bool use_local_qiov = false;
1185 int ret;
1187 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1189 if (!drv) {
1190 return -ENOMEDIUM;
1193 ret = bdrv_check_byte_request(bs, offset, bytes);
1194 if (ret < 0) {
1195 return ret;
1198 bdrv_inc_in_flight(bs);
1200 /* Don't do copy-on-read if we read data before write operation */
1201 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1202 flags |= BDRV_REQ_COPY_ON_READ;
1205 /* Align read if necessary by padding qiov */
1206 if (offset & (align - 1)) {
1207 head_buf = qemu_blockalign(bs, align);
1208 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1209 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1210 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1211 use_local_qiov = true;
1213 bytes += offset & (align - 1);
1214 offset = offset & ~(align - 1);
1217 if ((offset + bytes) & (align - 1)) {
1218 if (!use_local_qiov) {
1219 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1220 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1221 use_local_qiov = true;
1223 tail_buf = qemu_blockalign(bs, align);
1224 qemu_iovec_add(&local_qiov, tail_buf,
1225 align - ((offset + bytes) & (align - 1)));
1227 bytes = ROUND_UP(bytes, align);
1230 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1231 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1232 use_local_qiov ? &local_qiov : qiov,
1233 flags);
1234 tracked_request_end(&req);
1235 bdrv_dec_in_flight(bs);
1237 if (use_local_qiov) {
1238 qemu_iovec_destroy(&local_qiov);
1239 qemu_vfree(head_buf);
1240 qemu_vfree(tail_buf);
1243 return ret;
1246 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1247 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1248 BdrvRequestFlags flags)
1250 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1251 return -EINVAL;
1254 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1255 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1258 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1259 int nb_sectors, QEMUIOVector *qiov)
1261 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1264 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1265 int64_t offset, int bytes, BdrvRequestFlags flags)
1267 BlockDriver *drv = bs->drv;
1268 QEMUIOVector qiov;
1269 struct iovec iov = {0};
1270 int ret = 0;
1271 bool need_flush = false;
1272 int head = 0;
1273 int tail = 0;
1275 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1276 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1277 bs->bl.request_alignment);
1278 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1280 assert(alignment % bs->bl.request_alignment == 0);
1281 head = offset % alignment;
1282 tail = (offset + bytes) % alignment;
1283 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1284 assert(max_write_zeroes >= bs->bl.request_alignment);
1286 while (bytes > 0 && !ret) {
1287 int num = bytes;
1289 /* Align request. Block drivers can expect the "bulk" of the request
1290 * to be aligned, and that unaligned requests do not cross cluster
1291 * boundaries.
1293 if (head) {
1294 /* Make a small request up to the first aligned sector. For
1295 * convenience, limit this request to max_transfer even if
1296 * we don't need to fall back to writes. */
1297 num = MIN(MIN(bytes, max_transfer), alignment - head);
1298 head = (head + num) % alignment;
1299 assert(num < max_write_zeroes);
1300 } else if (tail && num > alignment) {
1301 /* Shorten the request to the last aligned sector. */
1302 num -= tail;
1305 /* limit request size */
1306 if (num > max_write_zeroes) {
1307 num = max_write_zeroes;
1310 ret = -ENOTSUP;
1311 /* First try the efficient write zeroes operation */
1312 if (drv->bdrv_co_pwrite_zeroes) {
1313 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1314 flags & bs->supported_zero_flags);
1315 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1316 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1317 need_flush = true;
1319 } else {
1320 assert(!bs->supported_zero_flags);
1323 if (ret == -ENOTSUP) {
1324 /* Fall back to bounce buffer if write zeroes is unsupported */
1325 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1327 if ((flags & BDRV_REQ_FUA) &&
1328 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1329 /* No need for bdrv_driver_pwrite() to do a fallback
1330 * flush on each chunk; use just one at the end */
1331 write_flags &= ~BDRV_REQ_FUA;
1332 need_flush = true;
1334 num = MIN(num, max_transfer);
1335 iov.iov_len = num;
1336 if (iov.iov_base == NULL) {
1337 iov.iov_base = qemu_try_blockalign(bs, num);
1338 if (iov.iov_base == NULL) {
1339 ret = -ENOMEM;
1340 goto fail;
1342 memset(iov.iov_base, 0, num);
1344 qemu_iovec_init_external(&qiov, &iov, 1);
1346 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1348 /* Keep bounce buffer around if it is big enough for all
1349 * all future requests.
1351 if (num < max_transfer) {
1352 qemu_vfree(iov.iov_base);
1353 iov.iov_base = NULL;
1357 offset += num;
1358 bytes -= num;
1361 fail:
1362 if (ret == 0 && need_flush) {
1363 ret = bdrv_co_flush(bs);
1365 qemu_vfree(iov.iov_base);
1366 return ret;
1370 * Forwards an already correctly aligned write request to the BlockDriver,
1371 * after possibly fragmenting it.
1373 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1374 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1375 int64_t align, QEMUIOVector *qiov, int flags)
1377 BlockDriverState *bs = child->bs;
1378 BlockDriver *drv = bs->drv;
1379 bool waited;
1380 int ret;
1382 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1383 uint64_t bytes_remaining = bytes;
1384 int max_transfer;
1386 if (bdrv_has_readonly_bitmaps(bs)) {
1387 return -EPERM;
1390 assert(is_power_of_2(align));
1391 assert((offset & (align - 1)) == 0);
1392 assert((bytes & (align - 1)) == 0);
1393 assert(!qiov || bytes == qiov->size);
1394 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1395 assert(!(flags & ~BDRV_REQ_MASK));
1396 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1397 align);
1399 waited = wait_serialising_requests(req);
1400 assert(!waited || !req->serialising);
1401 assert(req->overlap_offset <= offset);
1402 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1403 assert(child->perm & BLK_PERM_WRITE);
1404 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1406 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1408 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1409 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1410 qemu_iovec_is_zero(qiov)) {
1411 flags |= BDRV_REQ_ZERO_WRITE;
1412 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1413 flags |= BDRV_REQ_MAY_UNMAP;
1417 if (ret < 0) {
1418 /* Do nothing, write notifier decided to fail this request */
1419 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1420 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1421 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1422 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1423 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1424 } else if (bytes <= max_transfer) {
1425 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1426 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1427 } else {
1428 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1429 while (bytes_remaining) {
1430 int num = MIN(bytes_remaining, max_transfer);
1431 QEMUIOVector local_qiov;
1432 int local_flags = flags;
1434 assert(num);
1435 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1436 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1437 /* If FUA is going to be emulated by flush, we only
1438 * need to flush on the last iteration */
1439 local_flags &= ~BDRV_REQ_FUA;
1441 qemu_iovec_init(&local_qiov, qiov->niov);
1442 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1444 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1445 num, &local_qiov, local_flags);
1446 qemu_iovec_destroy(&local_qiov);
1447 if (ret < 0) {
1448 break;
1450 bytes_remaining -= num;
1453 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1455 atomic_inc(&bs->write_gen);
1456 bdrv_set_dirty(bs, offset, bytes);
1458 stat64_max(&bs->wr_highest_offset, offset + bytes);
1460 if (ret >= 0) {
1461 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1462 ret = 0;
1465 return ret;
1468 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1469 int64_t offset,
1470 unsigned int bytes,
1471 BdrvRequestFlags flags,
1472 BdrvTrackedRequest *req)
1474 BlockDriverState *bs = child->bs;
1475 uint8_t *buf = NULL;
1476 QEMUIOVector local_qiov;
1477 struct iovec iov;
1478 uint64_t align = bs->bl.request_alignment;
1479 unsigned int head_padding_bytes, tail_padding_bytes;
1480 int ret = 0;
1482 head_padding_bytes = offset & (align - 1);
1483 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1486 assert(flags & BDRV_REQ_ZERO_WRITE);
1487 if (head_padding_bytes || tail_padding_bytes) {
1488 buf = qemu_blockalign(bs, align);
1489 iov = (struct iovec) {
1490 .iov_base = buf,
1491 .iov_len = align,
1493 qemu_iovec_init_external(&local_qiov, &iov, 1);
1495 if (head_padding_bytes) {
1496 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1498 /* RMW the unaligned part before head. */
1499 mark_request_serialising(req, align);
1500 wait_serialising_requests(req);
1501 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1502 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1503 align, &local_qiov, 0);
1504 if (ret < 0) {
1505 goto fail;
1507 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1509 memset(buf + head_padding_bytes, 0, zero_bytes);
1510 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1511 align, &local_qiov,
1512 flags & ~BDRV_REQ_ZERO_WRITE);
1513 if (ret < 0) {
1514 goto fail;
1516 offset += zero_bytes;
1517 bytes -= zero_bytes;
1520 assert(!bytes || (offset & (align - 1)) == 0);
1521 if (bytes >= align) {
1522 /* Write the aligned part in the middle. */
1523 uint64_t aligned_bytes = bytes & ~(align - 1);
1524 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1525 NULL, flags);
1526 if (ret < 0) {
1527 goto fail;
1529 bytes -= aligned_bytes;
1530 offset += aligned_bytes;
1533 assert(!bytes || (offset & (align - 1)) == 0);
1534 if (bytes) {
1535 assert(align == tail_padding_bytes + bytes);
1536 /* RMW the unaligned part after tail. */
1537 mark_request_serialising(req, align);
1538 wait_serialising_requests(req);
1539 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1540 ret = bdrv_aligned_preadv(child, req, offset, align,
1541 align, &local_qiov, 0);
1542 if (ret < 0) {
1543 goto fail;
1545 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1547 memset(buf, 0, bytes);
1548 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1549 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1551 fail:
1552 qemu_vfree(buf);
1553 return ret;
1558 * Handle a write request in coroutine context
1560 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1561 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1562 BdrvRequestFlags flags)
1564 BlockDriverState *bs = child->bs;
1565 BdrvTrackedRequest req;
1566 uint64_t align = bs->bl.request_alignment;
1567 uint8_t *head_buf = NULL;
1568 uint8_t *tail_buf = NULL;
1569 QEMUIOVector local_qiov;
1570 bool use_local_qiov = false;
1571 int ret;
1573 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1575 if (!bs->drv) {
1576 return -ENOMEDIUM;
1578 if (bs->read_only) {
1579 return -EPERM;
1581 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1583 ret = bdrv_check_byte_request(bs, offset, bytes);
1584 if (ret < 0) {
1585 return ret;
1588 bdrv_inc_in_flight(bs);
1590 * Align write if necessary by performing a read-modify-write cycle.
1591 * Pad qiov with the read parts and be sure to have a tracked request not
1592 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1594 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1596 if (!qiov) {
1597 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1598 goto out;
1601 if (offset & (align - 1)) {
1602 QEMUIOVector head_qiov;
1603 struct iovec head_iov;
1605 mark_request_serialising(&req, align);
1606 wait_serialising_requests(&req);
1608 head_buf = qemu_blockalign(bs, align);
1609 head_iov = (struct iovec) {
1610 .iov_base = head_buf,
1611 .iov_len = align,
1613 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1615 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1616 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1617 align, &head_qiov, 0);
1618 if (ret < 0) {
1619 goto fail;
1621 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1623 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1624 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1625 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1626 use_local_qiov = true;
1628 bytes += offset & (align - 1);
1629 offset = offset & ~(align - 1);
1631 /* We have read the tail already if the request is smaller
1632 * than one aligned block.
1634 if (bytes < align) {
1635 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1636 bytes = align;
1640 if ((offset + bytes) & (align - 1)) {
1641 QEMUIOVector tail_qiov;
1642 struct iovec tail_iov;
1643 size_t tail_bytes;
1644 bool waited;
1646 mark_request_serialising(&req, align);
1647 waited = wait_serialising_requests(&req);
1648 assert(!waited || !use_local_qiov);
1650 tail_buf = qemu_blockalign(bs, align);
1651 tail_iov = (struct iovec) {
1652 .iov_base = tail_buf,
1653 .iov_len = align,
1655 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1657 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1658 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1659 align, align, &tail_qiov, 0);
1660 if (ret < 0) {
1661 goto fail;
1663 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1665 if (!use_local_qiov) {
1666 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1667 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1668 use_local_qiov = true;
1671 tail_bytes = (offset + bytes) & (align - 1);
1672 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1674 bytes = ROUND_UP(bytes, align);
1677 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1678 use_local_qiov ? &local_qiov : qiov,
1679 flags);
1681 fail:
1683 if (use_local_qiov) {
1684 qemu_iovec_destroy(&local_qiov);
1686 qemu_vfree(head_buf);
1687 qemu_vfree(tail_buf);
1688 out:
1689 tracked_request_end(&req);
1690 bdrv_dec_in_flight(bs);
1691 return ret;
1694 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1695 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1696 BdrvRequestFlags flags)
1698 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1699 return -EINVAL;
1702 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1703 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1706 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1707 int nb_sectors, QEMUIOVector *qiov)
1709 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1712 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1713 int bytes, BdrvRequestFlags flags)
1715 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1717 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1718 flags &= ~BDRV_REQ_MAY_UNMAP;
1721 return bdrv_co_pwritev(child, offset, bytes, NULL,
1722 BDRV_REQ_ZERO_WRITE | flags);
1726 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1728 int bdrv_flush_all(void)
1730 BdrvNextIterator it;
1731 BlockDriverState *bs = NULL;
1732 int result = 0;
1734 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1735 AioContext *aio_context = bdrv_get_aio_context(bs);
1736 int ret;
1738 aio_context_acquire(aio_context);
1739 ret = bdrv_flush(bs);
1740 if (ret < 0 && !result) {
1741 result = ret;
1743 aio_context_release(aio_context);
1746 return result;
1750 typedef struct BdrvCoGetBlockStatusData {
1751 BlockDriverState *bs;
1752 BlockDriverState *base;
1753 BlockDriverState **file;
1754 int64_t sector_num;
1755 int nb_sectors;
1756 int *pnum;
1757 int64_t ret;
1758 bool done;
1759 } BdrvCoGetBlockStatusData;
1761 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs,
1762 int64_t sector_num,
1763 int nb_sectors,
1764 int *pnum,
1765 BlockDriverState **file)
1767 assert(bs->file && bs->file->bs);
1768 *pnum = nb_sectors;
1769 *file = bs->file->bs;
1770 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1771 (sector_num << BDRV_SECTOR_BITS);
1774 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs,
1775 int64_t sector_num,
1776 int nb_sectors,
1777 int *pnum,
1778 BlockDriverState **file)
1780 assert(bs->backing && bs->backing->bs);
1781 *pnum = nb_sectors;
1782 *file = bs->backing->bs;
1783 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1784 (sector_num << BDRV_SECTOR_BITS);
1788 * Returns the allocation status of the specified sectors.
1789 * Drivers not implementing the functionality are assumed to not support
1790 * backing files, hence all their sectors are reported as allocated.
1792 * If 'sector_num' is beyond the end of the disk image the return value is
1793 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1795 * 'pnum' is set to the number of sectors (including and immediately following
1796 * the specified sector) that are known to be in the same
1797 * allocated/unallocated state.
1799 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1800 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1801 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1803 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1804 * points to the BDS which the sector range is allocated in.
1806 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1807 int64_t sector_num,
1808 int nb_sectors, int *pnum,
1809 BlockDriverState **file)
1811 int64_t total_sectors;
1812 int64_t n;
1813 int64_t ret, ret2;
1815 *file = NULL;
1816 total_sectors = bdrv_nb_sectors(bs);
1817 if (total_sectors < 0) {
1818 return total_sectors;
1821 if (sector_num >= total_sectors) {
1822 *pnum = 0;
1823 return BDRV_BLOCK_EOF;
1825 if (!nb_sectors) {
1826 *pnum = 0;
1827 return 0;
1830 n = total_sectors - sector_num;
1831 if (n < nb_sectors) {
1832 nb_sectors = n;
1835 if (!bs->drv->bdrv_co_get_block_status) {
1836 *pnum = nb_sectors;
1837 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1838 if (sector_num + nb_sectors == total_sectors) {
1839 ret |= BDRV_BLOCK_EOF;
1841 if (bs->drv->protocol_name) {
1842 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1843 *file = bs;
1845 return ret;
1848 bdrv_inc_in_flight(bs);
1849 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1850 file);
1851 if (ret < 0) {
1852 *pnum = 0;
1853 goto out;
1856 if (ret & BDRV_BLOCK_RAW) {
1857 assert(ret & BDRV_BLOCK_OFFSET_VALID && *file);
1858 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1859 *pnum, pnum, file);
1860 goto out;
1863 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1864 ret |= BDRV_BLOCK_ALLOCATED;
1865 } else {
1866 if (bdrv_unallocated_blocks_are_zero(bs)) {
1867 ret |= BDRV_BLOCK_ZERO;
1868 } else if (bs->backing) {
1869 BlockDriverState *bs2 = bs->backing->bs;
1870 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1871 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1872 ret |= BDRV_BLOCK_ZERO;
1877 if (*file && *file != bs &&
1878 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1879 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1880 BlockDriverState *file2;
1881 int file_pnum;
1883 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1884 *pnum, &file_pnum, &file2);
1885 if (ret2 >= 0) {
1886 /* Ignore errors. This is just providing extra information, it
1887 * is useful but not necessary.
1889 if (ret2 & BDRV_BLOCK_EOF &&
1890 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
1892 * It is valid for the format block driver to read
1893 * beyond the end of the underlying file's current
1894 * size; such areas read as zero.
1896 ret |= BDRV_BLOCK_ZERO;
1897 } else {
1898 /* Limit request to the range reported by the protocol driver */
1899 *pnum = file_pnum;
1900 ret |= (ret2 & BDRV_BLOCK_ZERO);
1905 out:
1906 bdrv_dec_in_flight(bs);
1907 if (ret >= 0 && sector_num + *pnum == total_sectors) {
1908 ret |= BDRV_BLOCK_EOF;
1910 return ret;
1913 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1914 BlockDriverState *base,
1915 int64_t sector_num,
1916 int nb_sectors,
1917 int *pnum,
1918 BlockDriverState **file)
1920 BlockDriverState *p;
1921 int64_t ret = 0;
1922 bool first = true;
1924 assert(bs != base);
1925 for (p = bs; p != base; p = backing_bs(p)) {
1926 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1927 if (ret < 0) {
1928 break;
1930 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
1932 * Reading beyond the end of the file continues to read
1933 * zeroes, but we can only widen the result to the
1934 * unallocated length we learned from an earlier
1935 * iteration.
1937 *pnum = nb_sectors;
1939 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
1940 break;
1942 /* [sector_num, pnum] unallocated on this layer, which could be only
1943 * the first part of [sector_num, nb_sectors]. */
1944 nb_sectors = MIN(nb_sectors, *pnum);
1945 first = false;
1947 return ret;
1950 /* Coroutine wrapper for bdrv_get_block_status_above() */
1951 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1953 BdrvCoGetBlockStatusData *data = opaque;
1955 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1956 data->sector_num,
1957 data->nb_sectors,
1958 data->pnum,
1959 data->file);
1960 data->done = true;
1964 * Synchronous wrapper around bdrv_co_get_block_status_above().
1966 * See bdrv_co_get_block_status_above() for details.
1968 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1969 BlockDriverState *base,
1970 int64_t sector_num,
1971 int nb_sectors, int *pnum,
1972 BlockDriverState **file)
1974 Coroutine *co;
1975 BdrvCoGetBlockStatusData data = {
1976 .bs = bs,
1977 .base = base,
1978 .file = file,
1979 .sector_num = sector_num,
1980 .nb_sectors = nb_sectors,
1981 .pnum = pnum,
1982 .done = false,
1985 if (qemu_in_coroutine()) {
1986 /* Fast-path if already in coroutine context */
1987 bdrv_get_block_status_above_co_entry(&data);
1988 } else {
1989 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1990 &data);
1991 bdrv_coroutine_enter(bs, co);
1992 BDRV_POLL_WHILE(bs, !data.done);
1994 return data.ret;
1997 int64_t bdrv_get_block_status(BlockDriverState *bs,
1998 int64_t sector_num,
1999 int nb_sectors, int *pnum,
2000 BlockDriverState **file)
2002 return bdrv_get_block_status_above(bs, backing_bs(bs),
2003 sector_num, nb_sectors, pnum, file);
2006 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2007 int64_t bytes, int64_t *pnum)
2009 BlockDriverState *file;
2010 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
2011 int nb_sectors = bytes >> BDRV_SECTOR_BITS;
2012 int64_t ret;
2013 int psectors;
2015 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
2016 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE) && bytes < INT_MAX);
2017 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &psectors,
2018 &file);
2019 if (ret < 0) {
2020 return ret;
2022 if (pnum) {
2023 *pnum = psectors * BDRV_SECTOR_SIZE;
2025 return !!(ret & BDRV_BLOCK_ALLOCATED);
2029 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2031 * Return true if (a prefix of) the given range is allocated in any image
2032 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2033 * offset is allocated in any image of the chain. Return false otherwise,
2034 * or negative errno on failure.
2036 * 'pnum' is set to the number of bytes (including and immediately
2037 * following the specified offset) that are known to be in the same
2038 * allocated/unallocated state. Note that a subsequent call starting
2039 * at 'offset + *pnum' may return the same allocation status (in other
2040 * words, the result is not necessarily the maximum possible range);
2041 * but 'pnum' will only be 0 when end of file is reached.
2044 int bdrv_is_allocated_above(BlockDriverState *top,
2045 BlockDriverState *base,
2046 int64_t offset, int64_t bytes, int64_t *pnum)
2048 BlockDriverState *intermediate;
2049 int ret;
2050 int64_t n = bytes;
2052 intermediate = top;
2053 while (intermediate && intermediate != base) {
2054 int64_t pnum_inter;
2055 int64_t size_inter;
2057 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2058 if (ret < 0) {
2059 return ret;
2061 if (ret) {
2062 *pnum = pnum_inter;
2063 return 1;
2066 size_inter = bdrv_getlength(intermediate);
2067 if (size_inter < 0) {
2068 return size_inter;
2070 if (n > pnum_inter &&
2071 (intermediate == top || offset + pnum_inter < size_inter)) {
2072 n = pnum_inter;
2075 intermediate = backing_bs(intermediate);
2078 *pnum = n;
2079 return 0;
2082 typedef struct BdrvVmstateCo {
2083 BlockDriverState *bs;
2084 QEMUIOVector *qiov;
2085 int64_t pos;
2086 bool is_read;
2087 int ret;
2088 } BdrvVmstateCo;
2090 static int coroutine_fn
2091 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2092 bool is_read)
2094 BlockDriver *drv = bs->drv;
2095 int ret = -ENOTSUP;
2097 bdrv_inc_in_flight(bs);
2099 if (!drv) {
2100 ret = -ENOMEDIUM;
2101 } else if (drv->bdrv_load_vmstate) {
2102 if (is_read) {
2103 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2104 } else {
2105 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2107 } else if (bs->file) {
2108 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2111 bdrv_dec_in_flight(bs);
2112 return ret;
2115 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2117 BdrvVmstateCo *co = opaque;
2118 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2121 static inline int
2122 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2123 bool is_read)
2125 if (qemu_in_coroutine()) {
2126 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2127 } else {
2128 BdrvVmstateCo data = {
2129 .bs = bs,
2130 .qiov = qiov,
2131 .pos = pos,
2132 .is_read = is_read,
2133 .ret = -EINPROGRESS,
2135 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2137 bdrv_coroutine_enter(bs, co);
2138 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2139 return data.ret;
2143 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2144 int64_t pos, int size)
2146 QEMUIOVector qiov;
2147 struct iovec iov = {
2148 .iov_base = (void *) buf,
2149 .iov_len = size,
2151 int ret;
2153 qemu_iovec_init_external(&qiov, &iov, 1);
2155 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2156 if (ret < 0) {
2157 return ret;
2160 return size;
2163 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2165 return bdrv_rw_vmstate(bs, qiov, pos, false);
2168 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2169 int64_t pos, int size)
2171 QEMUIOVector qiov;
2172 struct iovec iov = {
2173 .iov_base = buf,
2174 .iov_len = size,
2176 int ret;
2178 qemu_iovec_init_external(&qiov, &iov, 1);
2179 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2180 if (ret < 0) {
2181 return ret;
2184 return size;
2187 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2189 return bdrv_rw_vmstate(bs, qiov, pos, true);
2192 /**************************************************************/
2193 /* async I/Os */
2195 void bdrv_aio_cancel(BlockAIOCB *acb)
2197 qemu_aio_ref(acb);
2198 bdrv_aio_cancel_async(acb);
2199 while (acb->refcnt > 1) {
2200 if (acb->aiocb_info->get_aio_context) {
2201 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2202 } else if (acb->bs) {
2203 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2204 * assert that we're not using an I/O thread. Thread-safe
2205 * code should use bdrv_aio_cancel_async exclusively.
2207 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2208 aio_poll(bdrv_get_aio_context(acb->bs), true);
2209 } else {
2210 abort();
2213 qemu_aio_unref(acb);
2216 /* Async version of aio cancel. The caller is not blocked if the acb implements
2217 * cancel_async, otherwise we do nothing and let the request normally complete.
2218 * In either case the completion callback must be called. */
2219 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2221 if (acb->aiocb_info->cancel_async) {
2222 acb->aiocb_info->cancel_async(acb);
2226 /**************************************************************/
2227 /* Coroutine block device emulation */
2229 typedef struct FlushCo {
2230 BlockDriverState *bs;
2231 int ret;
2232 } FlushCo;
2235 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2237 FlushCo *rwco = opaque;
2239 rwco->ret = bdrv_co_flush(rwco->bs);
2242 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2244 int current_gen;
2245 int ret = 0;
2247 bdrv_inc_in_flight(bs);
2249 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2250 bdrv_is_sg(bs)) {
2251 goto early_exit;
2254 qemu_co_mutex_lock(&bs->reqs_lock);
2255 current_gen = atomic_read(&bs->write_gen);
2257 /* Wait until any previous flushes are completed */
2258 while (bs->active_flush_req) {
2259 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2262 /* Flushes reach this point in nondecreasing current_gen order. */
2263 bs->active_flush_req = true;
2264 qemu_co_mutex_unlock(&bs->reqs_lock);
2266 /* Write back all layers by calling one driver function */
2267 if (bs->drv->bdrv_co_flush) {
2268 ret = bs->drv->bdrv_co_flush(bs);
2269 goto out;
2272 /* Write back cached data to the OS even with cache=unsafe */
2273 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2274 if (bs->drv->bdrv_co_flush_to_os) {
2275 ret = bs->drv->bdrv_co_flush_to_os(bs);
2276 if (ret < 0) {
2277 goto out;
2281 /* But don't actually force it to the disk with cache=unsafe */
2282 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2283 goto flush_parent;
2286 /* Check if we really need to flush anything */
2287 if (bs->flushed_gen == current_gen) {
2288 goto flush_parent;
2291 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2292 if (bs->drv->bdrv_co_flush_to_disk) {
2293 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2294 } else if (bs->drv->bdrv_aio_flush) {
2295 BlockAIOCB *acb;
2296 CoroutineIOCompletion co = {
2297 .coroutine = qemu_coroutine_self(),
2300 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2301 if (acb == NULL) {
2302 ret = -EIO;
2303 } else {
2304 qemu_coroutine_yield();
2305 ret = co.ret;
2307 } else {
2309 * Some block drivers always operate in either writethrough or unsafe
2310 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2311 * know how the server works (because the behaviour is hardcoded or
2312 * depends on server-side configuration), so we can't ensure that
2313 * everything is safe on disk. Returning an error doesn't work because
2314 * that would break guests even if the server operates in writethrough
2315 * mode.
2317 * Let's hope the user knows what he's doing.
2319 ret = 0;
2322 if (ret < 0) {
2323 goto out;
2326 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2327 * in the case of cache=unsafe, so there are no useless flushes.
2329 flush_parent:
2330 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2331 out:
2332 /* Notify any pending flushes that we have completed */
2333 if (ret == 0) {
2334 bs->flushed_gen = current_gen;
2337 qemu_co_mutex_lock(&bs->reqs_lock);
2338 bs->active_flush_req = false;
2339 /* Return value is ignored - it's ok if wait queue is empty */
2340 qemu_co_queue_next(&bs->flush_queue);
2341 qemu_co_mutex_unlock(&bs->reqs_lock);
2343 early_exit:
2344 bdrv_dec_in_flight(bs);
2345 return ret;
2348 int bdrv_flush(BlockDriverState *bs)
2350 Coroutine *co;
2351 FlushCo flush_co = {
2352 .bs = bs,
2353 .ret = NOT_DONE,
2356 if (qemu_in_coroutine()) {
2357 /* Fast-path if already in coroutine context */
2358 bdrv_flush_co_entry(&flush_co);
2359 } else {
2360 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2361 bdrv_coroutine_enter(bs, co);
2362 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2365 return flush_co.ret;
2368 typedef struct DiscardCo {
2369 BlockDriverState *bs;
2370 int64_t offset;
2371 int bytes;
2372 int ret;
2373 } DiscardCo;
2374 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2376 DiscardCo *rwco = opaque;
2378 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2381 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2382 int bytes)
2384 BdrvTrackedRequest req;
2385 int max_pdiscard, ret;
2386 int head, tail, align;
2388 if (!bs->drv) {
2389 return -ENOMEDIUM;
2392 if (bdrv_has_readonly_bitmaps(bs)) {
2393 return -EPERM;
2396 ret = bdrv_check_byte_request(bs, offset, bytes);
2397 if (ret < 0) {
2398 return ret;
2399 } else if (bs->read_only) {
2400 return -EPERM;
2402 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2404 /* Do nothing if disabled. */
2405 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2406 return 0;
2409 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2410 return 0;
2413 /* Discard is advisory, but some devices track and coalesce
2414 * unaligned requests, so we must pass everything down rather than
2415 * round here. Still, most devices will just silently ignore
2416 * unaligned requests (by returning -ENOTSUP), so we must fragment
2417 * the request accordingly. */
2418 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2419 assert(align % bs->bl.request_alignment == 0);
2420 head = offset % align;
2421 tail = (offset + bytes) % align;
2423 bdrv_inc_in_flight(bs);
2424 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2426 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2427 if (ret < 0) {
2428 goto out;
2431 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2432 align);
2433 assert(max_pdiscard >= bs->bl.request_alignment);
2435 while (bytes > 0) {
2436 int num = bytes;
2438 if (head) {
2439 /* Make small requests to get to alignment boundaries. */
2440 num = MIN(bytes, align - head);
2441 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2442 num %= bs->bl.request_alignment;
2444 head = (head + num) % align;
2445 assert(num < max_pdiscard);
2446 } else if (tail) {
2447 if (num > align) {
2448 /* Shorten the request to the last aligned cluster. */
2449 num -= tail;
2450 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2451 tail > bs->bl.request_alignment) {
2452 tail %= bs->bl.request_alignment;
2453 num -= tail;
2456 /* limit request size */
2457 if (num > max_pdiscard) {
2458 num = max_pdiscard;
2461 if (bs->drv->bdrv_co_pdiscard) {
2462 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2463 } else {
2464 BlockAIOCB *acb;
2465 CoroutineIOCompletion co = {
2466 .coroutine = qemu_coroutine_self(),
2469 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2470 bdrv_co_io_em_complete, &co);
2471 if (acb == NULL) {
2472 ret = -EIO;
2473 goto out;
2474 } else {
2475 qemu_coroutine_yield();
2476 ret = co.ret;
2479 if (ret && ret != -ENOTSUP) {
2480 goto out;
2483 offset += num;
2484 bytes -= num;
2486 ret = 0;
2487 out:
2488 atomic_inc(&bs->write_gen);
2489 bdrv_set_dirty(bs, req.offset, req.bytes);
2490 tracked_request_end(&req);
2491 bdrv_dec_in_flight(bs);
2492 return ret;
2495 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2497 Coroutine *co;
2498 DiscardCo rwco = {
2499 .bs = bs,
2500 .offset = offset,
2501 .bytes = bytes,
2502 .ret = NOT_DONE,
2505 if (qemu_in_coroutine()) {
2506 /* Fast-path if already in coroutine context */
2507 bdrv_pdiscard_co_entry(&rwco);
2508 } else {
2509 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2510 bdrv_coroutine_enter(bs, co);
2511 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2514 return rwco.ret;
2517 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2519 BlockDriver *drv = bs->drv;
2520 CoroutineIOCompletion co = {
2521 .coroutine = qemu_coroutine_self(),
2523 BlockAIOCB *acb;
2525 bdrv_inc_in_flight(bs);
2526 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2527 co.ret = -ENOTSUP;
2528 goto out;
2531 if (drv->bdrv_co_ioctl) {
2532 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2533 } else {
2534 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2535 if (!acb) {
2536 co.ret = -ENOTSUP;
2537 goto out;
2539 qemu_coroutine_yield();
2541 out:
2542 bdrv_dec_in_flight(bs);
2543 return co.ret;
2546 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2548 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2551 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2553 return memset(qemu_blockalign(bs, size), 0, size);
2556 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2558 size_t align = bdrv_opt_mem_align(bs);
2560 /* Ensure that NULL is never returned on success */
2561 assert(align > 0);
2562 if (size == 0) {
2563 size = align;
2566 return qemu_try_memalign(align, size);
2569 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2571 void *mem = qemu_try_blockalign(bs, size);
2573 if (mem) {
2574 memset(mem, 0, size);
2577 return mem;
2581 * Check if all memory in this vector is sector aligned.
2583 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2585 int i;
2586 size_t alignment = bdrv_min_mem_align(bs);
2588 for (i = 0; i < qiov->niov; i++) {
2589 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2590 return false;
2592 if (qiov->iov[i].iov_len % alignment) {
2593 return false;
2597 return true;
2600 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2601 NotifierWithReturn *notifier)
2603 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2606 void bdrv_io_plug(BlockDriverState *bs)
2608 BdrvChild *child;
2610 QLIST_FOREACH(child, &bs->children, next) {
2611 bdrv_io_plug(child->bs);
2614 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2615 BlockDriver *drv = bs->drv;
2616 if (drv && drv->bdrv_io_plug) {
2617 drv->bdrv_io_plug(bs);
2622 void bdrv_io_unplug(BlockDriverState *bs)
2624 BdrvChild *child;
2626 assert(bs->io_plugged);
2627 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2628 BlockDriver *drv = bs->drv;
2629 if (drv && drv->bdrv_io_unplug) {
2630 drv->bdrv_io_unplug(bs);
2634 QLIST_FOREACH(child, &bs->children, next) {
2635 bdrv_io_unplug(child->bs);