Merge remote-tracking branch 'qemu-project/master'
[qemu/ar7.git] / include / hw / core / cpu.h
blob045e07a11fb2aebb6269ed93ee131fa76f0bc1e1
1 /*
2 * QEMU CPU model
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/vaddr.h"
27 #include "exec/memattrs.h"
28 #include "exec/tlb-common.h"
29 #include "qapi/qapi-types-run-state.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/rcu_queue.h"
32 #include "qemu/queue.h"
33 #include "qemu/thread.h"
34 #include "qemu/plugin-event.h"
35 #include "qom/object.h"
37 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
38 void *opaque);
40 /**
41 * SECTION:cpu
42 * @section_id: QEMU-cpu
43 * @title: CPU Class
44 * @short_description: Base class for all CPUs
47 #define TYPE_CPU "cpu"
49 /* Since this macro is used a lot in hot code paths and in conjunction with
50 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
51 * an unchecked cast.
53 #define CPU(obj) ((CPUState *)(obj))
56 * The class checkers bring in CPU_GET_CLASS() which is potentially
57 * expensive given the eventual call to
58 * object_class_dynamic_cast_assert(). Because of this the CPUState
59 * has a cached value for the class in cs->cc which is set up in
60 * cpu_exec_realizefn() for use in hot code paths.
62 typedef struct CPUClass CPUClass;
63 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
64 TYPE_CPU)
66 /**
67 * OBJECT_DECLARE_CPU_TYPE:
68 * @CpuInstanceType: instance struct name
69 * @CpuClassType: class struct name
70 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
72 * This macro is typically used in "cpu-qom.h" header file, and will:
74 * - create the typedefs for the CPU object and class structs
75 * - register the type for use with g_autoptr
76 * - provide three standard type cast functions
78 * The object struct and class struct need to be declared manually.
80 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
81 typedef struct ArchCPU CpuInstanceType; \
82 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
84 typedef enum MMUAccessType {
85 MMU_DATA_LOAD = 0,
86 MMU_DATA_STORE = 1,
87 MMU_INST_FETCH = 2
88 #define MMU_ACCESS_COUNT 3
89 } MMUAccessType;
91 typedef struct CPUWatchpoint CPUWatchpoint;
93 /* see accel-cpu.h */
94 struct AccelCPUClass;
96 /* see sysemu-cpu-ops.h */
97 struct SysemuCPUOps;
99 /**
100 * CPUClass:
101 * @class_by_name: Callback to map -cpu command line model name to an
102 * instantiatable CPU type.
103 * @parse_features: Callback to parse command line arguments.
104 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
105 * @has_work: Callback for checking if there is work to do.
106 * @mmu_index: Callback for choosing softmmu mmu index;
107 * may be used internally by memory_rw_debug without TCG.
108 * @memory_rw_debug: Callback for GDB memory access.
109 * @dump_state: Callback for dumping state.
110 * @query_cpu_fast:
111 * Fill in target specific information for the "query-cpus-fast"
112 * QAPI call.
113 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
114 * @set_pc: Callback for setting the Program Counter register. This
115 * should have the semantics used by the target architecture when
116 * setting the PC from a source such as an ELF file entry point;
117 * for example on Arm it will also set the Thumb mode bit based
118 * on the least significant bit of the new PC value.
119 * If the target behaviour here is anything other than "set
120 * the PC register to the value passed in" then the target must
121 * also implement the synchronize_from_tb hook.
122 * @get_pc: Callback for getting the Program Counter register.
123 * As above, with the semantics of the target architecture.
124 * @gdb_read_register: Callback for letting GDB read a register.
125 * @gdb_write_register: Callback for letting GDB write a register.
126 * @gdb_adjust_breakpoint: Callback for adjusting the address of a
127 * breakpoint. Used by AVR to handle a gdb mis-feature with
128 * its Harvard architecture split code and data.
129 * @gdb_num_core_regs: Number of core registers accessible to GDB.
130 * @gdb_core_xml_file: File name for core registers GDB XML description.
131 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
132 * before the insn which triggers a watchpoint rather than after it.
133 * @gdb_arch_name: Optional callback that returns the architecture name known
134 * to GDB. The caller must free the returned string with g_free.
135 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
136 * gdb stub. Returns a pointer to the XML contents for the specified XML file
137 * or NULL if the CPU doesn't have a dynamically generated content for it.
138 * @disas_set_info: Setup architecture specific components of disassembly info
139 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
140 * address before attempting to match it against watchpoints.
141 * @deprecation_note: If this CPUClass is deprecated, this field provides
142 * related information.
144 * Represents a CPU family or model.
146 struct CPUClass {
147 /*< private >*/
148 DeviceClass parent_class;
149 /*< public >*/
151 ObjectClass *(*class_by_name)(const char *cpu_model);
152 void (*parse_features)(const char *typename, char *str, Error **errp);
154 bool (*has_work)(CPUState *cpu);
155 int (*mmu_index)(CPUState *cpu, bool ifetch);
156 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
157 uint8_t *buf, int len, bool is_write);
158 void (*dump_state)(CPUState *cpu, FILE *, int flags);
159 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
160 int64_t (*get_arch_id)(CPUState *cpu);
161 void (*set_pc)(CPUState *cpu, vaddr value);
162 vaddr (*get_pc)(CPUState *cpu);
163 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
164 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
165 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
167 const char *gdb_core_xml_file;
168 const gchar * (*gdb_arch_name)(CPUState *cpu);
169 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
171 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
173 const char *deprecation_note;
174 struct AccelCPUClass *accel_cpu;
176 /* when system emulation is not available, this pointer is NULL */
177 const struct SysemuCPUOps *sysemu_ops;
179 /* when TCG is not available, this pointer is NULL */
180 const TCGCPUOps *tcg_ops;
183 * if not NULL, this is called in order for the CPUClass to initialize
184 * class data that depends on the accelerator, see accel/accel-common.c.
186 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
189 * Keep non-pointer data at the end to minimize holes.
191 int reset_dump_flags;
192 int gdb_num_core_regs;
193 bool gdb_stop_before_watchpoint;
197 * Fix the number of mmu modes to 16, which is also the maximum
198 * supported by the softmmu tlb api.
200 #define NB_MMU_MODES 16
202 /* Use a fully associative victim tlb of 8 entries. */
203 #define CPU_VTLB_SIZE 8
206 * The full TLB entry, which is not accessed by generated TCG code,
207 * so the layout is not as critical as that of CPUTLBEntry. This is
208 * also why we don't want to combine the two structs.
210 typedef struct CPUTLBEntryFull {
212 * @xlat_section contains:
213 * - in the lower TARGET_PAGE_BITS, a physical section number
214 * - with the lower TARGET_PAGE_BITS masked off, an offset which
215 * must be added to the virtual address to obtain:
216 * + the ram_addr_t of the target RAM (if the physical section
217 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
218 * + the offset within the target MemoryRegion (otherwise)
220 hwaddr xlat_section;
223 * @phys_addr contains the physical address in the address space
224 * given by cpu_asidx_from_attrs(cpu, @attrs).
226 hwaddr phys_addr;
228 /* @attrs contains the memory transaction attributes for the page. */
229 MemTxAttrs attrs;
231 /* @prot contains the complete protections for the page. */
232 uint8_t prot;
234 /* @lg_page_size contains the log2 of the page size. */
235 uint8_t lg_page_size;
238 * Additional tlb flags for use by the slow path. If non-zero,
239 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
241 uint8_t slow_flags[MMU_ACCESS_COUNT];
244 * Allow target-specific additions to this structure.
245 * This may be used to cache items from the guest cpu
246 * page tables for later use by the implementation.
248 union {
250 * Cache the attrs and shareability fields from the page table entry.
252 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
253 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
254 * For shareability and guarded, as in the SH and GP fields respectively
255 * of the VMSAv8-64 PTEs.
257 struct {
258 uint8_t pte_attrs;
259 uint8_t shareability;
260 bool guarded;
261 } arm;
262 } extra;
263 } CPUTLBEntryFull;
266 * Data elements that are per MMU mode, minus the bits accessed by
267 * the TCG fast path.
269 typedef struct CPUTLBDesc {
271 * Describe a region covering all of the large pages allocated
272 * into the tlb. When any page within this region is flushed,
273 * we must flush the entire tlb. The region is matched if
274 * (addr & large_page_mask) == large_page_addr.
276 vaddr large_page_addr;
277 vaddr large_page_mask;
278 /* host time (in ns) at the beginning of the time window */
279 int64_t window_begin_ns;
280 /* maximum number of entries observed in the window */
281 size_t window_max_entries;
282 size_t n_used_entries;
283 /* The next index to use in the tlb victim table. */
284 size_t vindex;
285 /* The tlb victim table, in two parts. */
286 CPUTLBEntry vtable[CPU_VTLB_SIZE];
287 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
288 CPUTLBEntryFull *fulltlb;
289 } CPUTLBDesc;
292 * Data elements that are shared between all MMU modes.
294 typedef struct CPUTLBCommon {
295 /* Serialize updates to f.table and d.vtable, and others as noted. */
296 QemuSpin lock;
298 * Within dirty, for each bit N, modifications have been made to
299 * mmu_idx N since the last time that mmu_idx was flushed.
300 * Protected by tlb_c.lock.
302 uint16_t dirty;
304 * Statistics. These are not lock protected, but are read and
305 * written atomically. This allows the monitor to print a snapshot
306 * of the stats without interfering with the cpu.
308 size_t full_flush_count;
309 size_t part_flush_count;
310 size_t elide_flush_count;
311 } CPUTLBCommon;
314 * The entire softmmu tlb, for all MMU modes.
315 * The meaning of each of the MMU modes is defined in the target code.
316 * Since this is placed within CPUNegativeOffsetState, the smallest
317 * negative offsets are at the end of the struct.
319 typedef struct CPUTLB {
320 #ifdef CONFIG_TCG
321 CPUTLBCommon c;
322 CPUTLBDesc d[NB_MMU_MODES];
323 CPUTLBDescFast f[NB_MMU_MODES];
324 #endif
325 } CPUTLB;
328 * Low 16 bits: number of cycles left, used only in icount mode.
329 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
330 * for this CPU and return to its top level loop (even in non-icount mode).
331 * This allows a single read-compare-cbranch-write sequence to test
332 * for both decrementer underflow and exceptions.
334 typedef union IcountDecr {
335 uint32_t u32;
336 struct {
337 #if HOST_BIG_ENDIAN
338 uint16_t high;
339 uint16_t low;
340 #else
341 uint16_t low;
342 uint16_t high;
343 #endif
344 } u16;
345 } IcountDecr;
348 * Elements of CPUState most efficiently accessed from CPUArchState,
349 * via small negative offsets.
351 typedef struct CPUNegativeOffsetState {
352 CPUTLB tlb;
353 IcountDecr icount_decr;
354 bool can_do_io;
355 } CPUNegativeOffsetState;
357 typedef struct CPUBreakpoint {
358 vaddr pc;
359 int flags; /* BP_* */
360 QTAILQ_ENTRY(CPUBreakpoint) entry;
361 } CPUBreakpoint;
363 struct CPUWatchpoint {
364 vaddr vaddr;
365 vaddr len;
366 vaddr hitaddr;
367 MemTxAttrs hitattrs;
368 int flags; /* BP_* */
369 QTAILQ_ENTRY(CPUWatchpoint) entry;
372 struct KVMState;
373 struct kvm_run;
375 /* work queue */
377 /* The union type allows passing of 64 bit target pointers on 32 bit
378 * hosts in a single parameter
380 typedef union {
381 int host_int;
382 unsigned long host_ulong;
383 void *host_ptr;
384 vaddr target_ptr;
385 } run_on_cpu_data;
387 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
388 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
389 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
390 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
391 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
393 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
395 struct qemu_work_item;
397 #define CPU_UNSET_NUMA_NODE_ID -1
400 * CPUState:
401 * @cpu_index: CPU index (informative).
402 * @cluster_index: Identifies which cluster this CPU is in.
403 * For boards which don't define clusters or for "loose" CPUs not assigned
404 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
405 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
406 * QOM parent.
407 * Under TCG this value is propagated to @tcg_cflags.
408 * See TranslationBlock::TCG CF_CLUSTER_MASK.
409 * @tcg_cflags: Pre-computed cflags for this cpu.
410 * @nr_cores: Number of cores within this CPU package.
411 * @nr_threads: Number of threads within this CPU core.
412 * @running: #true if CPU is currently running (lockless).
413 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
414 * valid under cpu_list_lock.
415 * @created: Indicates whether the CPU thread has been successfully created.
416 * @interrupt_request: Indicates a pending interrupt request.
417 * @halted: Nonzero if the CPU is in suspended state.
418 * @stop: Indicates a pending stop request.
419 * @stopped: Indicates the CPU has been artificially stopped.
420 * @unplug: Indicates a pending CPU unplug request.
421 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
422 * @singlestep_enabled: Flags for single-stepping.
423 * @icount_extra: Instructions until next timer event.
424 * @neg.can_do_io: True if memory-mapped IO is allowed.
425 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
426 * AddressSpaces this CPU has)
427 * @num_ases: number of CPUAddressSpaces in @cpu_ases
428 * @as: Pointer to the first AddressSpace, for the convenience of targets which
429 * only have a single AddressSpace
430 * @gdb_regs: Additional GDB registers.
431 * @gdb_num_regs: Number of total registers accessible to GDB.
432 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
433 * @node: QTAILQ of CPUs sharing TB cache.
434 * @opaque: User data.
435 * @mem_io_pc: Host Program Counter at which the memory was accessed.
436 * @accel: Pointer to accelerator specific state.
437 * @kvm_fd: vCPU file descriptor for KVM.
438 * @work_mutex: Lock to prevent multiple access to @work_list.
439 * @work_list: List of pending asynchronous work.
440 * @plugin_mask: Plugin event bitmap. Modified only via async work.
441 * @ignore_memory_transaction_failures: Cached copy of the MachineState
442 * flag of the same name: allows the board to suppress calling of the
443 * CPU do_transaction_failed hook function.
444 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
445 * ring is enabled.
446 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
447 * dirty ring structure.
449 * State of one CPU core or thread.
451 * Align, in order to match possible alignment required by CPUArchState,
452 * and eliminate a hole between CPUState and CPUArchState within ArchCPU.
454 struct CPUState {
455 /*< private >*/
456 DeviceState parent_obj;
457 /* cache to avoid expensive CPU_GET_CLASS */
458 CPUClass *cc;
459 /*< public >*/
461 int nr_cores;
462 int nr_threads;
464 struct QemuThread *thread;
465 #ifdef _WIN32
466 QemuSemaphore sem;
467 #endif
468 int thread_id;
469 bool running, has_waiter;
470 struct QemuCond *halt_cond;
471 bool thread_kicked;
472 bool created;
473 bool stop;
474 bool stopped;
475 /* Endianness, false = little endian, true = big endian. */
476 bool bigendian;
478 /* Should CPU start in powered-off state? */
479 bool start_powered_off;
481 bool unplug;
482 bool crash_occurred;
483 bool exit_request;
484 int exclusive_context_count;
485 uint32_t cflags_next_tb;
486 /* updates protected by BQL */
487 uint32_t interrupt_request;
488 int singlestep_enabled;
489 int64_t icount_budget;
490 int64_t icount_extra;
491 uint64_t random_seed;
492 sigjmp_buf jmp_env;
494 QemuMutex work_mutex;
495 QSIMPLEQ_HEAD(, qemu_work_item) work_list;
497 CPUAddressSpace *cpu_ases;
498 int num_ases;
499 AddressSpace *as;
500 MemoryRegion *memory;
502 CPUJumpCache *tb_jmp_cache;
504 GArray *gdb_regs;
505 int gdb_num_regs;
506 int gdb_num_g_regs;
507 QTAILQ_ENTRY(CPUState) node;
509 /* ice debug support */
510 QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
512 QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
513 CPUWatchpoint *watchpoint_hit;
515 void *opaque;
517 /* In order to avoid passing too many arguments to the MMIO helpers,
518 * we store some rarely used information in the CPU context.
520 uintptr_t mem_io_pc;
522 /* Only used in KVM */
523 int kvm_fd;
524 struct KVMState *kvm_state;
525 struct kvm_run *kvm_run;
526 struct kvm_dirty_gfn *kvm_dirty_gfns;
527 uint32_t kvm_fetch_index;
528 uint64_t dirty_pages;
529 int kvm_vcpu_stats_fd;
531 /* Use by accel-block: CPU is executing an ioctl() */
532 QemuLockCnt in_ioctl_lock;
534 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
536 #ifdef CONFIG_PLUGIN
537 GArray *plugin_mem_cbs;
538 #endif
540 /* TODO Move common fields from CPUArchState here. */
541 int cpu_index;
542 int cluster_index;
543 uint32_t tcg_cflags;
544 uint32_t halted;
545 int32_t exception_index;
547 AccelCPUState *accel;
548 /* shared by kvm and hvf */
549 bool vcpu_dirty;
551 /* Used to keep track of an outstanding cpu throttle thread for migration
552 * autoconverge
554 bool throttle_thread_scheduled;
557 * Sleep throttle_us_per_full microseconds once dirty ring is full
558 * if dirty page rate limit is enabled.
560 int64_t throttle_us_per_full;
562 bool ignore_memory_transaction_failures;
564 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
565 bool prctl_unalign_sigbus;
567 /* track IOMMUs whose translations we've cached in the TCG TLB */
568 GArray *iommu_notifiers;
571 * MUST BE LAST in order to minimize the displacement to CPUArchState.
573 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
574 CPUNegativeOffsetState neg;
577 /* Validate placement of CPUNegativeOffsetState. */
578 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
579 sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
581 static inline CPUArchState *cpu_env(CPUState *cpu)
583 /* We validate that CPUArchState follows CPUState in cpu-all.h. */
584 return (CPUArchState *)(cpu + 1);
587 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
588 extern CPUTailQ cpus_queue;
590 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue)
591 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
592 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
593 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
594 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
596 extern __thread CPUState *current_cpu;
599 * qemu_tcg_mttcg_enabled:
600 * Check whether we are running MultiThread TCG or not.
602 * Returns: %true if we are in MTTCG mode %false otherwise.
604 extern bool mttcg_enabled;
605 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
608 * cpu_paging_enabled:
609 * @cpu: The CPU whose state is to be inspected.
611 * Returns: %true if paging is enabled, %false otherwise.
613 bool cpu_paging_enabled(const CPUState *cpu);
616 * cpu_get_memory_mapping:
617 * @cpu: The CPU whose memory mappings are to be obtained.
618 * @list: Where to write the memory mappings to.
619 * @errp: Pointer for reporting an #Error.
621 * Returns: %true on success, %false otherwise.
623 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
624 Error **errp);
626 #if !defined(CONFIG_USER_ONLY)
629 * cpu_write_elf64_note:
630 * @f: pointer to a function that writes memory to a file
631 * @cpu: The CPU whose memory is to be dumped
632 * @cpuid: ID number of the CPU
633 * @opaque: pointer to the CPUState struct
635 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
636 int cpuid, void *opaque);
639 * cpu_write_elf64_qemunote:
640 * @f: pointer to a function that writes memory to a file
641 * @cpu: The CPU whose memory is to be dumped
642 * @cpuid: ID number of the CPU
643 * @opaque: pointer to the CPUState struct
645 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
646 void *opaque);
649 * cpu_write_elf32_note:
650 * @f: pointer to a function that writes memory to a file
651 * @cpu: The CPU whose memory is to be dumped
652 * @cpuid: ID number of the CPU
653 * @opaque: pointer to the CPUState struct
655 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
656 int cpuid, void *opaque);
659 * cpu_write_elf32_qemunote:
660 * @f: pointer to a function that writes memory to a file
661 * @cpu: The CPU whose memory is to be dumped
662 * @cpuid: ID number of the CPU
663 * @opaque: pointer to the CPUState struct
665 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
666 void *opaque);
669 * cpu_get_crash_info:
670 * @cpu: The CPU to get crash information for
672 * Gets the previously saved crash information.
673 * Caller is responsible for freeing the data.
675 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
677 #endif /* !CONFIG_USER_ONLY */
680 * CPUDumpFlags:
681 * @CPU_DUMP_CODE:
682 * @CPU_DUMP_FPU: dump FPU register state, not just integer
683 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
684 * @CPU_DUMP_VPU: dump VPU registers
686 enum CPUDumpFlags {
687 CPU_DUMP_CODE = 0x00010000,
688 CPU_DUMP_FPU = 0x00020000,
689 CPU_DUMP_CCOP = 0x00040000,
690 CPU_DUMP_VPU = 0x00080000,
694 * cpu_dump_state:
695 * @cpu: The CPU whose state is to be dumped.
696 * @f: If non-null, dump to this stream, else to current print sink.
698 * Dumps CPU state.
700 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
702 #ifndef CONFIG_USER_ONLY
704 * cpu_get_phys_page_attrs_debug:
705 * @cpu: The CPU to obtain the physical page address for.
706 * @addr: The virtual address.
707 * @attrs: Updated on return with the memory transaction attributes to use
708 * for this access.
710 * Obtains the physical page corresponding to a virtual one, together
711 * with the corresponding memory transaction attributes to use for the access.
712 * Use it only for debugging because no protection checks are done.
714 * Returns: Corresponding physical page address or -1 if no page found.
716 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
717 MemTxAttrs *attrs);
720 * cpu_get_phys_page_debug:
721 * @cpu: The CPU to obtain the physical page address for.
722 * @addr: The virtual address.
724 * Obtains the physical page corresponding to a virtual one.
725 * Use it only for debugging because no protection checks are done.
727 * Returns: Corresponding physical page address or -1 if no page found.
729 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
731 /** cpu_asidx_from_attrs:
732 * @cpu: CPU
733 * @attrs: memory transaction attributes
735 * Returns the address space index specifying the CPU AddressSpace
736 * to use for a memory access with the given transaction attributes.
738 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
741 * cpu_virtio_is_big_endian:
742 * @cpu: CPU
744 * Returns %true if a CPU which supports runtime configurable endianness
745 * is currently big-endian.
747 bool cpu_virtio_is_big_endian(CPUState *cpu);
749 #endif /* CONFIG_USER_ONLY */
752 * cpu_list_add:
753 * @cpu: The CPU to be added to the list of CPUs.
755 void cpu_list_add(CPUState *cpu);
758 * cpu_list_remove:
759 * @cpu: The CPU to be removed from the list of CPUs.
761 void cpu_list_remove(CPUState *cpu);
764 * cpu_reset:
765 * @cpu: The CPU whose state is to be reset.
767 void cpu_reset(CPUState *cpu);
770 * cpu_class_by_name:
771 * @typename: The CPU base type.
772 * @cpu_model: The model string without any parameters.
774 * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
776 * Returns: A concrete #CPUClass or %NULL if no matching class is found
777 * or if the matching class is abstract.
779 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
782 * cpu_model_from_type:
783 * @typename: The CPU type name
785 * Extract the CPU model name from the CPU type name. The
786 * CPU type name is either the combination of the CPU model
787 * name and suffix, or same to the CPU model name.
789 * Returns: CPU model name or NULL if the CPU class doesn't exist
790 * The user should g_free() the string once no longer needed.
792 char *cpu_model_from_type(const char *typename);
795 * cpu_create:
796 * @typename: The CPU type.
798 * Instantiates a CPU and realizes the CPU.
800 * Returns: A #CPUState or %NULL if an error occurred.
802 CPUState *cpu_create(const char *typename);
805 * parse_cpu_option:
806 * @cpu_option: The -cpu option including optional parameters.
808 * processes optional parameters and registers them as global properties
810 * Returns: type of CPU to create or prints error and terminates process
811 * if an error occurred.
813 const char *parse_cpu_option(const char *cpu_option);
816 * cpu_has_work:
817 * @cpu: The vCPU to check.
819 * Checks whether the CPU has work to do.
821 * Returns: %true if the CPU has work, %false otherwise.
823 static inline bool cpu_has_work(CPUState *cpu)
825 CPUClass *cc = CPU_GET_CLASS(cpu);
827 g_assert(cc->has_work);
828 return cc->has_work(cpu);
832 * qemu_cpu_is_self:
833 * @cpu: The vCPU to check against.
835 * Checks whether the caller is executing on the vCPU thread.
837 * Returns: %true if called from @cpu's thread, %false otherwise.
839 bool qemu_cpu_is_self(CPUState *cpu);
842 * qemu_cpu_kick:
843 * @cpu: The vCPU to kick.
845 * Kicks @cpu's thread.
847 void qemu_cpu_kick(CPUState *cpu);
850 * cpu_is_stopped:
851 * @cpu: The CPU to check.
853 * Checks whether the CPU is stopped.
855 * Returns: %true if run state is not running or if artificially stopped;
856 * %false otherwise.
858 bool cpu_is_stopped(CPUState *cpu);
861 * do_run_on_cpu:
862 * @cpu: The vCPU to run on.
863 * @func: The function to be executed.
864 * @data: Data to pass to the function.
865 * @mutex: Mutex to release while waiting for @func to run.
867 * Used internally in the implementation of run_on_cpu.
869 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
870 QemuMutex *mutex);
873 * run_on_cpu:
874 * @cpu: The vCPU to run on.
875 * @func: The function to be executed.
876 * @data: Data to pass to the function.
878 * Schedules the function @func for execution on the vCPU @cpu.
880 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
883 * async_run_on_cpu:
884 * @cpu: The vCPU to run on.
885 * @func: The function to be executed.
886 * @data: Data to pass to the function.
888 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
890 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
893 * async_safe_run_on_cpu:
894 * @cpu: The vCPU to run on.
895 * @func: The function to be executed.
896 * @data: Data to pass to the function.
898 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
899 * while all other vCPUs are sleeping.
901 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
902 * BQL.
904 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
907 * cpu_in_exclusive_context()
908 * @cpu: The vCPU to check
910 * Returns true if @cpu is an exclusive context, for example running
911 * something which has previously been queued via async_safe_run_on_cpu().
913 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
915 return cpu->exclusive_context_count;
919 * qemu_get_cpu:
920 * @index: The CPUState@cpu_index value of the CPU to obtain.
922 * Gets a CPU matching @index.
924 * Returns: The CPU or %NULL if there is no matching CPU.
926 CPUState *qemu_get_cpu(int index);
929 * cpu_exists:
930 * @id: Guest-exposed CPU ID to lookup.
932 * Search for CPU with specified ID.
934 * Returns: %true - CPU is found, %false - CPU isn't found.
936 bool cpu_exists(int64_t id);
939 * cpu_by_arch_id:
940 * @id: Guest-exposed CPU ID of the CPU to obtain.
942 * Get a CPU with matching @id.
944 * Returns: The CPU or %NULL if there is no matching CPU.
946 CPUState *cpu_by_arch_id(int64_t id);
949 * cpu_interrupt:
950 * @cpu: The CPU to set an interrupt on.
951 * @mask: The interrupts to set.
953 * Invokes the interrupt handler.
956 void cpu_interrupt(CPUState *cpu, int mask);
959 * cpu_set_pc:
960 * @cpu: The CPU to set the program counter for.
961 * @addr: Program counter value.
963 * Sets the program counter for a CPU.
965 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
967 CPUClass *cc = CPU_GET_CLASS(cpu);
969 cc->set_pc(cpu, addr);
973 * cpu_reset_interrupt:
974 * @cpu: The CPU to clear the interrupt on.
975 * @mask: The interrupt mask to clear.
977 * Resets interrupts on the vCPU @cpu.
979 void cpu_reset_interrupt(CPUState *cpu, int mask);
982 * cpu_exit:
983 * @cpu: The CPU to exit.
985 * Requests the CPU @cpu to exit execution.
987 void cpu_exit(CPUState *cpu);
990 * cpu_resume:
991 * @cpu: The CPU to resume.
993 * Resumes CPU, i.e. puts CPU into runnable state.
995 void cpu_resume(CPUState *cpu);
998 * cpu_remove_sync:
999 * @cpu: The CPU to remove.
1001 * Requests the CPU to be removed and waits till it is removed.
1003 void cpu_remove_sync(CPUState *cpu);
1006 * process_queued_cpu_work() - process all items on CPU work queue
1007 * @cpu: The CPU which work queue to process.
1009 void process_queued_cpu_work(CPUState *cpu);
1012 * cpu_exec_start:
1013 * @cpu: The CPU for the current thread.
1015 * Record that a CPU has started execution and can be interrupted with
1016 * cpu_exit.
1018 void cpu_exec_start(CPUState *cpu);
1021 * cpu_exec_end:
1022 * @cpu: The CPU for the current thread.
1024 * Record that a CPU has stopped execution and exclusive sections
1025 * can be executed without interrupting it.
1027 void cpu_exec_end(CPUState *cpu);
1030 * start_exclusive:
1032 * Wait for a concurrent exclusive section to end, and then start
1033 * a section of work that is run while other CPUs are not running
1034 * between cpu_exec_start and cpu_exec_end. CPUs that are running
1035 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
1036 * during the exclusive section go to sleep until this CPU calls
1037 * end_exclusive.
1039 void start_exclusive(void);
1042 * end_exclusive:
1044 * Concludes an exclusive execution section started by start_exclusive.
1046 void end_exclusive(void);
1049 * qemu_init_vcpu:
1050 * @cpu: The vCPU to initialize.
1052 * Initializes a vCPU.
1054 void qemu_init_vcpu(CPUState *cpu);
1056 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
1057 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
1058 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
1061 * cpu_single_step:
1062 * @cpu: CPU to the flags for.
1063 * @enabled: Flags to enable.
1065 * Enables or disables single-stepping for @cpu.
1067 void cpu_single_step(CPUState *cpu, int enabled);
1069 /* Breakpoint/watchpoint flags */
1070 #define BP_MEM_READ 0x01
1071 #define BP_MEM_WRITE 0x02
1072 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
1073 #define BP_STOP_BEFORE_ACCESS 0x04
1074 /* 0x08 currently unused */
1075 #define BP_GDB 0x10
1076 #define BP_CPU 0x20
1077 #define BP_ANY (BP_GDB | BP_CPU)
1078 #define BP_HIT_SHIFT 6
1079 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT)
1080 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1081 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT)
1083 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1084 CPUBreakpoint **breakpoint);
1085 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1086 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1087 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1089 /* Return true if PC matches an installed breakpoint. */
1090 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1092 CPUBreakpoint *bp;
1094 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1095 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1096 if (bp->pc == pc && (bp->flags & mask)) {
1097 return true;
1101 return false;
1104 #if defined(CONFIG_USER_ONLY)
1105 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1106 int flags, CPUWatchpoint **watchpoint)
1108 return -ENOSYS;
1111 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1112 vaddr len, int flags)
1114 return -ENOSYS;
1117 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1118 CPUWatchpoint *wp)
1122 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1125 #else
1126 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1127 int flags, CPUWatchpoint **watchpoint);
1128 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1129 vaddr len, int flags);
1130 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1131 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1132 #endif
1135 * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled?
1136 * @cs: CPUState pointer
1138 * The memory callbacks are installed if a plugin has instrumented an
1139 * instruction for memory. This can be useful to know if you want to
1140 * force a slow path for a series of memory accesses.
1142 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu)
1144 #ifdef CONFIG_PLUGIN
1145 return !!cpu->plugin_mem_cbs;
1146 #else
1147 return false;
1148 #endif
1152 * cpu_get_address_space:
1153 * @cpu: CPU to get address space from
1154 * @asidx: index identifying which address space to get
1156 * Return the requested address space of this CPU. @asidx
1157 * specifies which address space to read.
1159 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1161 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1162 G_GNUC_PRINTF(2, 3);
1164 /* $(top_srcdir)/cpu.c */
1165 void cpu_class_init_props(DeviceClass *dc);
1166 void cpu_exec_initfn(CPUState *cpu);
1167 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1168 void cpu_exec_unrealizefn(CPUState *cpu);
1169 void cpu_exec_reset_hold(CPUState *cpu);
1172 * target_words_bigendian:
1173 * Returns true if the (default) endianness of the target is big endian,
1174 * false otherwise. Note that in target-specific code, you can use
1175 * TARGET_BIG_ENDIAN directly instead. On the other hand, common
1176 * code should normally never need to know about the endianness of the
1177 * target, so please do *not* use this function unless you know very well
1178 * what you are doing!
1180 bool target_words_bigendian(void);
1182 const char *target_name(void);
1184 void page_size_init(void);
1186 #ifdef NEED_CPU_H
1188 #ifndef CONFIG_USER_ONLY
1190 extern const VMStateDescription vmstate_cpu_common;
1192 #define VMSTATE_CPU() { \
1193 .name = "parent_obj", \
1194 .size = sizeof(CPUState), \
1195 .vmsd = &vmstate_cpu_common, \
1196 .flags = VMS_STRUCT, \
1197 .offset = 0, \
1199 #endif /* !CONFIG_USER_ONLY */
1201 #endif /* NEED_CPU_H */
1203 #define UNASSIGNED_CPU_INDEX -1
1204 #define UNASSIGNED_CLUSTER_INDEX -1
1206 #endif