megasas: remove unnecessary megasas_use_msi()
[qemu/ar7.git] / qemu-options.hx
blob9692e53af680516f26946fb8e8b55fad35fe171d
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, tcg (default: tcg)\n"
35 " kernel_irqchip=on|off controls accelerated irqchip support\n"
36 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
37 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
38 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
39 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
40 " mem-merge=on|off controls memory merge support (default: on)\n"
41 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
42 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
43 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
44 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
45 " nvdimm=on|off controls NVDIMM support (default=off)\n"
46 " enforce-config-section=on|off enforce configuration section migration (default=off)\n",
47 QEMU_ARCH_ALL)
48 STEXI
49 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
50 @findex -machine
51 Select the emulated machine by @var{name}. Use @code{-machine help} to list
52 available machines. Supported machine properties are:
53 @table @option
54 @item accel=@var{accels1}[:@var{accels2}[:...]]
55 This is used to enable an accelerator. Depending on the target architecture,
56 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
57 than one accelerator specified, the next one is used if the previous one fails
58 to initialize.
59 @item kernel_irqchip=on|off
60 Controls in-kernel irqchip support for the chosen accelerator when available.
61 @item gfx_passthru=on|off
62 Enables IGD GFX passthrough support for the chosen machine when available.
63 @item vmport=on|off|auto
64 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
65 value based on accel. For accel=xen the default is off otherwise the default
66 is on.
67 @item kvm_shadow_mem=size
68 Defines the size of the KVM shadow MMU.
69 @item dump-guest-core=on|off
70 Include guest memory in a core dump. The default is on.
71 @item mem-merge=on|off
72 Enables or disables memory merge support. This feature, when supported by
73 the host, de-duplicates identical memory pages among VMs instances
74 (enabled by default).
75 @item aes-key-wrap=on|off
76 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
77 controls whether AES wrapping keys will be created to allow
78 execution of AES cryptographic functions. The default is on.
79 @item dea-key-wrap=on|off
80 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
81 controls whether DEA wrapping keys will be created to allow
82 execution of DEA cryptographic functions. The default is on.
83 @item nvdimm=on|off
84 Enables or disables NVDIMM support. The default is off.
85 @end table
86 ETEXI
88 HXCOMM Deprecated by -machine
89 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
91 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
92 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
93 STEXI
94 @item -cpu @var{model}
95 @findex -cpu
96 Select CPU model (@code{-cpu help} for list and additional feature selection)
97 ETEXI
99 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
100 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
101 " set the number of CPUs to 'n' [default=1]\n"
102 " maxcpus= maximum number of total cpus, including\n"
103 " offline CPUs for hotplug, etc\n"
104 " cores= number of CPU cores on one socket\n"
105 " threads= number of threads on one CPU core\n"
106 " sockets= number of discrete sockets in the system\n",
107 QEMU_ARCH_ALL)
108 STEXI
109 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
110 @findex -smp
111 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
112 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
113 to 4.
114 For the PC target, the number of @var{cores} per socket, the number
115 of @var{threads} per cores and the total number of @var{sockets} can be
116 specified. Missing values will be computed. If any on the three values is
117 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
118 specifies the maximum number of hotpluggable CPUs.
119 ETEXI
121 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
122 "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n"
123 "-numa node[,memdev=id][,cpus=cpu[-cpu]][,nodeid=node]\n", QEMU_ARCH_ALL)
124 STEXI
125 @item -numa node[,mem=@var{size}][,cpus=@var{cpu[-cpu]}][,nodeid=@var{node}]
126 @itemx -numa node[,memdev=@var{id}][,cpus=@var{cpu[-cpu]}][,nodeid=@var{node}]
127 @findex -numa
128 Simulate a multi node NUMA system. If @samp{mem}, @samp{memdev}
129 and @samp{cpus} are omitted, resources are split equally. Also, note
130 that the -@option{numa} option doesn't allocate any of the specified
131 resources. That is, it just assigns existing resources to NUMA nodes. This
132 means that one still has to use the @option{-m}, @option{-smp} options
133 to allocate RAM and VCPUs respectively, and possibly @option{-object}
134 to specify the memory backend for the @samp{memdev} suboption.
136 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore, if one
137 node uses @samp{memdev}, all of them have to use it.
138 ETEXI
140 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
141 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
142 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
143 STEXI
144 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
145 @findex -add-fd
147 Add a file descriptor to an fd set. Valid options are:
149 @table @option
150 @item fd=@var{fd}
151 This option defines the file descriptor of which a duplicate is added to fd set.
152 The file descriptor cannot be stdin, stdout, or stderr.
153 @item set=@var{set}
154 This option defines the ID of the fd set to add the file descriptor to.
155 @item opaque=@var{opaque}
156 This option defines a free-form string that can be used to describe @var{fd}.
157 @end table
159 You can open an image using pre-opened file descriptors from an fd set:
160 @example
161 qemu-system-i386
162 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
163 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
164 -drive file=/dev/fdset/2,index=0,media=disk
165 @end example
166 ETEXI
168 DEF("set", HAS_ARG, QEMU_OPTION_set,
169 "-set group.id.arg=value\n"
170 " set <arg> parameter for item <id> of type <group>\n"
171 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
172 STEXI
173 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
174 @findex -set
175 Set parameter @var{arg} for item @var{id} of type @var{group}\n"
176 ETEXI
178 DEF("global", HAS_ARG, QEMU_OPTION_global,
179 "-global driver.property=value\n"
180 "-global driver=driver,property=property,value=value\n"
181 " set a global default for a driver property\n",
182 QEMU_ARCH_ALL)
183 STEXI
184 @item -global @var{driver}.@var{prop}=@var{value}
185 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
186 @findex -global
187 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
189 @example
190 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
191 @end example
193 In particular, you can use this to set driver properties for devices which are
194 created automatically by the machine model. To create a device which is not
195 created automatically and set properties on it, use -@option{device}.
197 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
198 driver=@var{driver},property=@var{prop},value=@var{value}. The
199 longhand syntax works even when @var{driver} contains a dot.
200 ETEXI
202 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
203 "-boot [order=drives][,once=drives][,menu=on|off]\n"
204 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
205 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
206 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
207 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
208 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
209 QEMU_ARCH_ALL)
210 STEXI
211 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
212 @findex -boot
213 Specify boot order @var{drives} as a string of drive letters. Valid
214 drive letters depend on the target architecture. The x86 PC uses: a, b
215 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
216 from network adapter 1-4), hard disk boot is the default. To apply a
217 particular boot order only on the first startup, specify it via
218 @option{once}.
220 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
221 as firmware/BIOS supports them. The default is non-interactive boot.
223 A splash picture could be passed to bios, enabling user to show it as logo,
224 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
225 supports them. Currently Seabios for X86 system support it.
226 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
227 format(true color). The resolution should be supported by the SVGA mode, so
228 the recommended is 320x240, 640x480, 800x640.
230 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
231 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
232 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
233 system support it.
235 Do strict boot via @option{strict=on} as far as firmware/BIOS
236 supports it. This only effects when boot priority is changed by
237 bootindex options. The default is non-strict boot.
239 @example
240 # try to boot from network first, then from hard disk
241 qemu-system-i386 -boot order=nc
242 # boot from CD-ROM first, switch back to default order after reboot
243 qemu-system-i386 -boot once=d
244 # boot with a splash picture for 5 seconds.
245 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
246 @end example
248 Note: The legacy format '-boot @var{drives}' is still supported but its
249 use is discouraged as it may be removed from future versions.
250 ETEXI
252 DEF("m", HAS_ARG, QEMU_OPTION_m,
253 "-m[emory] [size=]megs[,slots=n,maxmem=size]\n"
254 " configure guest RAM\n"
255 " size: initial amount of guest memory\n"
256 " slots: number of hotplug slots (default: none)\n"
257 " maxmem: maximum amount of guest memory (default: none)\n"
258 "NOTE: Some architectures might enforce a specific granularity\n",
259 QEMU_ARCH_ALL)
260 STEXI
261 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
262 @findex -m
263 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
264 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
265 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
266 could be used to set amount of hotpluggable memory slots and maximum amount of
267 memory. Note that @var{maxmem} must be aligned to the page size.
269 For example, the following command-line sets the guest startup RAM size to
270 1GB, creates 3 slots to hotplug additional memory and sets the maximum
271 memory the guest can reach to 4GB:
273 @example
274 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
275 @end example
277 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
278 be enabled and the guest startup RAM will never increase.
279 ETEXI
281 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
282 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
283 STEXI
284 @item -mem-path @var{path}
285 @findex -mem-path
286 Allocate guest RAM from a temporarily created file in @var{path}.
287 ETEXI
289 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
290 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
291 QEMU_ARCH_ALL)
292 STEXI
293 @item -mem-prealloc
294 @findex -mem-prealloc
295 Preallocate memory when using -mem-path.
296 ETEXI
298 DEF("k", HAS_ARG, QEMU_OPTION_k,
299 "-k language use keyboard layout (for example 'fr' for French)\n",
300 QEMU_ARCH_ALL)
301 STEXI
302 @item -k @var{language}
303 @findex -k
304 Use keyboard layout @var{language} (for example @code{fr} for
305 French). This option is only needed where it is not easy to get raw PC
306 keycodes (e.g. on Macs, with some X11 servers or with a VNC
307 display). You don't normally need to use it on PC/Linux or PC/Windows
308 hosts.
310 The available layouts are:
311 @example
312 ar de-ch es fo fr-ca hu ja mk no pt-br sv
313 da en-gb et fr fr-ch is lt nl pl ru th
314 de en-us fi fr-be hr it lv nl-be pt sl tr
315 @end example
317 The default is @code{en-us}.
318 ETEXI
321 DEF("audio-help", 0, QEMU_OPTION_audio_help,
322 "-audio-help print list of audio drivers and their options\n",
323 QEMU_ARCH_ALL)
324 STEXI
325 @item -audio-help
326 @findex -audio-help
327 Will show the audio subsystem help: list of drivers, tunable
328 parameters.
329 ETEXI
331 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
332 "-soundhw c1,... enable audio support\n"
333 " and only specified sound cards (comma separated list)\n"
334 " use '-soundhw help' to get the list of supported cards\n"
335 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
336 STEXI
337 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
338 @findex -soundhw
339 Enable audio and selected sound hardware. Use 'help' to print all
340 available sound hardware.
342 @example
343 qemu-system-i386 -soundhw sb16,adlib disk.img
344 qemu-system-i386 -soundhw es1370 disk.img
345 qemu-system-i386 -soundhw ac97 disk.img
346 qemu-system-i386 -soundhw hda disk.img
347 qemu-system-i386 -soundhw all disk.img
348 qemu-system-i386 -soundhw help
349 @end example
351 Note that Linux's i810_audio OSS kernel (for AC97) module might
352 require manually specifying clocking.
354 @example
355 modprobe i810_audio clocking=48000
356 @end example
357 ETEXI
359 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
360 "-balloon none disable balloon device\n"
361 "-balloon virtio[,addr=str]\n"
362 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
363 STEXI
364 @item -balloon none
365 @findex -balloon
366 Disable balloon device.
367 @item -balloon virtio[,addr=@var{addr}]
368 Enable virtio balloon device (default), optionally with PCI address
369 @var{addr}.
370 ETEXI
372 DEF("device", HAS_ARG, QEMU_OPTION_device,
373 "-device driver[,prop[=value][,...]]\n"
374 " add device (based on driver)\n"
375 " prop=value,... sets driver properties\n"
376 " use '-device help' to print all possible drivers\n"
377 " use '-device driver,help' to print all possible properties\n",
378 QEMU_ARCH_ALL)
379 STEXI
380 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
381 @findex -device
382 Add device @var{driver}. @var{prop}=@var{value} sets driver
383 properties. Valid properties depend on the driver. To get help on
384 possible drivers and properties, use @code{-device help} and
385 @code{-device @var{driver},help}.
387 Some drivers are:
388 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}]
390 Add an IPMI BMC. This is a simulation of a hardware management
391 interface processor that normally sits on a system. It provides
392 a watchdog and the ability to reset and power control the system.
393 You need to connect this to an IPMI interface to make it useful
395 The IPMI slave address to use for the BMC. The default is 0x20.
396 This address is the BMC's address on the I2C network of management
397 controllers. If you don't know what this means, it is safe to ignore
400 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
402 Add a connection to an external IPMI BMC simulator. Instead of
403 locally emulating the BMC like the above item, instead connect
404 to an external entity that provides the IPMI services.
406 A connection is made to an external BMC simulator. If you do this, it
407 is strongly recommended that you use the "reconnect=" chardev option
408 to reconnect to the simulator if the connection is lost. Note that if
409 this is not used carefully, it can be a security issue, as the
410 interface has the ability to send resets, NMIs, and power off the VM.
411 It's best if QEMU makes a connection to an external simulator running
412 on a secure port on localhost, so neither the simulator nor QEMU is
413 exposed to any outside network.
415 See the "lanserv/README.vm" file in the OpenIPMI library for more
416 details on the external interface.
418 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
420 Add a KCS IPMI interafce on the ISA bus. This also adds a
421 corresponding ACPI and SMBIOS entries, if appropriate.
423 @table @option
424 @item bmc=@var{id}
425 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
426 @item ioport=@var{val}
427 Define the I/O address of the interface. The default is 0xca0 for KCS.
428 @item irq=@var{val}
429 Define the interrupt to use. The default is 5. To disable interrupts,
430 set this to 0.
431 @end table
433 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
435 Like the KCS interface, but defines a BT interface. The default port is
436 0xe4 and the default interrupt is 5.
438 ETEXI
440 DEF("name", HAS_ARG, QEMU_OPTION_name,
441 "-name string1[,process=string2][,debug-threads=on|off]\n"
442 " set the name of the guest\n"
443 " string1 sets the window title and string2 the process name (on Linux)\n"
444 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
445 " NOTE: The thread names are for debugging and not a stable API.\n",
446 QEMU_ARCH_ALL)
447 STEXI
448 @item -name @var{name}
449 @findex -name
450 Sets the @var{name} of the guest.
451 This name will be displayed in the SDL window caption.
452 The @var{name} will also be used for the VNC server.
453 Also optionally set the top visible process name in Linux.
454 Naming of individual threads can also be enabled on Linux to aid debugging.
455 ETEXI
457 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
458 "-uuid %08x-%04x-%04x-%04x-%012x\n"
459 " specify machine UUID\n", QEMU_ARCH_ALL)
460 STEXI
461 @item -uuid @var{uuid}
462 @findex -uuid
463 Set system UUID.
464 ETEXI
466 STEXI
467 @end table
468 ETEXI
469 DEFHEADING()
471 DEFHEADING(Block device options:)
472 STEXI
473 @table @option
474 ETEXI
476 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
477 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
478 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
479 STEXI
480 @item -fda @var{file}
481 @itemx -fdb @var{file}
482 @findex -fda
483 @findex -fdb
484 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
485 ETEXI
487 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
488 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
489 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
490 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
491 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
492 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
493 STEXI
494 @item -hda @var{file}
495 @itemx -hdb @var{file}
496 @itemx -hdc @var{file}
497 @itemx -hdd @var{file}
498 @findex -hda
499 @findex -hdb
500 @findex -hdc
501 @findex -hdd
502 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
503 ETEXI
505 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
506 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
507 QEMU_ARCH_ALL)
508 STEXI
509 @item -cdrom @var{file}
510 @findex -cdrom
511 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
512 @option{-cdrom} at the same time). You can use the host CD-ROM by
513 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
514 ETEXI
516 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
517 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
518 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
519 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
520 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
521 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
522 " [,readonly=on|off][,copy-on-read=on|off]\n"
523 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
524 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
525 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
526 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
527 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
528 " [[,iops_size=is]]\n"
529 " [[,group=g]]\n"
530 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
531 STEXI
532 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
533 @findex -drive
535 Define a new drive. Valid options are:
537 @table @option
538 @item file=@var{file}
539 This option defines which disk image (@pxref{disk_images}) to use with
540 this drive. If the filename contains comma, you must double it
541 (for instance, "file=my,,file" to use file "my,file").
543 Special files such as iSCSI devices can be specified using protocol
544 specific URLs. See the section for "Device URL Syntax" for more information.
545 @item if=@var{interface}
546 This option defines on which type on interface the drive is connected.
547 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
548 @item bus=@var{bus},unit=@var{unit}
549 These options define where is connected the drive by defining the bus number and
550 the unit id.
551 @item index=@var{index}
552 This option defines where is connected the drive by using an index in the list
553 of available connectors of a given interface type.
554 @item media=@var{media}
555 This option defines the type of the media: disk or cdrom.
556 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
557 These options have the same definition as they have in @option{-hdachs}.
558 @item snapshot=@var{snapshot}
559 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
560 (see @option{-snapshot}).
561 @item cache=@var{cache}
562 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
563 @item aio=@var{aio}
564 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
565 @item discard=@var{discard}
566 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
567 @item format=@var{format}
568 Specify which disk @var{format} will be used rather than detecting
569 the format. Can be used to specify format=raw to avoid interpreting
570 an untrusted format header.
571 @item serial=@var{serial}
572 This option specifies the serial number to assign to the device.
573 @item addr=@var{addr}
574 Specify the controller's PCI address (if=virtio only).
575 @item werror=@var{action},rerror=@var{action}
576 Specify which @var{action} to take on write and read errors. Valid actions are:
577 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
578 "report" (report the error to the guest), "enospc" (pause QEMU only if the
579 host disk is full; report the error to the guest otherwise).
580 The default setting is @option{werror=enospc} and @option{rerror=report}.
581 @item readonly
582 Open drive @option{file} as read-only. Guest write attempts will fail.
583 @item copy-on-read=@var{copy-on-read}
584 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
585 file sectors into the image file.
586 @item detect-zeroes=@var{detect-zeroes}
587 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
588 conversion of plain zero writes by the OS to driver specific optimized
589 zero write commands. You may even choose "unmap" if @var{discard} is set
590 to "unmap" to allow a zero write to be converted to an UNMAP operation.
591 @end table
593 By default, the @option{cache=writeback} mode is used. It will report data
594 writes as completed as soon as the data is present in the host page cache.
595 This is safe as long as your guest OS makes sure to correctly flush disk caches
596 where needed. If your guest OS does not handle volatile disk write caches
597 correctly and your host crashes or loses power, then the guest may experience
598 data corruption.
600 For such guests, you should consider using @option{cache=writethrough}. This
601 means that the host page cache will be used to read and write data, but write
602 notification will be sent to the guest only after QEMU has made sure to flush
603 each write to the disk. Be aware that this has a major impact on performance.
605 The host page cache can be avoided entirely with @option{cache=none}. This will
606 attempt to do disk IO directly to the guest's memory. QEMU may still perform
607 an internal copy of the data. Note that this is considered a writeback mode and
608 the guest OS must handle the disk write cache correctly in order to avoid data
609 corruption on host crashes.
611 The host page cache can be avoided while only sending write notifications to
612 the guest when the data has been flushed to the disk using
613 @option{cache=directsync}.
615 In case you don't care about data integrity over host failures, use
616 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
617 data to the disk but can instead keep things in cache. If anything goes wrong,
618 like your host losing power, the disk storage getting disconnected accidentally,
619 etc. your image will most probably be rendered unusable. When using
620 the @option{-snapshot} option, unsafe caching is always used.
622 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
623 useful when the backing file is over a slow network. By default copy-on-read
624 is off.
626 Instead of @option{-cdrom} you can use:
627 @example
628 qemu-system-i386 -drive file=file,index=2,media=cdrom
629 @end example
631 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
632 use:
633 @example
634 qemu-system-i386 -drive file=file,index=0,media=disk
635 qemu-system-i386 -drive file=file,index=1,media=disk
636 qemu-system-i386 -drive file=file,index=2,media=disk
637 qemu-system-i386 -drive file=file,index=3,media=disk
638 @end example
640 You can open an image using pre-opened file descriptors from an fd set:
641 @example
642 qemu-system-i386
643 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
644 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
645 -drive file=/dev/fdset/2,index=0,media=disk
646 @end example
648 You can connect a CDROM to the slave of ide0:
649 @example
650 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
651 @end example
653 If you don't specify the "file=" argument, you define an empty drive:
654 @example
655 qemu-system-i386 -drive if=ide,index=1,media=cdrom
656 @end example
658 You can connect a SCSI disk with unit ID 6 on the bus #0:
659 @example
660 qemu-system-i386 -drive file=file,if=scsi,bus=0,unit=6
661 @end example
663 Instead of @option{-fda}, @option{-fdb}, you can use:
664 @example
665 qemu-system-i386 -drive file=file,index=0,if=floppy
666 qemu-system-i386 -drive file=file,index=1,if=floppy
667 @end example
669 By default, @var{interface} is "ide" and @var{index} is automatically
670 incremented:
671 @example
672 qemu-system-i386 -drive file=a -drive file=b"
673 @end example
674 is interpreted like:
675 @example
676 qemu-system-i386 -hda a -hdb b
677 @end example
678 ETEXI
680 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
681 "-mtdblock file use 'file' as on-board Flash memory image\n",
682 QEMU_ARCH_ALL)
683 STEXI
684 @item -mtdblock @var{file}
685 @findex -mtdblock
686 Use @var{file} as on-board Flash memory image.
687 ETEXI
689 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
690 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
691 STEXI
692 @item -sd @var{file}
693 @findex -sd
694 Use @var{file} as SecureDigital card image.
695 ETEXI
697 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
698 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
699 STEXI
700 @item -pflash @var{file}
701 @findex -pflash
702 Use @var{file} as a parallel flash image.
703 ETEXI
705 DEF("snapshot", 0, QEMU_OPTION_snapshot,
706 "-snapshot write to temporary files instead of disk image files\n",
707 QEMU_ARCH_ALL)
708 STEXI
709 @item -snapshot
710 @findex -snapshot
711 Write to temporary files instead of disk image files. In this case,
712 the raw disk image you use is not written back. You can however force
713 the write back by pressing @key{C-a s} (@pxref{disk_images}).
714 ETEXI
716 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
717 "-hdachs c,h,s[,t]\n" \
718 " force hard disk 0 physical geometry and the optional BIOS\n" \
719 " translation (t=none or lba) (usually QEMU can guess them)\n",
720 QEMU_ARCH_ALL)
721 STEXI
722 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
723 @findex -hdachs
724 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
725 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
726 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
727 all those parameters. This option is useful for old MS-DOS disk
728 images.
729 ETEXI
731 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
732 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
733 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
734 QEMU_ARCH_ALL)
736 STEXI
738 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
739 @findex -fsdev
740 Define a new file system device. Valid options are:
741 @table @option
742 @item @var{fsdriver}
743 This option specifies the fs driver backend to use.
744 Currently "local", "handle" and "proxy" file system drivers are supported.
745 @item id=@var{id}
746 Specifies identifier for this device
747 @item path=@var{path}
748 Specifies the export path for the file system device. Files under
749 this path will be available to the 9p client on the guest.
750 @item security_model=@var{security_model}
751 Specifies the security model to be used for this export path.
752 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
753 In "passthrough" security model, files are stored using the same
754 credentials as they are created on the guest. This requires QEMU
755 to run as root. In "mapped-xattr" security model, some of the file
756 attributes like uid, gid, mode bits and link target are stored as
757 file attributes. For "mapped-file" these attributes are stored in the
758 hidden .virtfs_metadata directory. Directories exported by this security model cannot
759 interact with other unix tools. "none" security model is same as
760 passthrough except the sever won't report failures if it fails to
761 set file attributes like ownership. Security model is mandatory
762 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
763 security model as a parameter.
764 @item writeout=@var{writeout}
765 This is an optional argument. The only supported value is "immediate".
766 This means that host page cache will be used to read and write data but
767 write notification will be sent to the guest only when the data has been
768 reported as written by the storage subsystem.
769 @item readonly
770 Enables exporting 9p share as a readonly mount for guests. By default
771 read-write access is given.
772 @item socket=@var{socket}
773 Enables proxy filesystem driver to use passed socket file for communicating
774 with virtfs-proxy-helper
775 @item sock_fd=@var{sock_fd}
776 Enables proxy filesystem driver to use passed socket descriptor for
777 communicating with virtfs-proxy-helper. Usually a helper like libvirt
778 will create socketpair and pass one of the fds as sock_fd
779 @end table
781 -fsdev option is used along with -device driver "virtio-9p-pci".
782 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
783 Options for virtio-9p-pci driver are:
784 @table @option
785 @item fsdev=@var{id}
786 Specifies the id value specified along with -fsdev option
787 @item mount_tag=@var{mount_tag}
788 Specifies the tag name to be used by the guest to mount this export point
789 @end table
791 ETEXI
793 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
794 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
795 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
796 QEMU_ARCH_ALL)
798 STEXI
800 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
801 @findex -virtfs
803 The general form of a Virtual File system pass-through options are:
804 @table @option
805 @item @var{fsdriver}
806 This option specifies the fs driver backend to use.
807 Currently "local", "handle" and "proxy" file system drivers are supported.
808 @item id=@var{id}
809 Specifies identifier for this device
810 @item path=@var{path}
811 Specifies the export path for the file system device. Files under
812 this path will be available to the 9p client on the guest.
813 @item security_model=@var{security_model}
814 Specifies the security model to be used for this export path.
815 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
816 In "passthrough" security model, files are stored using the same
817 credentials as they are created on the guest. This requires QEMU
818 to run as root. In "mapped-xattr" security model, some of the file
819 attributes like uid, gid, mode bits and link target are stored as
820 file attributes. For "mapped-file" these attributes are stored in the
821 hidden .virtfs_metadata directory. Directories exported by this security model cannot
822 interact with other unix tools. "none" security model is same as
823 passthrough except the sever won't report failures if it fails to
824 set file attributes like ownership. Security model is mandatory only
825 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
826 model as a parameter.
827 @item writeout=@var{writeout}
828 This is an optional argument. The only supported value is "immediate".
829 This means that host page cache will be used to read and write data but
830 write notification will be sent to the guest only when the data has been
831 reported as written by the storage subsystem.
832 @item readonly
833 Enables exporting 9p share as a readonly mount for guests. By default
834 read-write access is given.
835 @item socket=@var{socket}
836 Enables proxy filesystem driver to use passed socket file for
837 communicating with virtfs-proxy-helper. Usually a helper like libvirt
838 will create socketpair and pass one of the fds as sock_fd
839 @item sock_fd
840 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
841 descriptor for interfacing with virtfs-proxy-helper
842 @end table
843 ETEXI
845 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
846 "-virtfs_synth Create synthetic file system image\n",
847 QEMU_ARCH_ALL)
848 STEXI
849 @item -virtfs_synth
850 @findex -virtfs_synth
851 Create synthetic file system image
852 ETEXI
854 STEXI
855 @end table
856 ETEXI
857 DEFHEADING()
859 DEFHEADING(USB options:)
860 STEXI
861 @table @option
862 ETEXI
864 DEF("usb", 0, QEMU_OPTION_usb,
865 "-usb enable the USB driver (will be the default soon)\n",
866 QEMU_ARCH_ALL)
867 STEXI
868 @item -usb
869 @findex -usb
870 Enable the USB driver (will be the default soon)
871 ETEXI
873 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
874 "-usbdevice name add the host or guest USB device 'name'\n",
875 QEMU_ARCH_ALL)
876 STEXI
878 @item -usbdevice @var{devname}
879 @findex -usbdevice
880 Add the USB device @var{devname}. @xref{usb_devices}.
882 @table @option
884 @item mouse
885 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
887 @item tablet
888 Pointer device that uses absolute coordinates (like a touchscreen). This
889 means QEMU is able to report the mouse position without having to grab the
890 mouse. Also overrides the PS/2 mouse emulation when activated.
892 @item disk:[format=@var{format}]:@var{file}
893 Mass storage device based on file. The optional @var{format} argument
894 will be used rather than detecting the format. Can be used to specify
895 @code{format=raw} to avoid interpreting an untrusted format header.
897 @item host:@var{bus}.@var{addr}
898 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
900 @item host:@var{vendor_id}:@var{product_id}
901 Pass through the host device identified by @var{vendor_id}:@var{product_id}
902 (Linux only).
904 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
905 Serial converter to host character device @var{dev}, see @code{-serial} for the
906 available devices.
908 @item braille
909 Braille device. This will use BrlAPI to display the braille output on a real
910 or fake device.
912 @item net:@var{options}
913 Network adapter that supports CDC ethernet and RNDIS protocols.
915 @end table
916 ETEXI
918 STEXI
919 @end table
920 ETEXI
921 DEFHEADING()
923 DEFHEADING(Display options:)
924 STEXI
925 @table @option
926 ETEXI
928 DEF("display", HAS_ARG, QEMU_OPTION_display,
929 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
930 " [,window_close=on|off]|curses|none|\n"
931 " gtk[,grab_on_hover=on|off]|\n"
932 " vnc=<display>[,<optargs>]\n"
933 " select display type\n", QEMU_ARCH_ALL)
934 STEXI
935 @item -display @var{type}
936 @findex -display
937 Select type of display to use. This option is a replacement for the
938 old style -sdl/-curses/... options. Valid values for @var{type} are
939 @table @option
940 @item sdl
941 Display video output via SDL (usually in a separate graphics
942 window; see the SDL documentation for other possibilities).
943 @item curses
944 Display video output via curses. For graphics device models which
945 support a text mode, QEMU can display this output using a
946 curses/ncurses interface. Nothing is displayed when the graphics
947 device is in graphical mode or if the graphics device does not support
948 a text mode. Generally only the VGA device models support text mode.
949 @item none
950 Do not display video output. The guest will still see an emulated
951 graphics card, but its output will not be displayed to the QEMU
952 user. This option differs from the -nographic option in that it
953 only affects what is done with video output; -nographic also changes
954 the destination of the serial and parallel port data.
955 @item gtk
956 Display video output in a GTK window. This interface provides drop-down
957 menus and other UI elements to configure and control the VM during
958 runtime.
959 @item vnc
960 Start a VNC server on display <arg>
961 @end table
962 ETEXI
964 DEF("nographic", 0, QEMU_OPTION_nographic,
965 "-nographic disable graphical output and redirect serial I/Os to console\n",
966 QEMU_ARCH_ALL)
967 STEXI
968 @item -nographic
969 @findex -nographic
970 Normally, QEMU uses SDL to display the VGA output. With this option,
971 you can totally disable graphical output so that QEMU is a simple
972 command line application. The emulated serial port is redirected on
973 the console and muxed with the monitor (unless redirected elsewhere
974 explicitly). Therefore, you can still use QEMU to debug a Linux kernel
975 with a serial console. Use @key{C-a h} for help on switching between
976 the console and monitor.
977 ETEXI
979 DEF("curses", 0, QEMU_OPTION_curses,
980 "-curses use a curses/ncurses interface instead of SDL\n",
981 QEMU_ARCH_ALL)
982 STEXI
983 @item -curses
984 @findex -curses
985 Normally, QEMU uses SDL to display the VGA output. With this option,
986 QEMU can display the VGA output when in text mode using a
987 curses/ncurses interface. Nothing is displayed in graphical mode.
988 ETEXI
990 DEF("no-frame", 0, QEMU_OPTION_no_frame,
991 "-no-frame open SDL window without a frame and window decorations\n",
992 QEMU_ARCH_ALL)
993 STEXI
994 @item -no-frame
995 @findex -no-frame
996 Do not use decorations for SDL windows and start them using the whole
997 available screen space. This makes the using QEMU in a dedicated desktop
998 workspace more convenient.
999 ETEXI
1001 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1002 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1003 QEMU_ARCH_ALL)
1004 STEXI
1005 @item -alt-grab
1006 @findex -alt-grab
1007 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1008 affects the special keys (for fullscreen, monitor-mode switching, etc).
1009 ETEXI
1011 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1012 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1013 QEMU_ARCH_ALL)
1014 STEXI
1015 @item -ctrl-grab
1016 @findex -ctrl-grab
1017 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1018 affects the special keys (for fullscreen, monitor-mode switching, etc).
1019 ETEXI
1021 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1022 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1023 STEXI
1024 @item -no-quit
1025 @findex -no-quit
1026 Disable SDL window close capability.
1027 ETEXI
1029 DEF("sdl", 0, QEMU_OPTION_sdl,
1030 "-sdl enable SDL\n", QEMU_ARCH_ALL)
1031 STEXI
1032 @item -sdl
1033 @findex -sdl
1034 Enable SDL.
1035 ETEXI
1037 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1038 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1039 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1040 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1041 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1042 " [,tls-ciphers=<list>]\n"
1043 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1044 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1045 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1046 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1047 " [,jpeg-wan-compression=[auto|never|always]]\n"
1048 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1049 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1050 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1051 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1052 " [,gl=[on|off]]\n"
1053 " enable spice\n"
1054 " at least one of {port, tls-port} is mandatory\n",
1055 QEMU_ARCH_ALL)
1056 STEXI
1057 @item -spice @var{option}[,@var{option}[,...]]
1058 @findex -spice
1059 Enable the spice remote desktop protocol. Valid options are
1061 @table @option
1063 @item port=<nr>
1064 Set the TCP port spice is listening on for plaintext channels.
1066 @item addr=<addr>
1067 Set the IP address spice is listening on. Default is any address.
1069 @item ipv4
1070 @itemx ipv6
1071 @itemx unix
1072 Force using the specified IP version.
1074 @item password=<secret>
1075 Set the password you need to authenticate.
1077 @item sasl
1078 Require that the client use SASL to authenticate with the spice.
1079 The exact choice of authentication method used is controlled from the
1080 system / user's SASL configuration file for the 'qemu' service. This
1081 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1082 unprivileged user, an environment variable SASL_CONF_PATH can be used
1083 to make it search alternate locations for the service config.
1084 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1085 it is recommended that SASL always be combined with the 'tls' and
1086 'x509' settings to enable use of SSL and server certificates. This
1087 ensures a data encryption preventing compromise of authentication
1088 credentials.
1090 @item disable-ticketing
1091 Allow client connects without authentication.
1093 @item disable-copy-paste
1094 Disable copy paste between the client and the guest.
1096 @item disable-agent-file-xfer
1097 Disable spice-vdagent based file-xfer between the client and the guest.
1099 @item tls-port=<nr>
1100 Set the TCP port spice is listening on for encrypted channels.
1102 @item x509-dir=<dir>
1103 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1105 @item x509-key-file=<file>
1106 @itemx x509-key-password=<file>
1107 @itemx x509-cert-file=<file>
1108 @itemx x509-cacert-file=<file>
1109 @itemx x509-dh-key-file=<file>
1110 The x509 file names can also be configured individually.
1112 @item tls-ciphers=<list>
1113 Specify which ciphers to use.
1115 @item tls-channel=[main|display|cursor|inputs|record|playback]
1116 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1117 Force specific channel to be used with or without TLS encryption. The
1118 options can be specified multiple times to configure multiple
1119 channels. The special name "default" can be used to set the default
1120 mode. For channels which are not explicitly forced into one mode the
1121 spice client is allowed to pick tls/plaintext as he pleases.
1123 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1124 Configure image compression (lossless).
1125 Default is auto_glz.
1127 @item jpeg-wan-compression=[auto|never|always]
1128 @itemx zlib-glz-wan-compression=[auto|never|always]
1129 Configure wan image compression (lossy for slow links).
1130 Default is auto.
1132 @item streaming-video=[off|all|filter]
1133 Configure video stream detection. Default is filter.
1135 @item agent-mouse=[on|off]
1136 Enable/disable passing mouse events via vdagent. Default is on.
1138 @item playback-compression=[on|off]
1139 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1141 @item seamless-migration=[on|off]
1142 Enable/disable spice seamless migration. Default is off.
1144 @item gl=[on|off]
1145 Enable/disable OpenGL context. Default is off.
1147 @end table
1148 ETEXI
1150 DEF("portrait", 0, QEMU_OPTION_portrait,
1151 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1152 QEMU_ARCH_ALL)
1153 STEXI
1154 @item -portrait
1155 @findex -portrait
1156 Rotate graphical output 90 deg left (only PXA LCD).
1157 ETEXI
1159 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1160 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1161 QEMU_ARCH_ALL)
1162 STEXI
1163 @item -rotate @var{deg}
1164 @findex -rotate
1165 Rotate graphical output some deg left (only PXA LCD).
1166 ETEXI
1168 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1169 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1170 " select video card type\n", QEMU_ARCH_ALL)
1171 STEXI
1172 @item -vga @var{type}
1173 @findex -vga
1174 Select type of VGA card to emulate. Valid values for @var{type} are
1175 @table @option
1176 @item cirrus
1177 Cirrus Logic GD5446 Video card. All Windows versions starting from
1178 Windows 95 should recognize and use this graphic card. For optimal
1179 performances, use 16 bit color depth in the guest and the host OS.
1180 (This one is the default)
1181 @item std
1182 Standard VGA card with Bochs VBE extensions. If your guest OS
1183 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1184 to use high resolution modes (>= 1280x1024x16) then you should use
1185 this option.
1186 @item vmware
1187 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1188 recent XFree86/XOrg server or Windows guest with a driver for this
1189 card.
1190 @item qxl
1191 QXL paravirtual graphic card. It is VGA compatible (including VESA
1192 2.0 VBE support). Works best with qxl guest drivers installed though.
1193 Recommended choice when using the spice protocol.
1194 @item tcx
1195 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1196 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1197 fixed resolution of 1024x768.
1198 @item cg3
1199 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1200 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1201 resolutions aimed at people wishing to run older Solaris versions.
1202 @item virtio
1203 Virtio VGA card.
1204 @item none
1205 Disable VGA card.
1206 @end table
1207 ETEXI
1209 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1210 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1211 STEXI
1212 @item -full-screen
1213 @findex -full-screen
1214 Start in full screen.
1215 ETEXI
1217 DEF("g", 1, QEMU_OPTION_g ,
1218 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1219 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1220 STEXI
1221 @item -g @var{width}x@var{height}[x@var{depth}]
1222 @findex -g
1223 Set the initial graphical resolution and depth (PPC, SPARC only).
1224 ETEXI
1226 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1227 "-vnc display start a VNC server on display\n", QEMU_ARCH_ALL)
1228 STEXI
1229 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1230 @findex -vnc
1231 Normally, QEMU uses SDL to display the VGA output. With this option,
1232 you can have QEMU listen on VNC display @var{display} and redirect the VGA
1233 display over the VNC session. It is very useful to enable the usb
1234 tablet device when using this option (option @option{-usbdevice
1235 tablet}). When using the VNC display, you must use the @option{-k}
1236 parameter to set the keyboard layout if you are not using en-us. Valid
1237 syntax for the @var{display} is
1239 @table @option
1241 @item to=@var{L}
1243 With this option, QEMU will try next available VNC @var{display}s, until the
1244 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1245 available, e.g. port 5900+@var{display} is already used by another
1246 application. By default, to=0.
1248 @item @var{host}:@var{d}
1250 TCP connections will only be allowed from @var{host} on display @var{d}.
1251 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1252 be omitted in which case the server will accept connections from any host.
1254 @item unix:@var{path}
1256 Connections will be allowed over UNIX domain sockets where @var{path} is the
1257 location of a unix socket to listen for connections on.
1259 @item none
1261 VNC is initialized but not started. The monitor @code{change} command
1262 can be used to later start the VNC server.
1264 @end table
1266 Following the @var{display} value there may be one or more @var{option} flags
1267 separated by commas. Valid options are
1269 @table @option
1271 @item reverse
1273 Connect to a listening VNC client via a ``reverse'' connection. The
1274 client is specified by the @var{display}. For reverse network
1275 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1276 is a TCP port number, not a display number.
1278 @item websocket
1280 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1281 By definition the Websocket port is 5700+@var{display}. If @var{host} is
1282 specified connections will only be allowed from this host.
1283 As an alternative the Websocket port could be specified by using
1284 @code{websocket}=@var{port}.
1285 If no TLS credentials are provided, the websocket connection runs in
1286 unencrypted mode. If TLS credentials are provided, the websocket connection
1287 requires encrypted client connections.
1289 @item password
1291 Require that password based authentication is used for client connections.
1293 The password must be set separately using the @code{set_password} command in
1294 the @ref{pcsys_monitor}. The syntax to change your password is:
1295 @code{set_password <protocol> <password>} where <protocol> could be either
1296 "vnc" or "spice".
1298 If you would like to change <protocol> password expiration, you should use
1299 @code{expire_password <protocol> <expiration-time>} where expiration time could
1300 be one of the following options: now, never, +seconds or UNIX time of
1301 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1302 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1303 date and time).
1305 You can also use keywords "now" or "never" for the expiration time to
1306 allow <protocol> password to expire immediately or never expire.
1308 @item tls-creds=@var{ID}
1310 Provides the ID of a set of TLS credentials to use to secure the
1311 VNC server. They will apply to both the normal VNC server socket
1312 and the websocket socket (if enabled). Setting TLS credentials
1313 will cause the VNC server socket to enable the VeNCrypt auth
1314 mechanism. The credentials should have been previously created
1315 using the @option{-object tls-creds} argument.
1317 The @option{tls-creds} parameter obsoletes the @option{tls},
1318 @option{x509}, and @option{x509verify} options, and as such
1319 it is not permitted to set both new and old type options at
1320 the same time.
1322 @item tls
1324 Require that client use TLS when communicating with the VNC server. This
1325 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1326 attack. It is recommended that this option be combined with either the
1327 @option{x509} or @option{x509verify} options.
1329 This option is now deprecated in favor of using the @option{tls-creds}
1330 argument.
1332 @item x509=@var{/path/to/certificate/dir}
1334 Valid if @option{tls} is specified. Require that x509 credentials are used
1335 for negotiating the TLS session. The server will send its x509 certificate
1336 to the client. It is recommended that a password be set on the VNC server
1337 to provide authentication of the client when this is used. The path following
1338 this option specifies where the x509 certificates are to be loaded from.
1339 See the @ref{vnc_security} section for details on generating certificates.
1341 This option is now deprecated in favour of using the @option{tls-creds}
1342 argument.
1344 @item x509verify=@var{/path/to/certificate/dir}
1346 Valid if @option{tls} is specified. Require that x509 credentials are used
1347 for negotiating the TLS session. The server will send its x509 certificate
1348 to the client, and request that the client send its own x509 certificate.
1349 The server will validate the client's certificate against the CA certificate,
1350 and reject clients when validation fails. If the certificate authority is
1351 trusted, this is a sufficient authentication mechanism. You may still wish
1352 to set a password on the VNC server as a second authentication layer. The
1353 path following this option specifies where the x509 certificates are to
1354 be loaded from. See the @ref{vnc_security} section for details on generating
1355 certificates.
1357 This option is now deprecated in favour of using the @option{tls-creds}
1358 argument.
1360 @item sasl
1362 Require that the client use SASL to authenticate with the VNC server.
1363 The exact choice of authentication method used is controlled from the
1364 system / user's SASL configuration file for the 'qemu' service. This
1365 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1366 unprivileged user, an environment variable SASL_CONF_PATH can be used
1367 to make it search alternate locations for the service config.
1368 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1369 it is recommended that SASL always be combined with the 'tls' and
1370 'x509' settings to enable use of SSL and server certificates. This
1371 ensures a data encryption preventing compromise of authentication
1372 credentials. See the @ref{vnc_security} section for details on using
1373 SASL authentication.
1375 @item acl
1377 Turn on access control lists for checking of the x509 client certificate
1378 and SASL party. For x509 certs, the ACL check is made against the
1379 certificate's distinguished name. This is something that looks like
1380 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1381 made against the username, which depending on the SASL plugin, may
1382 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1383 When the @option{acl} flag is set, the initial access list will be
1384 empty, with a @code{deny} policy. Thus no one will be allowed to
1385 use the VNC server until the ACLs have been loaded. This can be
1386 achieved using the @code{acl} monitor command.
1388 @item lossy
1390 Enable lossy compression methods (gradient, JPEG, ...). If this
1391 option is set, VNC client may receive lossy framebuffer updates
1392 depending on its encoding settings. Enabling this option can save
1393 a lot of bandwidth at the expense of quality.
1395 @item non-adaptive
1397 Disable adaptive encodings. Adaptive encodings are enabled by default.
1398 An adaptive encoding will try to detect frequently updated screen regions,
1399 and send updates in these regions using a lossy encoding (like JPEG).
1400 This can be really helpful to save bandwidth when playing videos. Disabling
1401 adaptive encodings restores the original static behavior of encodings
1402 like Tight.
1404 @item share=[allow-exclusive|force-shared|ignore]
1406 Set display sharing policy. 'allow-exclusive' allows clients to ask
1407 for exclusive access. As suggested by the rfb spec this is
1408 implemented by dropping other connections. Connecting multiple
1409 clients in parallel requires all clients asking for a shared session
1410 (vncviewer: -shared switch). This is the default. 'force-shared'
1411 disables exclusive client access. Useful for shared desktop sessions,
1412 where you don't want someone forgetting specify -shared disconnect
1413 everybody else. 'ignore' completely ignores the shared flag and
1414 allows everybody connect unconditionally. Doesn't conform to the rfb
1415 spec but is traditional QEMU behavior.
1417 @item key-delay-ms
1419 Set keyboard delay, for key down and key up events, in milliseconds.
1420 Default is 1. Keyboards are low-bandwidth devices, so this slowdown
1421 can help the device and guest to keep up and not lose events in case
1422 events are arriving in bulk. Possible causes for the latter are flaky
1423 network connections, or scripts for automated testing.
1425 @end table
1426 ETEXI
1428 STEXI
1429 @end table
1430 ETEXI
1431 ARCHHEADING(, QEMU_ARCH_I386)
1433 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1434 STEXI
1435 @table @option
1436 ETEXI
1438 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1439 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1440 QEMU_ARCH_I386)
1441 STEXI
1442 @item -win2k-hack
1443 @findex -win2k-hack
1444 Use it when installing Windows 2000 to avoid a disk full bug. After
1445 Windows 2000 is installed, you no longer need this option (this option
1446 slows down the IDE transfers).
1447 ETEXI
1449 HXCOMM Deprecated by -rtc
1450 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1452 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1453 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1454 QEMU_ARCH_I386)
1455 STEXI
1456 @item -no-fd-bootchk
1457 @findex -no-fd-bootchk
1458 Disable boot signature checking for floppy disks in BIOS. May
1459 be needed to boot from old floppy disks.
1460 ETEXI
1462 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1463 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1464 STEXI
1465 @item -no-acpi
1466 @findex -no-acpi
1467 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1468 it if your guest OS complains about ACPI problems (PC target machine
1469 only).
1470 ETEXI
1472 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1473 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1474 STEXI
1475 @item -no-hpet
1476 @findex -no-hpet
1477 Disable HPET support.
1478 ETEXI
1480 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1481 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1482 " ACPI table description\n", QEMU_ARCH_I386)
1483 STEXI
1484 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1485 @findex -acpitable
1486 Add ACPI table with specified header fields and context from specified files.
1487 For file=, take whole ACPI table from the specified files, including all
1488 ACPI headers (possible overridden by other options).
1489 For data=, only data
1490 portion of the table is used, all header information is specified in the
1491 command line.
1492 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1493 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1494 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1495 spec.
1496 ETEXI
1498 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1499 "-smbios file=binary\n"
1500 " load SMBIOS entry from binary file\n"
1501 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1502 " [,uefi=on|off]\n"
1503 " specify SMBIOS type 0 fields\n"
1504 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1505 " [,uuid=uuid][,sku=str][,family=str]\n"
1506 " specify SMBIOS type 1 fields\n"
1507 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1508 " [,asset=str][,location=str]\n"
1509 " specify SMBIOS type 2 fields\n"
1510 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1511 " [,sku=str]\n"
1512 " specify SMBIOS type 3 fields\n"
1513 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1514 " [,asset=str][,part=str]\n"
1515 " specify SMBIOS type 4 fields\n"
1516 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1517 " [,asset=str][,part=str][,speed=%d]\n"
1518 " specify SMBIOS type 17 fields\n",
1519 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1520 STEXI
1521 @item -smbios file=@var{binary}
1522 @findex -smbios
1523 Load SMBIOS entry from binary file.
1525 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1526 Specify SMBIOS type 0 fields
1528 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1529 Specify SMBIOS type 1 fields
1531 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1532 Specify SMBIOS type 2 fields
1534 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1535 Specify SMBIOS type 3 fields
1537 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1538 Specify SMBIOS type 4 fields
1540 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1541 Specify SMBIOS type 17 fields
1542 ETEXI
1544 STEXI
1545 @end table
1546 ETEXI
1547 DEFHEADING()
1549 DEFHEADING(Network options:)
1550 STEXI
1551 @table @option
1552 ETEXI
1554 HXCOMM Legacy slirp options (now moved to -net user):
1555 #ifdef CONFIG_SLIRP
1556 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1557 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1558 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1559 #ifndef _WIN32
1560 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1561 #endif
1562 #endif
1564 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1565 #ifdef CONFIG_SLIRP
1566 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1567 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1568 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1569 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1570 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1571 #ifndef _WIN32
1572 "[,smb=dir[,smbserver=addr]]\n"
1573 #endif
1574 " configure a user mode network backend with ID 'str',\n"
1575 " its DHCP server and optional services\n"
1576 #endif
1577 #ifdef _WIN32
1578 "-netdev tap,id=str,ifname=name\n"
1579 " configure a host TAP network backend with ID 'str'\n"
1580 #else
1581 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1582 " [,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1583 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1584 " configure a host TAP network backend with ID 'str'\n"
1585 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1586 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1587 " to deconfigure it\n"
1588 " use '[down]script=no' to disable script execution\n"
1589 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1590 " configure it\n"
1591 " use 'fd=h' to connect to an already opened TAP interface\n"
1592 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1593 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1594 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1595 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1596 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1597 " use vhost=on to enable experimental in kernel accelerator\n"
1598 " (only has effect for virtio guests which use MSIX)\n"
1599 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1600 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1601 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1602 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1603 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1604 " configure a host TAP network backend with ID 'str' that is\n"
1605 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1606 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1607 #endif
1608 #ifdef __linux__
1609 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1610 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1611 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1612 " [,rxcookie=rxcookie][,offset=offset]\n"
1613 " configure a network backend with ID 'str' connected to\n"
1614 " an Ethernet over L2TPv3 pseudowire.\n"
1615 " Linux kernel 3.3+ as well as most routers can talk\n"
1616 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1617 " VM to a router and even VM to Host. It is a nearly-universal\n"
1618 " standard (RFC3391). Note - this implementation uses static\n"
1619 " pre-configured tunnels (same as the Linux kernel).\n"
1620 " use 'src=' to specify source address\n"
1621 " use 'dst=' to specify destination address\n"
1622 " use 'udp=on' to specify udp encapsulation\n"
1623 " use 'srcport=' to specify source udp port\n"
1624 " use 'dstport=' to specify destination udp port\n"
1625 " use 'ipv6=on' to force v6\n"
1626 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1627 " well as a weak security measure\n"
1628 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1629 " use 'txcookie=0x012345678' to specify a txcookie\n"
1630 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1631 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1632 " use 'pincounter=on' to work around broken counter handling in peer\n"
1633 " use 'offset=X' to add an extra offset between header and data\n"
1634 #endif
1635 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1636 " configure a network backend to connect to another network\n"
1637 " using a socket connection\n"
1638 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1639 " configure a network backend to connect to a multicast maddr and port\n"
1640 " use 'localaddr=addr' to specify the host address to send packets from\n"
1641 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1642 " configure a network backend to connect to another network\n"
1643 " using an UDP tunnel\n"
1644 #ifdef CONFIG_VDE
1645 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1646 " configure a network backend to connect to port 'n' of a vde switch\n"
1647 " running on host and listening for incoming connections on 'socketpath'.\n"
1648 " Use group 'groupname' and mode 'octalmode' to change default\n"
1649 " ownership and permissions for communication port.\n"
1650 #endif
1651 #ifdef CONFIG_NETMAP
1652 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1653 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1654 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1655 " netmap device, defaults to '/dev/netmap')\n"
1656 #endif
1657 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1658 " configure a vhost-user network, backed by a chardev 'dev'\n"
1659 "-netdev hubport,id=str,hubid=n\n"
1660 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1661 DEF("net", HAS_ARG, QEMU_OPTION_net,
1662 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1663 " old way to create a new NIC and connect it to VLAN 'n'\n"
1664 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1665 "-net dump[,vlan=n][,file=f][,len=n]\n"
1666 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1667 "-net none use it alone to have zero network devices. If no -net option\n"
1668 " is provided, the default is '-net nic -net user'\n"
1669 "-net ["
1670 #ifdef CONFIG_SLIRP
1671 "user|"
1672 #endif
1673 "tap|"
1674 "bridge|"
1675 #ifdef CONFIG_VDE
1676 "vde|"
1677 #endif
1678 #ifdef CONFIG_NETMAP
1679 "netmap|"
1680 #endif
1681 "socket][,vlan=n][,option][,option][,...]\n"
1682 " old way to initialize a host network interface\n"
1683 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1684 STEXI
1685 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1686 @findex -net
1687 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1688 = 0 is the default). The NIC is an e1000 by default on the PC
1689 target. Optionally, the MAC address can be changed to @var{mac}, the
1690 device address set to @var{addr} (PCI cards only),
1691 and a @var{name} can be assigned for use in monitor commands.
1692 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1693 that the card should have; this option currently only affects virtio cards; set
1694 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1695 NIC is created. QEMU can emulate several different models of network card.
1696 Valid values for @var{type} are
1697 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1698 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1699 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1700 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1701 for a list of available devices for your target.
1703 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1704 @findex -netdev
1705 @item -net user[,@var{option}][,@var{option}][,...]
1706 Use the user mode network stack which requires no administrator
1707 privilege to run. Valid options are:
1709 @table @option
1710 @item vlan=@var{n}
1711 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1713 @item id=@var{id}
1714 @itemx name=@var{name}
1715 Assign symbolic name for use in monitor commands.
1717 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must
1718 be enabled. If neither is specified both protocols are enabled.
1720 @item net=@var{addr}[/@var{mask}]
1721 Set IP network address the guest will see. Optionally specify the netmask,
1722 either in the form a.b.c.d or as number of valid top-most bits. Default is
1723 10.0.2.0/24.
1725 @item host=@var{addr}
1726 Specify the guest-visible address of the host. Default is the 2nd IP in the
1727 guest network, i.e. x.x.x.2.
1729 @item ipv6-net=@var{addr}[/@var{int}]
1730 Set IPv6 network address the guest will see (default is fec0::/64). The
1731 network prefix is given in the usual hexadecimal IPv6 address
1732 notation. The prefix size is optional, and is given as the number of
1733 valid top-most bits (default is 64).
1735 @item ipv6-host=@var{addr}
1736 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
1737 the guest network, i.e. xxxx::2.
1739 @item restrict=on|off
1740 If this option is enabled, the guest will be isolated, i.e. it will not be
1741 able to contact the host and no guest IP packets will be routed over the host
1742 to the outside. This option does not affect any explicitly set forwarding rules.
1744 @item hostname=@var{name}
1745 Specifies the client hostname reported by the built-in DHCP server.
1747 @item dhcpstart=@var{addr}
1748 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1749 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1751 @item dns=@var{addr}
1752 Specify the guest-visible address of the virtual nameserver. The address must
1753 be different from the host address. Default is the 3rd IP in the guest network,
1754 i.e. x.x.x.3.
1756 @item ipv6-dns=@var{addr}
1757 Specify the guest-visible address of the IPv6 virtual nameserver. The address
1758 must be different from the host address. Default is the 3rd IP in the guest
1759 network, i.e. xxxx::3.
1761 @item dnssearch=@var{domain}
1762 Provides an entry for the domain-search list sent by the built-in
1763 DHCP server. More than one domain suffix can be transmitted by specifying
1764 this option multiple times. If supported, this will cause the guest to
1765 automatically try to append the given domain suffix(es) in case a domain name
1766 can not be resolved.
1768 Example:
1769 @example
1770 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1771 @end example
1773 @item tftp=@var{dir}
1774 When using the user mode network stack, activate a built-in TFTP
1775 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1776 The TFTP client on the guest must be configured in binary mode (use the command
1777 @code{bin} of the Unix TFTP client).
1779 @item bootfile=@var{file}
1780 When using the user mode network stack, broadcast @var{file} as the BOOTP
1781 filename. In conjunction with @option{tftp}, this can be used to network boot
1782 a guest from a local directory.
1784 Example (using pxelinux):
1785 @example
1786 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1787 @end example
1789 @item smb=@var{dir}[,smbserver=@var{addr}]
1790 When using the user mode network stack, activate a built-in SMB
1791 server so that Windows OSes can access to the host files in @file{@var{dir}}
1792 transparently. The IP address of the SMB server can be set to @var{addr}. By
1793 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1795 In the guest Windows OS, the line:
1796 @example
1797 10.0.2.4 smbserver
1798 @end example
1799 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1800 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1802 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1804 Note that a SAMBA server must be installed on the host OS.
1805 QEMU was tested successfully with smbd versions from Red Hat 9,
1806 Fedora Core 3 and OpenSUSE 11.x.
1808 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1809 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1810 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1811 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1812 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1813 be bound to a specific host interface. If no connection type is set, TCP is
1814 used. This option can be given multiple times.
1816 For example, to redirect host X11 connection from screen 1 to guest
1817 screen 0, use the following:
1819 @example
1820 # on the host
1821 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1822 # this host xterm should open in the guest X11 server
1823 xterm -display :1
1824 @end example
1826 To redirect telnet connections from host port 5555 to telnet port on
1827 the guest, use the following:
1829 @example
1830 # on the host
1831 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1832 telnet localhost 5555
1833 @end example
1835 Then when you use on the host @code{telnet localhost 5555}, you
1836 connect to the guest telnet server.
1838 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1839 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1840 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1841 to the character device @var{dev} or to a program executed by @var{cmd:command}
1842 which gets spawned for each connection. This option can be given multiple times.
1844 You can either use a chardev directly and have that one used throughout QEMU's
1845 lifetime, like in the following example:
1847 @example
1848 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1849 # the guest accesses it
1850 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
1851 @end example
1853 Or you can execute a command on every TCP connection established by the guest,
1854 so that QEMU behaves similar to an inetd process for that virtual server:
1856 @example
1857 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
1858 # and connect the TCP stream to its stdin/stdout
1859 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
1860 @end example
1862 @end table
1864 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
1865 processed and applied to -net user. Mixing them with the new configuration
1866 syntax gives undefined results. Their use for new applications is discouraged
1867 as they will be removed from future versions.
1869 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,helper=@var{helper}]
1870 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,helper=@var{helper}]
1871 Connect the host TAP network interface @var{name} to VLAN @var{n}.
1873 Use the network script @var{file} to configure it and the network script
1874 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
1875 automatically provides one. The default network configure script is
1876 @file{/etc/qemu-ifup} and the default network deconfigure script is
1877 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
1878 to disable script execution.
1880 If running QEMU as an unprivileged user, use the network helper
1881 @var{helper} to configure the TAP interface. The default network
1882 helper executable is @file{/path/to/qemu-bridge-helper}.
1884 @option{fd}=@var{h} can be used to specify the handle of an already
1885 opened host TAP interface.
1887 Examples:
1889 @example
1890 #launch a QEMU instance with the default network script
1891 qemu-system-i386 linux.img -net nic -net tap
1892 @end example
1894 @example
1895 #launch a QEMU instance with two NICs, each one connected
1896 #to a TAP device
1897 qemu-system-i386 linux.img \
1898 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1899 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1900 @end example
1902 @example
1903 #launch a QEMU instance with the default network helper to
1904 #connect a TAP device to bridge br0
1905 qemu-system-i386 linux.img \
1906 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
1907 @end example
1909 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
1910 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
1911 Connect a host TAP network interface to a host bridge device.
1913 Use the network helper @var{helper} to configure the TAP interface and
1914 attach it to the bridge. The default network helper executable is
1915 @file{/path/to/qemu-bridge-helper} and the default bridge
1916 device is @file{br0}.
1918 Examples:
1920 @example
1921 #launch a QEMU instance with the default network helper to
1922 #connect a TAP device to bridge br0
1923 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
1924 @end example
1926 @example
1927 #launch a QEMU instance with the default network helper to
1928 #connect a TAP device to bridge qemubr0
1929 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
1930 @end example
1932 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1933 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1935 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1936 machine using a TCP socket connection. If @option{listen} is
1937 specified, QEMU waits for incoming connections on @var{port}
1938 (@var{host} is optional). @option{connect} is used to connect to
1939 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1940 specifies an already opened TCP socket.
1942 Example:
1943 @example
1944 # launch a first QEMU instance
1945 qemu-system-i386 linux.img \
1946 -net nic,macaddr=52:54:00:12:34:56 \
1947 -net socket,listen=:1234
1948 # connect the VLAN 0 of this instance to the VLAN 0
1949 # of the first instance
1950 qemu-system-i386 linux.img \
1951 -net nic,macaddr=52:54:00:12:34:57 \
1952 -net socket,connect=127.0.0.1:1234
1953 @end example
1955 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1956 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1958 Create a VLAN @var{n} shared with another QEMU virtual
1959 machines using a UDP multicast socket, effectively making a bus for
1960 every QEMU with same multicast address @var{maddr} and @var{port}.
1961 NOTES:
1962 @enumerate
1963 @item
1964 Several QEMU can be running on different hosts and share same bus (assuming
1965 correct multicast setup for these hosts).
1966 @item
1967 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1968 @url{http://user-mode-linux.sf.net}.
1969 @item
1970 Use @option{fd=h} to specify an already opened UDP multicast socket.
1971 @end enumerate
1973 Example:
1974 @example
1975 # launch one QEMU instance
1976 qemu-system-i386 linux.img \
1977 -net nic,macaddr=52:54:00:12:34:56 \
1978 -net socket,mcast=230.0.0.1:1234
1979 # launch another QEMU instance on same "bus"
1980 qemu-system-i386 linux.img \
1981 -net nic,macaddr=52:54:00:12:34:57 \
1982 -net socket,mcast=230.0.0.1:1234
1983 # launch yet another QEMU instance on same "bus"
1984 qemu-system-i386 linux.img \
1985 -net nic,macaddr=52:54:00:12:34:58 \
1986 -net socket,mcast=230.0.0.1:1234
1987 @end example
1989 Example (User Mode Linux compat.):
1990 @example
1991 # launch QEMU instance (note mcast address selected
1992 # is UML's default)
1993 qemu-system-i386 linux.img \
1994 -net nic,macaddr=52:54:00:12:34:56 \
1995 -net socket,mcast=239.192.168.1:1102
1996 # launch UML
1997 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
1998 @end example
2000 Example (send packets from host's 1.2.3.4):
2001 @example
2002 qemu-system-i386 linux.img \
2003 -net nic,macaddr=52:54:00:12:34:56 \
2004 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2005 @end example
2007 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2008 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2009 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
2010 protocol to transport Ethernet (and other Layer 2) data frames between
2011 two systems. It is present in routers, firewalls and the Linux kernel
2012 (from version 3.3 onwards).
2014 This transport allows a VM to communicate to another VM, router or firewall directly.
2016 @item src=@var{srcaddr}
2017 source address (mandatory)
2018 @item dst=@var{dstaddr}
2019 destination address (mandatory)
2020 @item udp
2021 select udp encapsulation (default is ip).
2022 @item srcport=@var{srcport}
2023 source udp port.
2024 @item dstport=@var{dstport}
2025 destination udp port.
2026 @item ipv6
2027 force v6, otherwise defaults to v4.
2028 @item rxcookie=@var{rxcookie}
2029 @itemx txcookie=@var{txcookie}
2030 Cookies are a weak form of security in the l2tpv3 specification.
2031 Their function is mostly to prevent misconfiguration. By default they are 32
2032 bit.
2033 @item cookie64
2034 Set cookie size to 64 bit instead of the default 32
2035 @item counter=off
2036 Force a 'cut-down' L2TPv3 with no counter as in
2037 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2038 @item pincounter=on
2039 Work around broken counter handling in peer. This may also help on
2040 networks which have packet reorder.
2041 @item offset=@var{offset}
2042 Add an extra offset between header and data
2044 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2045 on the remote Linux host 1.2.3.4:
2046 @example
2047 # Setup tunnel on linux host using raw ip as encapsulation
2048 # on 1.2.3.4
2049 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2050 encap udp udp_sport 16384 udp_dport 16384
2051 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2052 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2053 ifconfig vmtunnel0 mtu 1500
2054 ifconfig vmtunnel0 up
2055 brctl addif br-lan vmtunnel0
2058 # on 4.3.2.1
2059 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2061 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2064 @end example
2066 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2067 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2068 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2069 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2070 and MODE @var{octalmode} to change default ownership and permissions for
2071 communication port. This option is only available if QEMU has been compiled
2072 with vde support enabled.
2074 Example:
2075 @example
2076 # launch vde switch
2077 vde_switch -F -sock /tmp/myswitch
2078 # launch QEMU instance
2079 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2080 @end example
2082 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2084 Create a hub port on QEMU "vlan" @var{hubid}.
2086 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2087 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2088 required hub automatically.
2090 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2092 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2093 be a unix domain socket backed one. The vhost-user uses a specifically defined
2094 protocol to pass vhost ioctl replacement messages to an application on the other
2095 end of the socket. On non-MSIX guests, the feature can be forced with
2096 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2097 be created for multiqueue vhost-user.
2099 Example:
2100 @example
2101 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2102 -numa node,memdev=mem \
2103 -chardev socket,path=/path/to/socket \
2104 -netdev type=vhost-user,id=net0,chardev=chr0 \
2105 -device virtio-net-pci,netdev=net0
2106 @end example
2108 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2109 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2110 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2111 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2112 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2114 @item -net none
2115 Indicate that no network devices should be configured. It is used to
2116 override the default configuration (@option{-net nic -net user}) which
2117 is activated if no @option{-net} options are provided.
2118 ETEXI
2120 STEXI
2121 @end table
2122 ETEXI
2123 DEFHEADING()
2125 DEFHEADING(Character device options:)
2126 STEXI
2128 The general form of a character device option is:
2129 @table @option
2130 ETEXI
2132 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2133 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2134 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2135 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2136 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2137 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2138 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2139 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2140 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2141 " [,logfile=PATH][,logappend=on|off]\n"
2142 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2143 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2144 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2145 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2146 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2147 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2148 #ifdef _WIN32
2149 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2150 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2151 #else
2152 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2153 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2154 #endif
2155 #ifdef CONFIG_BRLAPI
2156 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2157 #endif
2158 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2159 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2160 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2161 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2162 #endif
2163 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2164 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2165 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2166 #endif
2167 #if defined(CONFIG_SPICE)
2168 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2169 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2170 #endif
2171 , QEMU_ARCH_ALL
2174 STEXI
2175 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2176 @findex -chardev
2177 Backend is one of:
2178 @option{null},
2179 @option{socket},
2180 @option{udp},
2181 @option{msmouse},
2182 @option{vc},
2183 @option{ringbuf},
2184 @option{file},
2185 @option{pipe},
2186 @option{console},
2187 @option{serial},
2188 @option{pty},
2189 @option{stdio},
2190 @option{braille},
2191 @option{tty},
2192 @option{parallel},
2193 @option{parport},
2194 @option{spicevmc}.
2195 @option{spiceport}.
2196 The specific backend will determine the applicable options.
2198 All devices must have an id, which can be any string up to 127 characters long.
2199 It is used to uniquely identify this device in other command line directives.
2201 A character device may be used in multiplexing mode by multiple front-ends.
2202 Specify @option{mux=on} to enable this mode.
2203 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2204 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2205 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2206 create a multiplexer with your specified ID, and you can then configure multiple
2207 front ends to use that chardev ID for their input/output. Up to four different
2208 front ends can be connected to a single multiplexed chardev. (Without
2209 multiplexing enabled, a chardev can only be used by a single front end.)
2210 For instance you could use this to allow a single stdio chardev to be used by
2211 two serial ports and the QEMU monitor:
2213 @example
2214 -chardev stdio,mux=on,id=char0 \
2215 -mon chardev=char0,mode=readline,default \
2216 -serial chardev:char0 \
2217 -serial chardev:char0
2218 @end example
2220 You can have more than one multiplexer in a system configuration; for instance
2221 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2222 multiplexed between the QEMU monitor and a parallel port:
2224 @example
2225 -chardev stdio,mux=on,id=char0 \
2226 -mon chardev=char0,mode=readline,default \
2227 -parallel chardev:char0 \
2228 -chardev tcp,...,mux=on,id=char1 \
2229 -serial chardev:char1 \
2230 -serial chardev:char1
2231 @end example
2233 When you're using a multiplexed character device, some escape sequences are
2234 interpreted in the input. @xref{mux_keys, Keys in the character backend
2235 multiplexer}.
2237 Note that some other command line options may implicitly create multiplexed
2238 character backends; for instance @option{-serial mon:stdio} creates a
2239 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2240 and @option{-nographic} also multiplexes the console and the monitor to
2241 stdio.
2243 There is currently no support for multiplexing in the other direction
2244 (where a single QEMU front end takes input and output from multiple chardevs).
2246 Every backend supports the @option{logfile} option, which supplies the path
2247 to a file to record all data transmitted via the backend. The @option{logappend}
2248 option controls whether the log file will be truncated or appended to when
2249 opened.
2251 Further options to each backend are described below.
2253 @item -chardev null ,id=@var{id}
2254 A void device. This device will not emit any data, and will drop any data it
2255 receives. The null backend does not take any options.
2257 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2259 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2260 unix socket will be created if @option{path} is specified. Behaviour is
2261 undefined if TCP options are specified for a unix socket.
2263 @option{server} specifies that the socket shall be a listening socket.
2265 @option{nowait} specifies that QEMU should not block waiting for a client to
2266 connect to a listening socket.
2268 @option{telnet} specifies that traffic on the socket should interpret telnet
2269 escape sequences.
2271 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2272 the remote end goes away. qemu will delay this many seconds and then attempt
2273 to reconnect. Zero disables reconnecting, and is the default.
2275 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2276 and specifies the id of the TLS credentials to use for the handshake. The
2277 credentials must be previously created with the @option{-object tls-creds}
2278 argument.
2280 TCP and unix socket options are given below:
2282 @table @option
2284 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2286 @option{host} for a listening socket specifies the local address to be bound.
2287 For a connecting socket species the remote host to connect to. @option{host} is
2288 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2290 @option{port} for a listening socket specifies the local port to be bound. For a
2291 connecting socket specifies the port on the remote host to connect to.
2292 @option{port} can be given as either a port number or a service name.
2293 @option{port} is required.
2295 @option{to} is only relevant to listening sockets. If it is specified, and
2296 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2297 to and including @option{to} until it succeeds. @option{to} must be specified
2298 as a port number.
2300 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2301 If neither is specified the socket may use either protocol.
2303 @option{nodelay} disables the Nagle algorithm.
2305 @item unix options: path=@var{path}
2307 @option{path} specifies the local path of the unix socket. @option{path} is
2308 required.
2310 @end table
2312 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2314 Sends all traffic from the guest to a remote host over UDP.
2316 @option{host} specifies the remote host to connect to. If not specified it
2317 defaults to @code{localhost}.
2319 @option{port} specifies the port on the remote host to connect to. @option{port}
2320 is required.
2322 @option{localaddr} specifies the local address to bind to. If not specified it
2323 defaults to @code{0.0.0.0}.
2325 @option{localport} specifies the local port to bind to. If not specified any
2326 available local port will be used.
2328 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2329 If neither is specified the device may use either protocol.
2331 @item -chardev msmouse ,id=@var{id}
2333 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2334 take any options.
2336 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2338 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2339 size.
2341 @option{width} and @option{height} specify the width and height respectively of
2342 the console, in pixels.
2344 @option{cols} and @option{rows} specify that the console be sized to fit a text
2345 console with the given dimensions.
2347 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2349 Create a ring buffer with fixed size @option{size}.
2350 @var{size} must be a power of two, and defaults to @code{64K}).
2352 @item -chardev file ,id=@var{id} ,path=@var{path}
2354 Log all traffic received from the guest to a file.
2356 @option{path} specifies the path of the file to be opened. This file will be
2357 created if it does not already exist, and overwritten if it does. @option{path}
2358 is required.
2360 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2362 Create a two-way connection to the guest. The behaviour differs slightly between
2363 Windows hosts and other hosts:
2365 On Windows, a single duplex pipe will be created at
2366 @file{\\.pipe\@option{path}}.
2368 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2369 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2370 received by the guest. Data written by the guest can be read from
2371 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2372 be present.
2374 @option{path} forms part of the pipe path as described above. @option{path} is
2375 required.
2377 @item -chardev console ,id=@var{id}
2379 Send traffic from the guest to QEMU's standard output. @option{console} does not
2380 take any options.
2382 @option{console} is only available on Windows hosts.
2384 @item -chardev serial ,id=@var{id} ,path=@option{path}
2386 Send traffic from the guest to a serial device on the host.
2388 On Unix hosts serial will actually accept any tty device,
2389 not only serial lines.
2391 @option{path} specifies the name of the serial device to open.
2393 @item -chardev pty ,id=@var{id}
2395 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2396 not take any options.
2398 @option{pty} is not available on Windows hosts.
2400 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2401 Connect to standard input and standard output of the QEMU process.
2403 @option{signal} controls if signals are enabled on the terminal, that includes
2404 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2405 default, use @option{signal=off} to disable it.
2407 @option{stdio} is not available on Windows hosts.
2409 @item -chardev braille ,id=@var{id}
2411 Connect to a local BrlAPI server. @option{braille} does not take any options.
2413 @item -chardev tty ,id=@var{id} ,path=@var{path}
2415 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2416 DragonFlyBSD hosts. It is an alias for @option{serial}.
2418 @option{path} specifies the path to the tty. @option{path} is required.
2420 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2421 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2423 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2425 Connect to a local parallel port.
2427 @option{path} specifies the path to the parallel port device. @option{path} is
2428 required.
2430 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2432 @option{spicevmc} is only available when spice support is built in.
2434 @option{debug} debug level for spicevmc
2436 @option{name} name of spice channel to connect to
2438 Connect to a spice virtual machine channel, such as vdiport.
2440 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2442 @option{spiceport} is only available when spice support is built in.
2444 @option{debug} debug level for spicevmc
2446 @option{name} name of spice port to connect to
2448 Connect to a spice port, allowing a Spice client to handle the traffic
2449 identified by a name (preferably a fqdn).
2450 ETEXI
2452 STEXI
2453 @end table
2454 ETEXI
2455 DEFHEADING()
2457 DEFHEADING(Device URL Syntax:)
2458 STEXI
2460 In addition to using normal file images for the emulated storage devices,
2461 QEMU can also use networked resources such as iSCSI devices. These are
2462 specified using a special URL syntax.
2464 @table @option
2465 @item iSCSI
2466 iSCSI support allows QEMU to access iSCSI resources directly and use as
2467 images for the guest storage. Both disk and cdrom images are supported.
2469 Syntax for specifying iSCSI LUNs is
2470 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2472 By default qemu will use the iSCSI initiator-name
2473 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2474 line or a configuration file.
2476 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2477 stalled requests and force a reestablishment of the session. The timeout
2478 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2479 1.15.0 or greater is required for this feature.
2481 Example (without authentication):
2482 @example
2483 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2484 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2485 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2486 @end example
2488 Example (CHAP username/password via URL):
2489 @example
2490 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2491 @end example
2493 Example (CHAP username/password via environment variables):
2494 @example
2495 LIBISCSI_CHAP_USERNAME="user" \
2496 LIBISCSI_CHAP_PASSWORD="password" \
2497 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2498 @end example
2500 iSCSI support is an optional feature of QEMU and only available when
2501 compiled and linked against libiscsi.
2502 ETEXI
2503 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2504 "-iscsi [user=user][,password=password]\n"
2505 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2506 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2507 " [,timeout=timeout]\n"
2508 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2509 STEXI
2511 iSCSI parameters such as username and password can also be specified via
2512 a configuration file. See qemu-doc for more information and examples.
2514 @item NBD
2515 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2516 as Unix Domain Sockets.
2518 Syntax for specifying a NBD device using TCP
2519 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2521 Syntax for specifying a NBD device using Unix Domain Sockets
2522 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2525 Example for TCP
2526 @example
2527 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2528 @end example
2530 Example for Unix Domain Sockets
2531 @example
2532 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2533 @end example
2535 @item SSH
2536 QEMU supports SSH (Secure Shell) access to remote disks.
2538 Examples:
2539 @example
2540 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2541 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2542 @end example
2544 Currently authentication must be done using ssh-agent. Other
2545 authentication methods may be supported in future.
2547 @item Sheepdog
2548 Sheepdog is a distributed storage system for QEMU.
2549 QEMU supports using either local sheepdog devices or remote networked
2550 devices.
2552 Syntax for specifying a sheepdog device
2553 @example
2554 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2555 @end example
2557 Example
2558 @example
2559 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2560 @end example
2562 See also @url{http://http://www.osrg.net/sheepdog/}.
2564 @item GlusterFS
2565 GlusterFS is an user space distributed file system.
2566 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2567 TCP, Unix Domain Sockets and RDMA transport protocols.
2569 Syntax for specifying a VM disk image on GlusterFS volume is
2570 @example
2571 gluster[+transport]://[server[:port]]/volname/image[?socket=...]
2572 @end example
2575 Example
2576 @example
2577 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img
2578 @end example
2580 See also @url{http://www.gluster.org}.
2582 @item HTTP/HTTPS/FTP/FTPS/TFTP
2583 QEMU supports read-only access to files accessed over http(s), ftp(s) and tftp.
2585 Syntax using a single filename:
2586 @example
2587 <protocol>://[<username>[:<password>]@@]<host>/<path>
2588 @end example
2590 where:
2591 @table @option
2592 @item protocol
2593 'http', 'https', 'ftp', 'ftps', or 'tftp'.
2595 @item username
2596 Optional username for authentication to the remote server.
2598 @item password
2599 Optional password for authentication to the remote server.
2601 @item host
2602 Address of the remote server.
2604 @item path
2605 Path on the remote server, including any query string.
2606 @end table
2608 The following options are also supported:
2609 @table @option
2610 @item url
2611 The full URL when passing options to the driver explicitly.
2613 @item readahead
2614 The amount of data to read ahead with each range request to the remote server.
2615 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2616 does not have a suffix, it will be assumed to be in bytes. The value must be a
2617 multiple of 512 bytes. It defaults to 256k.
2619 @item sslverify
2620 Whether to verify the remote server's certificate when connecting over SSL. It
2621 can have the value 'on' or 'off'. It defaults to 'on'.
2623 @item cookie
2624 Send this cookie (it can also be a list of cookies separated by ';') with
2625 each outgoing request. Only supported when using protocols such as HTTP
2626 which support cookies, otherwise ignored.
2628 @item timeout
2629 Set the timeout in seconds of the CURL connection. This timeout is the time
2630 that CURL waits for a response from the remote server to get the size of the
2631 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2632 @end table
2634 Note that when passing options to qemu explicitly, @option{driver} is the value
2635 of <protocol>.
2637 Example: boot from a remote Fedora 20 live ISO image
2638 @example
2639 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2641 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2642 @end example
2644 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2645 writes, copy-on-read, and a readahead of 64k
2646 @example
2647 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2649 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2650 @end example
2652 Example: boot from an image stored on a VMware vSphere server with a self-signed
2653 certificate using a local overlay for writes, a readahead of 64k and a timeout
2654 of 10 seconds.
2655 @example
2656 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2658 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2659 @end example
2660 ETEXI
2662 STEXI
2663 @end table
2664 ETEXI
2666 DEFHEADING(Bluetooth(R) options:)
2667 STEXI
2668 @table @option
2669 ETEXI
2671 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2672 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2673 "-bt hci,host[:id]\n" \
2674 " use host's HCI with the given name\n" \
2675 "-bt hci[,vlan=n]\n" \
2676 " emulate a standard HCI in virtual scatternet 'n'\n" \
2677 "-bt vhci[,vlan=n]\n" \
2678 " add host computer to virtual scatternet 'n' using VHCI\n" \
2679 "-bt device:dev[,vlan=n]\n" \
2680 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2681 QEMU_ARCH_ALL)
2682 STEXI
2683 @item -bt hci[...]
2684 @findex -bt
2685 Defines the function of the corresponding Bluetooth HCI. -bt options
2686 are matched with the HCIs present in the chosen machine type. For
2687 example when emulating a machine with only one HCI built into it, only
2688 the first @code{-bt hci[...]} option is valid and defines the HCI's
2689 logic. The Transport Layer is decided by the machine type. Currently
2690 the machines @code{n800} and @code{n810} have one HCI and all other
2691 machines have none.
2693 @anchor{bt-hcis}
2694 The following three types are recognized:
2696 @table @option
2697 @item -bt hci,null
2698 (default) The corresponding Bluetooth HCI assumes no internal logic
2699 and will not respond to any HCI commands or emit events.
2701 @item -bt hci,host[:@var{id}]
2702 (@code{bluez} only) The corresponding HCI passes commands / events
2703 to / from the physical HCI identified by the name @var{id} (default:
2704 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2705 capable systems like Linux.
2707 @item -bt hci[,vlan=@var{n}]
2708 Add a virtual, standard HCI that will participate in the Bluetooth
2709 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2710 VLANs, devices inside a bluetooth network @var{n} can only communicate
2711 with other devices in the same network (scatternet).
2712 @end table
2714 @item -bt vhci[,vlan=@var{n}]
2715 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2716 to the host bluetooth stack instead of to the emulated target. This
2717 allows the host and target machines to participate in a common scatternet
2718 and communicate. Requires the Linux @code{vhci} driver installed. Can
2719 be used as following:
2721 @example
2722 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2723 @end example
2725 @item -bt device:@var{dev}[,vlan=@var{n}]
2726 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2727 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2728 currently:
2730 @table @option
2731 @item keyboard
2732 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2733 @end table
2734 ETEXI
2736 STEXI
2737 @end table
2738 ETEXI
2739 DEFHEADING()
2741 #ifdef CONFIG_TPM
2742 DEFHEADING(TPM device options:)
2744 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2745 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2746 " use path to provide path to a character device; default is /dev/tpm0\n"
2747 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2748 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2749 QEMU_ARCH_ALL)
2750 STEXI
2752 The general form of a TPM device option is:
2753 @table @option
2755 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2756 @findex -tpmdev
2757 Backend type must be:
2758 @option{passthrough}.
2760 The specific backend type will determine the applicable options.
2761 The @code{-tpmdev} option creates the TPM backend and requires a
2762 @code{-device} option that specifies the TPM frontend interface model.
2764 Options to each backend are described below.
2766 Use 'help' to print all available TPM backend types.
2767 @example
2768 qemu -tpmdev help
2769 @end example
2771 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2773 (Linux-host only) Enable access to the host's TPM using the passthrough
2774 driver.
2776 @option{path} specifies the path to the host's TPM device, i.e., on
2777 a Linux host this would be @code{/dev/tpm0}.
2778 @option{path} is optional and by default @code{/dev/tpm0} is used.
2780 @option{cancel-path} specifies the path to the host TPM device's sysfs
2781 entry allowing for cancellation of an ongoing TPM command.
2782 @option{cancel-path} is optional and by default QEMU will search for the
2783 sysfs entry to use.
2785 Some notes about using the host's TPM with the passthrough driver:
2787 The TPM device accessed by the passthrough driver must not be
2788 used by any other application on the host.
2790 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2791 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2792 TPM again and may therefore not show a TPM-specific menu that would
2793 otherwise allow the user to configure the TPM, e.g., allow the user to
2794 enable/disable or activate/deactivate the TPM.
2795 Further, if TPM ownership is released from within a VM then the host's TPM
2796 will get disabled and deactivated. To enable and activate the
2797 TPM again afterwards, the host has to be rebooted and the user is
2798 required to enter the firmware's menu to enable and activate the TPM.
2799 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2801 To create a passthrough TPM use the following two options:
2802 @example
2803 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2804 @end example
2805 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2806 @code{tpmdev=tpm0} in the device option.
2808 @end table
2810 ETEXI
2812 DEFHEADING()
2814 #endif
2816 DEFHEADING(Linux/Multiboot boot specific:)
2817 STEXI
2819 When using these options, you can use a given Linux or Multiboot
2820 kernel without installing it in the disk image. It can be useful
2821 for easier testing of various kernels.
2823 @table @option
2824 ETEXI
2826 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2827 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2828 STEXI
2829 @item -kernel @var{bzImage}
2830 @findex -kernel
2831 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2832 or in multiboot format.
2833 ETEXI
2835 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2836 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2837 STEXI
2838 @item -append @var{cmdline}
2839 @findex -append
2840 Use @var{cmdline} as kernel command line
2841 ETEXI
2843 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2844 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2845 STEXI
2846 @item -initrd @var{file}
2847 @findex -initrd
2848 Use @var{file} as initial ram disk.
2850 @item -initrd "@var{file1} arg=foo,@var{file2}"
2852 This syntax is only available with multiboot.
2854 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2855 first module.
2856 ETEXI
2858 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2859 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2860 STEXI
2861 @item -dtb @var{file}
2862 @findex -dtb
2863 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2864 on boot.
2865 ETEXI
2867 STEXI
2868 @end table
2869 ETEXI
2870 DEFHEADING()
2872 DEFHEADING(Debug/Expert options:)
2873 STEXI
2874 @table @option
2875 ETEXI
2877 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2878 "-fw_cfg [name=]<name>,file=<file>\n"
2879 " add named fw_cfg entry with contents from file\n"
2880 "-fw_cfg [name=]<name>,string=<str>\n"
2881 " add named fw_cfg entry with contents from string\n",
2882 QEMU_ARCH_ALL)
2883 STEXI
2885 @item -fw_cfg [name=]@var{name},file=@var{file}
2886 @findex -fw_cfg
2887 Add named fw_cfg entry with contents from file @var{file}.
2889 @item -fw_cfg [name=]@var{name},string=@var{str}
2890 Add named fw_cfg entry with contents from string @var{str}.
2892 The terminating NUL character of the contents of @var{str} will not be
2893 included as part of the fw_cfg item data. To insert contents with
2894 embedded NUL characters, you have to use the @var{file} parameter.
2896 The fw_cfg entries are passed by QEMU through to the guest.
2898 Example:
2899 @example
2900 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
2901 @end example
2902 creates an fw_cfg entry named opt/com.mycompany/blob with contents
2903 from ./my_blob.bin.
2905 ETEXI
2907 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
2908 "-serial dev redirect the serial port to char device 'dev'\n",
2909 QEMU_ARCH_ALL)
2910 STEXI
2911 @item -serial @var{dev}
2912 @findex -serial
2913 Redirect the virtual serial port to host character device
2914 @var{dev}. The default device is @code{vc} in graphical mode and
2915 @code{stdio} in non graphical mode.
2917 This option can be used several times to simulate up to 4 serial
2918 ports.
2920 Use @code{-serial none} to disable all serial ports.
2922 Available character devices are:
2923 @table @option
2924 @item vc[:@var{W}x@var{H}]
2925 Virtual console. Optionally, a width and height can be given in pixel with
2926 @example
2927 vc:800x600
2928 @end example
2929 It is also possible to specify width or height in characters:
2930 @example
2931 vc:80Cx24C
2932 @end example
2933 @item pty
2934 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
2935 @item none
2936 No device is allocated.
2937 @item null
2938 void device
2939 @item chardev:@var{id}
2940 Use a named character device defined with the @code{-chardev} option.
2941 @item /dev/XXX
2942 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
2943 parameters are set according to the emulated ones.
2944 @item /dev/parport@var{N}
2945 [Linux only, parallel port only] Use host parallel port
2946 @var{N}. Currently SPP and EPP parallel port features can be used.
2947 @item file:@var{filename}
2948 Write output to @var{filename}. No character can be read.
2949 @item stdio
2950 [Unix only] standard input/output
2951 @item pipe:@var{filename}
2952 name pipe @var{filename}
2953 @item COM@var{n}
2954 [Windows only] Use host serial port @var{n}
2955 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
2956 This implements UDP Net Console.
2957 When @var{remote_host} or @var{src_ip} are not specified
2958 they default to @code{0.0.0.0}.
2959 When not using a specified @var{src_port} a random port is automatically chosen.
2961 If you just want a simple readonly console you can use @code{netcat} or
2962 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
2963 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
2964 will appear in the netconsole session.
2966 If you plan to send characters back via netconsole or you want to stop
2967 and start QEMU a lot of times, you should have QEMU use the same
2968 source port each time by using something like @code{-serial
2969 udp::4555@@:4556} to QEMU. Another approach is to use a patched
2970 version of netcat which can listen to a TCP port and send and receive
2971 characters via udp. If you have a patched version of netcat which
2972 activates telnet remote echo and single char transfer, then you can
2973 use the following options to step up a netcat redirector to allow
2974 telnet on port 5555 to access the QEMU port.
2975 @table @code
2976 @item QEMU Options:
2977 -serial udp::4555@@:4556
2978 @item netcat options:
2979 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
2980 @item telnet options:
2981 localhost 5555
2982 @end table
2984 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
2985 The TCP Net Console has two modes of operation. It can send the serial
2986 I/O to a location or wait for a connection from a location. By default
2987 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
2988 the @var{server} option QEMU will wait for a client socket application
2989 to connect to the port before continuing, unless the @code{nowait}
2990 option was specified. The @code{nodelay} option disables the Nagle buffering
2991 algorithm. The @code{reconnect} option only applies if @var{noserver} is
2992 set, if the connection goes down it will attempt to reconnect at the
2993 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
2994 one TCP connection at a time is accepted. You can use @code{telnet} to
2995 connect to the corresponding character device.
2996 @table @code
2997 @item Example to send tcp console to 192.168.0.2 port 4444
2998 -serial tcp:192.168.0.2:4444
2999 @item Example to listen and wait on port 4444 for connection
3000 -serial tcp::4444,server
3001 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3002 -serial tcp:192.168.0.100:4444,server,nowait
3003 @end table
3005 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3006 The telnet protocol is used instead of raw tcp sockets. The options
3007 work the same as if you had specified @code{-serial tcp}. The
3008 difference is that the port acts like a telnet server or client using
3009 telnet option negotiation. This will also allow you to send the
3010 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3011 sequence. Typically in unix telnet you do it with Control-] and then
3012 type "send break" followed by pressing the enter key.
3014 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3015 A unix domain socket is used instead of a tcp socket. The option works the
3016 same as if you had specified @code{-serial tcp} except the unix domain socket
3017 @var{path} is used for connections.
3019 @item mon:@var{dev_string}
3020 This is a special option to allow the monitor to be multiplexed onto
3021 another serial port. The monitor is accessed with key sequence of
3022 @key{Control-a} and then pressing @key{c}.
3023 @var{dev_string} should be any one of the serial devices specified
3024 above. An example to multiplex the monitor onto a telnet server
3025 listening on port 4444 would be:
3026 @table @code
3027 @item -serial mon:telnet::4444,server,nowait
3028 @end table
3029 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3030 QEMU any more but will be passed to the guest instead.
3032 @item braille
3033 Braille device. This will use BrlAPI to display the braille output on a real
3034 or fake device.
3036 @item msmouse
3037 Three button serial mouse. Configure the guest to use Microsoft protocol.
3038 @end table
3039 ETEXI
3041 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3042 "-parallel dev redirect the parallel port to char device 'dev'\n",
3043 QEMU_ARCH_ALL)
3044 STEXI
3045 @item -parallel @var{dev}
3046 @findex -parallel
3047 Redirect the virtual parallel port to host device @var{dev} (same
3048 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3049 be used to use hardware devices connected on the corresponding host
3050 parallel port.
3052 This option can be used several times to simulate up to 3 parallel
3053 ports.
3055 Use @code{-parallel none} to disable all parallel ports.
3056 ETEXI
3058 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3059 "-monitor dev redirect the monitor to char device 'dev'\n",
3060 QEMU_ARCH_ALL)
3061 STEXI
3062 @item -monitor @var{dev}
3063 @findex -monitor
3064 Redirect the monitor to host device @var{dev} (same devices as the
3065 serial port).
3066 The default device is @code{vc} in graphical mode and @code{stdio} in
3067 non graphical mode.
3068 Use @code{-monitor none} to disable the default monitor.
3069 ETEXI
3070 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3071 "-qmp dev like -monitor but opens in 'control' mode\n",
3072 QEMU_ARCH_ALL)
3073 STEXI
3074 @item -qmp @var{dev}
3075 @findex -qmp
3076 Like -monitor but opens in 'control' mode.
3077 ETEXI
3078 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3079 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3080 QEMU_ARCH_ALL)
3081 STEXI
3082 @item -qmp-pretty @var{dev}
3083 @findex -qmp-pretty
3084 Like -qmp but uses pretty JSON formatting.
3085 ETEXI
3087 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3088 "-mon [chardev=]name[,mode=readline|control][,default]\n", QEMU_ARCH_ALL)
3089 STEXI
3090 @item -mon [chardev=]name[,mode=readline|control][,default]
3091 @findex -mon
3092 Setup monitor on chardev @var{name}.
3093 ETEXI
3095 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3096 "-debugcon dev redirect the debug console to char device 'dev'\n",
3097 QEMU_ARCH_ALL)
3098 STEXI
3099 @item -debugcon @var{dev}
3100 @findex -debugcon
3101 Redirect the debug console to host device @var{dev} (same devices as the
3102 serial port). The debug console is an I/O port which is typically port
3103 0xe9; writing to that I/O port sends output to this device.
3104 The default device is @code{vc} in graphical mode and @code{stdio} in
3105 non graphical mode.
3106 ETEXI
3108 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3109 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3110 STEXI
3111 @item -pidfile @var{file}
3112 @findex -pidfile
3113 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3114 from a script.
3115 ETEXI
3117 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3118 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3119 STEXI
3120 @item -singlestep
3121 @findex -singlestep
3122 Run the emulation in single step mode.
3123 ETEXI
3125 DEF("S", 0, QEMU_OPTION_S, \
3126 "-S freeze CPU at startup (use 'c' to start execution)\n",
3127 QEMU_ARCH_ALL)
3128 STEXI
3129 @item -S
3130 @findex -S
3131 Do not start CPU at startup (you must type 'c' in the monitor).
3132 ETEXI
3134 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3135 "-realtime [mlock=on|off]\n"
3136 " run qemu with realtime features\n"
3137 " mlock=on|off controls mlock support (default: on)\n",
3138 QEMU_ARCH_ALL)
3139 STEXI
3140 @item -realtime mlock=on|off
3141 @findex -realtime
3142 Run qemu with realtime features.
3143 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3144 (enabled by default).
3145 ETEXI
3147 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3148 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3149 STEXI
3150 @item -gdb @var{dev}
3151 @findex -gdb
3152 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3153 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3154 stdio are reasonable use case. The latter is allowing to start QEMU from
3155 within gdb and establish the connection via a pipe:
3156 @example
3157 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3158 @end example
3159 ETEXI
3161 DEF("s", 0, QEMU_OPTION_s, \
3162 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3163 QEMU_ARCH_ALL)
3164 STEXI
3165 @item -s
3166 @findex -s
3167 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3168 (@pxref{gdb_usage}).
3169 ETEXI
3171 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3172 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3173 QEMU_ARCH_ALL)
3174 STEXI
3175 @item -d @var{item1}[,...]
3176 @findex -d
3177 Enable logging of specified items. Use '-d help' for a list of log items.
3178 ETEXI
3180 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3181 "-D logfile output log to logfile (default stderr)\n",
3182 QEMU_ARCH_ALL)
3183 STEXI
3184 @item -D @var{logfile}
3185 @findex -D
3186 Output log in @var{logfile} instead of to stderr
3187 ETEXI
3189 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3190 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3191 QEMU_ARCH_ALL)
3192 STEXI
3193 @item -dfilter @var{range1}[,...]
3194 @findex -dfilter
3195 Filter debug output to that relevant to a range of target addresses. The filter
3196 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3197 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3198 addresses and sizes required. For example:
3199 @example
3200 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3201 @end example
3202 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3203 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3204 block starting at 0xffffffc00005f000.
3205 ETEXI
3207 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3208 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3209 QEMU_ARCH_ALL)
3210 STEXI
3211 @item -L @var{path}
3212 @findex -L
3213 Set the directory for the BIOS, VGA BIOS and keymaps.
3215 To list all the data directories, use @code{-L help}.
3216 ETEXI
3218 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3219 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3220 STEXI
3221 @item -bios @var{file}
3222 @findex -bios
3223 Set the filename for the BIOS.
3224 ETEXI
3226 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3227 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3228 STEXI
3229 @item -enable-kvm
3230 @findex -enable-kvm
3231 Enable KVM full virtualization support. This option is only available
3232 if KVM support is enabled when compiling.
3233 ETEXI
3235 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3236 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3237 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3238 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3239 " warning: should not be used when xend is in use\n",
3240 QEMU_ARCH_ALL)
3241 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3242 "-xen-attach attach to existing xen domain\n"
3243 " xend will use this when starting QEMU\n",
3244 QEMU_ARCH_ALL)
3245 STEXI
3246 @item -xen-domid @var{id}
3247 @findex -xen-domid
3248 Specify xen guest domain @var{id} (XEN only).
3249 @item -xen-create
3250 @findex -xen-create
3251 Create domain using xen hypercalls, bypassing xend.
3252 Warning: should not be used when xend is in use (XEN only).
3253 @item -xen-attach
3254 @findex -xen-attach
3255 Attach to existing xen domain.
3256 xend will use this when starting QEMU (XEN only).
3257 ETEXI
3259 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3260 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3261 STEXI
3262 @item -no-reboot
3263 @findex -no-reboot
3264 Exit instead of rebooting.
3265 ETEXI
3267 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3268 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3269 STEXI
3270 @item -no-shutdown
3271 @findex -no-shutdown
3272 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3273 This allows for instance switching to monitor to commit changes to the
3274 disk image.
3275 ETEXI
3277 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3278 "-loadvm [tag|id]\n" \
3279 " start right away with a saved state (loadvm in monitor)\n",
3280 QEMU_ARCH_ALL)
3281 STEXI
3282 @item -loadvm @var{file}
3283 @findex -loadvm
3284 Start right away with a saved state (@code{loadvm} in monitor)
3285 ETEXI
3287 #ifndef _WIN32
3288 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3289 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3290 #endif
3291 STEXI
3292 @item -daemonize
3293 @findex -daemonize
3294 Daemonize the QEMU process after initialization. QEMU will not detach from
3295 standard IO until it is ready to receive connections on any of its devices.
3296 This option is a useful way for external programs to launch QEMU without having
3297 to cope with initialization race conditions.
3298 ETEXI
3300 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3301 "-option-rom rom load a file, rom, into the option ROM space\n",
3302 QEMU_ARCH_ALL)
3303 STEXI
3304 @item -option-rom @var{file}
3305 @findex -option-rom
3306 Load the contents of @var{file} as an option ROM.
3307 This option is useful to load things like EtherBoot.
3308 ETEXI
3310 HXCOMM Silently ignored for compatibility
3311 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3313 HXCOMM Options deprecated by -rtc
3314 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3315 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3317 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3318 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3319 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3320 QEMU_ARCH_ALL)
3322 STEXI
3324 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3325 @findex -rtc
3326 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3327 UTC or local time, respectively. @code{localtime} is required for correct date in
3328 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3329 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3331 By default the RTC is driven by the host system time. This allows using of the
3332 RTC as accurate reference clock inside the guest, specifically if the host
3333 time is smoothly following an accurate external reference clock, e.g. via NTP.
3334 If you want to isolate the guest time from the host, you can set @option{clock}
3335 to @code{rt} instead. To even prevent it from progressing during suspension,
3336 you can set it to @code{vm}.
3338 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3339 specifically with Windows' ACPI HAL. This option will try to figure out how
3340 many timer interrupts were not processed by the Windows guest and will
3341 re-inject them.
3342 ETEXI
3344 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3345 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>]\n" \
3346 " enable virtual instruction counter with 2^N clock ticks per\n" \
3347 " instruction, enable aligning the host and virtual clocks\n" \
3348 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3349 STEXI
3350 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename}]
3351 @findex -icount
3352 Enable virtual instruction counter. The virtual cpu will execute one
3353 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3354 then the virtual cpu speed will be automatically adjusted to keep virtual
3355 time within a few seconds of real time.
3357 When the virtual cpu is sleeping, the virtual time will advance at default
3358 speed unless @option{sleep=on|off} is specified.
3359 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3360 instantly whenever the virtual cpu goes to sleep mode and will not advance
3361 if no timer is enabled. This behavior give deterministic execution times from
3362 the guest point of view.
3364 Note that while this option can give deterministic behavior, it does not
3365 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3366 order cores with complex cache hierarchies. The number of instructions
3367 executed often has little or no correlation with actual performance.
3369 @option{align=on} will activate the delay algorithm which will try
3370 to synchronise the host clock and the virtual clock. The goal is to
3371 have a guest running at the real frequency imposed by the shift option.
3372 Whenever the guest clock is behind the host clock and if
3373 @option{align=on} is specified then we print a message to the user
3374 to inform about the delay.
3375 Currently this option does not work when @option{shift} is @code{auto}.
3376 Note: The sync algorithm will work for those shift values for which
3377 the guest clock runs ahead of the host clock. Typically this happens
3378 when the shift value is high (how high depends on the host machine).
3380 When @option{rr} option is specified deterministic record/replay is enabled.
3381 Replay log is written into @var{filename} file in record mode and
3382 read from this file in replay mode.
3383 ETEXI
3385 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3386 "-watchdog model\n" \
3387 " enable virtual hardware watchdog [default=none]\n",
3388 QEMU_ARCH_ALL)
3389 STEXI
3390 @item -watchdog @var{model}
3391 @findex -watchdog
3392 Create a virtual hardware watchdog device. Once enabled (by a guest
3393 action), the watchdog must be periodically polled by an agent inside
3394 the guest or else the guest will be restarted. Choose a model for
3395 which your guest has drivers.
3397 The @var{model} is the model of hardware watchdog to emulate. Use
3398 @code{-watchdog help} to list available hardware models. Only one
3399 watchdog can be enabled for a guest.
3401 The following models may be available:
3402 @table @option
3403 @item ib700
3404 iBASE 700 is a very simple ISA watchdog with a single timer.
3405 @item i6300esb
3406 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3407 dual-timer watchdog.
3408 @item diag288
3409 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3410 (currently KVM only).
3411 @end table
3412 ETEXI
3414 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3415 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3416 " action when watchdog fires [default=reset]\n",
3417 QEMU_ARCH_ALL)
3418 STEXI
3419 @item -watchdog-action @var{action}
3420 @findex -watchdog-action
3422 The @var{action} controls what QEMU will do when the watchdog timer
3423 expires.
3424 The default is
3425 @code{reset} (forcefully reset the guest).
3426 Other possible actions are:
3427 @code{shutdown} (attempt to gracefully shutdown the guest),
3428 @code{poweroff} (forcefully poweroff the guest),
3429 @code{pause} (pause the guest),
3430 @code{debug} (print a debug message and continue), or
3431 @code{none} (do nothing).
3433 Note that the @code{shutdown} action requires that the guest responds
3434 to ACPI signals, which it may not be able to do in the sort of
3435 situations where the watchdog would have expired, and thus
3436 @code{-watchdog-action shutdown} is not recommended for production use.
3438 Examples:
3440 @table @code
3441 @item -watchdog i6300esb -watchdog-action pause
3442 @itemx -watchdog ib700
3443 @end table
3444 ETEXI
3446 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3447 "-echr chr set terminal escape character instead of ctrl-a\n",
3448 QEMU_ARCH_ALL)
3449 STEXI
3451 @item -echr @var{numeric_ascii_value}
3452 @findex -echr
3453 Change the escape character used for switching to the monitor when using
3454 monitor and serial sharing. The default is @code{0x01} when using the
3455 @code{-nographic} option. @code{0x01} is equal to pressing
3456 @code{Control-a}. You can select a different character from the ascii
3457 control keys where 1 through 26 map to Control-a through Control-z. For
3458 instance you could use the either of the following to change the escape
3459 character to Control-t.
3460 @table @code
3461 @item -echr 0x14
3462 @itemx -echr 20
3463 @end table
3464 ETEXI
3466 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3467 "-virtioconsole c\n" \
3468 " set virtio console\n", QEMU_ARCH_ALL)
3469 STEXI
3470 @item -virtioconsole @var{c}
3471 @findex -virtioconsole
3472 Set virtio console.
3474 This option is maintained for backward compatibility.
3476 Please use @code{-device virtconsole} for the new way of invocation.
3477 ETEXI
3479 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3480 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3481 STEXI
3482 @item -show-cursor
3483 @findex -show-cursor
3484 Show cursor.
3485 ETEXI
3487 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3488 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3489 STEXI
3490 @item -tb-size @var{n}
3491 @findex -tb-size
3492 Set TB size.
3493 ETEXI
3495 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3496 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3497 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3498 "-incoming unix:socketpath\n" \
3499 " prepare for incoming migration, listen on\n" \
3500 " specified protocol and socket address\n" \
3501 "-incoming fd:fd\n" \
3502 "-incoming exec:cmdline\n" \
3503 " accept incoming migration on given file descriptor\n" \
3504 " or from given external command\n" \
3505 "-incoming defer\n" \
3506 " wait for the URI to be specified via migrate_incoming\n",
3507 QEMU_ARCH_ALL)
3508 STEXI
3509 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3510 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3511 @findex -incoming
3512 Prepare for incoming migration, listen on a given tcp port.
3514 @item -incoming unix:@var{socketpath}
3515 Prepare for incoming migration, listen on a given unix socket.
3517 @item -incoming fd:@var{fd}
3518 Accept incoming migration from a given filedescriptor.
3520 @item -incoming exec:@var{cmdline}
3521 Accept incoming migration as an output from specified external command.
3523 @item -incoming defer
3524 Wait for the URI to be specified via migrate_incoming. The monitor can
3525 be used to change settings (such as migration parameters) prior to issuing
3526 the migrate_incoming to allow the migration to begin.
3527 ETEXI
3529 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3530 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3531 STEXI
3532 @item -nodefaults
3533 @findex -nodefaults
3534 Don't create default devices. Normally, QEMU sets the default devices like serial
3535 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3536 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3537 default devices.
3538 ETEXI
3540 #ifndef _WIN32
3541 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3542 "-chroot dir chroot to dir just before starting the VM\n",
3543 QEMU_ARCH_ALL)
3544 #endif
3545 STEXI
3546 @item -chroot @var{dir}
3547 @findex -chroot
3548 Immediately before starting guest execution, chroot to the specified
3549 directory. Especially useful in combination with -runas.
3550 ETEXI
3552 #ifndef _WIN32
3553 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3554 "-runas user change to user id user just before starting the VM\n",
3555 QEMU_ARCH_ALL)
3556 #endif
3557 STEXI
3558 @item -runas @var{user}
3559 @findex -runas
3560 Immediately before starting guest execution, drop root privileges, switching
3561 to the specified user.
3562 ETEXI
3564 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3565 "-prom-env variable=value\n"
3566 " set OpenBIOS nvram variables\n",
3567 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3568 STEXI
3569 @item -prom-env @var{variable}=@var{value}
3570 @findex -prom-env
3571 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3572 ETEXI
3573 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3574 "-semihosting semihosting mode\n",
3575 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3576 QEMU_ARCH_MIPS)
3577 STEXI
3578 @item -semihosting
3579 @findex -semihosting
3580 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3581 ETEXI
3582 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3583 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3584 " semihosting configuration\n",
3585 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3586 QEMU_ARCH_MIPS)
3587 STEXI
3588 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3589 @findex -semihosting-config
3590 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3591 @table @option
3592 @item target=@code{native|gdb|auto}
3593 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3594 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3595 during debug sessions and @code{native} otherwise.
3596 @item arg=@var{str1},arg=@var{str2},...
3597 Allows the user to pass input arguments, and can be used multiple times to build
3598 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3599 command line is still supported for backward compatibility. If both the
3600 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3601 specified, the former is passed to semihosting as it always takes precedence.
3602 @end table
3603 ETEXI
3604 DEF("old-param", 0, QEMU_OPTION_old_param,
3605 "-old-param old param mode\n", QEMU_ARCH_ARM)
3606 STEXI
3607 @item -old-param
3608 @findex -old-param (ARM)
3609 Old param mode (ARM only).
3610 ETEXI
3612 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3613 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3614 QEMU_ARCH_ALL)
3615 STEXI
3616 @item -sandbox @var{arg}
3617 @findex -sandbox
3618 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3619 disable it. The default is 'off'.
3620 ETEXI
3622 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3623 "-readconfig <file>\n", QEMU_ARCH_ALL)
3624 STEXI
3625 @item -readconfig @var{file}
3626 @findex -readconfig
3627 Read device configuration from @var{file}. This approach is useful when you want to spawn
3628 QEMU process with many command line options but you don't want to exceed the command line
3629 character limit.
3630 ETEXI
3631 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3632 "-writeconfig <file>\n"
3633 " read/write config file\n", QEMU_ARCH_ALL)
3634 STEXI
3635 @item -writeconfig @var{file}
3636 @findex -writeconfig
3637 Write device configuration to @var{file}. The @var{file} can be either filename to save
3638 command line and device configuration into file or dash @code{-}) character to print the
3639 output to stdout. This can be later used as input file for @code{-readconfig} option.
3640 ETEXI
3641 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3642 "-nodefconfig\n"
3643 " do not load default config files at startup\n",
3644 QEMU_ARCH_ALL)
3645 STEXI
3646 @item -nodefconfig
3647 @findex -nodefconfig
3648 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3649 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3650 ETEXI
3651 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3652 "-no-user-config\n"
3653 " do not load user-provided config files at startup\n",
3654 QEMU_ARCH_ALL)
3655 STEXI
3656 @item -no-user-config
3657 @findex -no-user-config
3658 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3659 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3660 files from @var{datadir}.
3661 ETEXI
3662 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3663 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3664 " specify tracing options\n",
3665 QEMU_ARCH_ALL)
3666 STEXI
3667 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3668 HXCOMM HX does not support conditional compilation of text.
3669 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3670 @findex -trace
3671 @include qemu-option-trace.texi
3672 ETEXI
3674 HXCOMM Internal use
3675 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3676 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3678 #ifdef __linux__
3679 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3680 "-enable-fips enable FIPS 140-2 compliance\n",
3681 QEMU_ARCH_ALL)
3682 #endif
3683 STEXI
3684 @item -enable-fips
3685 @findex -enable-fips
3686 Enable FIPS 140-2 compliance mode.
3687 ETEXI
3689 HXCOMM Deprecated by -machine accel=tcg property
3690 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3692 HXCOMM Deprecated by kvm-pit driver properties
3693 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3694 "", QEMU_ARCH_I386)
3696 HXCOMM Deprecated (ignored)
3697 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3699 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3700 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3702 HXCOMM Deprecated (ignored)
3703 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3705 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3706 "-msg timestamp[=on|off]\n"
3707 " change the format of messages\n"
3708 " on|off controls leading timestamps (default:on)\n",
3709 QEMU_ARCH_ALL)
3710 STEXI
3711 @item -msg timestamp[=on|off]
3712 @findex -msg
3713 prepend a timestamp to each log message.(default:on)
3714 ETEXI
3716 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3717 "-dump-vmstate <file>\n"
3718 " Output vmstate information in JSON format to file.\n"
3719 " Use the scripts/vmstate-static-checker.py file to\n"
3720 " check for possible regressions in migration code\n"
3721 " by comparing two such vmstate dumps.\n",
3722 QEMU_ARCH_ALL)
3723 STEXI
3724 @item -dump-vmstate @var{file}
3725 @findex -dump-vmstate
3726 Dump json-encoded vmstate information for current machine type to file
3727 in @var{file}
3728 ETEXI
3730 DEFHEADING(Generic object creation)
3732 DEF("object", HAS_ARG, QEMU_OPTION_object,
3733 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3734 " create a new object of type TYPENAME setting properties\n"
3735 " in the order they are specified. Note that the 'id'\n"
3736 " property must be set. These objects are placed in the\n"
3737 " '/objects' path.\n",
3738 QEMU_ARCH_ALL)
3739 STEXI
3740 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3741 @findex -object
3742 Create a new object of type @var{typename} setting properties
3743 in the order they are specified. Note that the 'id'
3744 property must be set. These objects are placed in the
3745 '/objects' path.
3747 @table @option
3749 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3751 Creates a memory file backend object, which can be used to back
3752 the guest RAM with huge pages. The @option{id} parameter is a
3753 unique ID that will be used to reference this memory region
3754 when configuring the @option{-numa} argument. The @option{size}
3755 option provides the size of the memory region, and accepts
3756 common suffixes, eg @option{500M}. The @option{mem-path} provides
3757 the path to either a shared memory or huge page filesystem mount.
3758 The @option{share} boolean option determines whether the memory
3759 region is marked as private to QEMU, or shared. The latter allows
3760 a co-operating external process to access the QEMU memory region.
3762 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3764 Creates a random number generator backend which obtains entropy from
3765 a device on the host. The @option{id} parameter is a unique ID that
3766 will be used to reference this entropy backend from the @option{virtio-rng}
3767 device. The @option{filename} parameter specifies which file to obtain
3768 entropy from and if omitted defaults to @option{/dev/random}.
3770 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3772 Creates a random number generator backend which obtains entropy from
3773 an external daemon running on the host. The @option{id} parameter is
3774 a unique ID that will be used to reference this entropy backend from
3775 the @option{virtio-rng} device. The @option{chardev} parameter is
3776 the unique ID of a character device backend that provides the connection
3777 to the RNG daemon.
3779 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3781 Creates a TLS anonymous credentials object, which can be used to provide
3782 TLS support on network backends. The @option{id} parameter is a unique
3783 ID which network backends will use to access the credentials. The
3784 @option{endpoint} is either @option{server} or @option{client} depending
3785 on whether the QEMU network backend that uses the credentials will be
3786 acting as a client or as a server. If @option{verify-peer} is enabled
3787 (the default) then once the handshake is completed, the peer credentials
3788 will be verified, though this is a no-op for anonymous credentials.
3790 The @var{dir} parameter tells QEMU where to find the credential
3791 files. For server endpoints, this directory may contain a file
3792 @var{dh-params.pem} providing diffie-hellman parameters to use
3793 for the TLS server. If the file is missing, QEMU will generate
3794 a set of DH parameters at startup. This is a computationally
3795 expensive operation that consumes random pool entropy, so it is
3796 recommended that a persistent set of parameters be generated
3797 upfront and saved.
3799 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
3801 Creates a TLS anonymous credentials object, which can be used to provide
3802 TLS support on network backends. The @option{id} parameter is a unique
3803 ID which network backends will use to access the credentials. The
3804 @option{endpoint} is either @option{server} or @option{client} depending
3805 on whether the QEMU network backend that uses the credentials will be
3806 acting as a client or as a server. If @option{verify-peer} is enabled
3807 (the default) then once the handshake is completed, the peer credentials
3808 will be verified. With x509 certificates, this implies that the clients
3809 must be provided with valid client certificates too.
3811 The @var{dir} parameter tells QEMU where to find the credential
3812 files. For server endpoints, this directory may contain a file
3813 @var{dh-params.pem} providing diffie-hellman parameters to use
3814 for the TLS server. If the file is missing, QEMU will generate
3815 a set of DH parameters at startup. This is a computationally
3816 expensive operation that consumes random pool entropy, so it is
3817 recommended that a persistent set of parameters be generated
3818 upfront and saved.
3820 For x509 certificate credentials the directory will contain further files
3821 providing the x509 certificates. The certificates must be stored
3822 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
3823 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
3824 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
3826 For the @var{server-key.pem} and @var{client-key.pem} files which
3827 contain sensitive private keys, it is possible to use an encrypted
3828 version by providing the @var{passwordid} parameter. This provides
3829 the ID of a previously created @code{secret} object containing the
3830 password for decryption.
3832 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
3834 Interval @var{t} can't be 0, this filter batches the packet delivery: all
3835 packets arriving in a given interval on netdev @var{netdevid} are delayed
3836 until the end of the interval. Interval is in microseconds.
3837 @option{status} is optional that indicate whether the netfilter is
3838 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
3840 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
3842 @option{all}: the filter is attached both to the receive and the transmit
3843 queue of the netdev (default).
3845 @option{rx}: the filter is attached to the receive queue of the netdev,
3846 where it will receive packets sent to the netdev.
3848 @option{tx}: the filter is attached to the transmit queue of the netdev,
3849 where it will receive packets sent by the netdev.
3851 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3853 filter-mirror on netdev @var{netdevid},mirror net packet to chardev
3854 @var{chardevid}
3856 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},
3857 outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3859 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
3860 @var{chardevid},and redirect indev's packet to filter.
3861 Create a filter-redirector we need to differ outdev id from indev id, id can not
3862 be the same. we can just use indev or outdev, but at least one of indev or outdev
3863 need to be specified.
3865 @item -object filter-dump,id=@var{id},netdev=@var{dev},file=@var{filename}][,maxlen=@var{len}]
3867 Dump the network traffic on netdev @var{dev} to the file specified by
3868 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
3869 The file format is libpcap, so it can be analyzed with tools such as tcpdump
3870 or Wireshark.
3872 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
3873 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
3875 Defines a secret to store a password, encryption key, or some other sensitive
3876 data. The sensitive data can either be passed directly via the @var{data}
3877 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
3878 parameter is insecure unless the sensitive data is encrypted.
3880 The sensitive data can be provided in raw format (the default), or base64.
3881 When encoded as JSON, the raw format only supports valid UTF-8 characters,
3882 so base64 is recommended for sending binary data. QEMU will convert from
3883 which ever format is provided to the format it needs internally. eg, an
3884 RBD password can be provided in raw format, even though it will be base64
3885 encoded when passed onto the RBD sever.
3887 For added protection, it is possible to encrypt the data associated with
3888 a secret using the AES-256-CBC cipher. Use of encryption is indicated
3889 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
3890 parameter provides the ID of a previously defined secret that contains
3891 the AES-256 decryption key. This key should be 32-bytes long and be
3892 base64 encoded. The @var{iv} parameter provides the random initialization
3893 vector used for encryption of this particular secret and should be a
3894 base64 encrypted string of the 16-byte IV.
3896 The simplest (insecure) usage is to provide the secret inline
3898 @example
3900 # $QEMU -object secret,id=sec0,data=letmein,format=raw
3902 @end example
3904 The simplest secure usage is to provide the secret via a file
3906 # echo -n "letmein" > mypasswd.txt
3907 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
3909 For greater security, AES-256-CBC should be used. To illustrate usage,
3910 consider the openssl command line tool which can encrypt the data. Note
3911 that when encrypting, the plaintext must be padded to the cipher block
3912 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
3914 First a master key needs to be created in base64 encoding:
3916 @example
3917 # openssl rand -base64 32 > key.b64
3918 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
3919 @end example
3921 Each secret to be encrypted needs to have a random initialization vector
3922 generated. These do not need to be kept secret
3924 @example
3925 # openssl rand -base64 16 > iv.b64
3926 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
3927 @end example
3929 The secret to be defined can now be encrypted, in this case we're
3930 telling openssl to base64 encode the result, but it could be left
3931 as raw bytes if desired.
3933 @example
3934 # SECRET=$(echo -n "letmein" |
3935 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
3936 @end example
3938 When launching QEMU, create a master secret pointing to @code{key.b64}
3939 and specify that to be used to decrypt the user password. Pass the
3940 contents of @code{iv.b64} to the second secret
3942 @example
3943 # $QEMU \
3944 -object secret,id=secmaster0,format=base64,file=key.b64 \
3945 -object secret,id=sec0,keyid=secmaster0,format=base64,\
3946 data=$SECRET,iv=$(<iv.b64)
3947 @end example
3949 @end table
3951 ETEXI
3954 HXCOMM This is the last statement. Insert new options before this line!
3955 STEXI
3956 @end table
3957 ETEXI