Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / hw / mem / memory-device.c
blobe098585cda81dc83e460b4de708e72f2cc02da83
1 /*
2 * Memory Device Interface
4 * Copyright ProfitBricks GmbH 2012
5 * Copyright (C) 2014 Red Hat Inc
6 * Copyright (c) 2018 Red Hat Inc
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14 #include "hw/mem/memory-device.h"
15 #include "qapi/error.h"
16 #include "hw/boards.h"
17 #include "qemu/range.h"
18 #include "hw/virtio/vhost.h"
19 #include "sysemu/kvm.h"
20 #include "exec/address-spaces.h"
21 #include "trace.h"
23 static bool memory_device_is_empty(const MemoryDeviceState *md)
25 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
26 Error *local_err = NULL;
27 MemoryRegion *mr;
29 /* dropping const here is fine as we don't touch the memory region */
30 mr = mdc->get_memory_region((MemoryDeviceState *)md, &local_err);
31 if (local_err) {
32 /* Not empty, we'll report errors later when containing the MR again. */
33 error_free(local_err);
34 return false;
36 return !mr;
39 static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
41 const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
42 const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
43 const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
44 const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
45 const uint64_t addr_a = mdc_a->get_addr(md_a);
46 const uint64_t addr_b = mdc_b->get_addr(md_b);
48 if (addr_a > addr_b) {
49 return 1;
50 } else if (addr_a < addr_b) {
51 return -1;
53 return 0;
56 static int memory_device_build_list(Object *obj, void *opaque)
58 GSList **list = opaque;
60 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
61 DeviceState *dev = DEVICE(obj);
62 if (dev->realized) { /* only realized memory devices matter */
63 *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
67 object_child_foreach(obj, memory_device_build_list, opaque);
68 return 0;
71 static unsigned int memory_device_get_memslots(MemoryDeviceState *md)
73 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
75 if (mdc->get_memslots) {
76 return mdc->get_memslots(md);
78 return 1;
82 * Memslots that are reserved by memory devices (required but still reported
83 * as free from KVM / vhost).
85 static unsigned int get_reserved_memslots(MachineState *ms)
87 if (ms->device_memory->used_memslots >
88 ms->device_memory->required_memslots) {
89 /* This is unexpected, and we warned already in the memory notifier. */
90 return 0;
92 return ms->device_memory->required_memslots -
93 ms->device_memory->used_memslots;
96 unsigned int memory_devices_get_reserved_memslots(void)
98 if (!current_machine->device_memory) {
99 return 0;
101 return get_reserved_memslots(current_machine);
104 bool memory_devices_memslot_auto_decision_active(void)
106 if (!current_machine->device_memory) {
107 return false;
110 return current_machine->device_memory->memslot_auto_decision_active;
113 static unsigned int memory_device_memslot_decision_limit(MachineState *ms,
114 MemoryRegion *mr)
116 const unsigned int reserved = get_reserved_memslots(ms);
117 const uint64_t size = memory_region_size(mr);
118 unsigned int max = vhost_get_max_memslots();
119 unsigned int free = vhost_get_free_memslots();
120 uint64_t available_space;
121 unsigned int memslots;
123 if (kvm_enabled()) {
124 max = MIN(max, kvm_get_max_memslots());
125 free = MIN(free, kvm_get_free_memslots());
129 * If we only have less overall memslots than what we consider reasonable,
130 * just keep it to a minimum.
132 if (max < MEMORY_DEVICES_SAFE_MAX_MEMSLOTS) {
133 return 1;
137 * Consider our soft-limit across all memory devices. We don't really
138 * expect to exceed this limit in reasonable configurations.
140 if (MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT <=
141 ms->device_memory->required_memslots) {
142 return 1;
144 memslots = MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT -
145 ms->device_memory->required_memslots;
148 * Consider the actually still free memslots. This is only relevant if
149 * other memslot consumers would consume *significantly* more memslots than
150 * what we prepared for (> 253). Unlikely, but let's just handle it
151 * cleanly.
153 memslots = MIN(memslots, free - reserved);
154 if (memslots < 1 || unlikely(free < reserved)) {
155 return 1;
158 /* We cannot have any other memory devices? So give all to this device. */
159 if (size == ms->maxram_size - ms->ram_size) {
160 return memslots;
164 * Simple heuristic: equally distribute the memslots over the space
165 * still available for memory devices.
167 available_space = ms->maxram_size - ms->ram_size -
168 ms->device_memory->used_region_size;
169 memslots = (double)memslots * size / available_space;
170 return memslots < 1 ? 1 : memslots;
173 static void memory_device_check_addable(MachineState *ms, MemoryDeviceState *md,
174 MemoryRegion *mr, Error **errp)
176 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
177 const uint64_t used_region_size = ms->device_memory->used_region_size;
178 const uint64_t size = memory_region_size(mr);
179 const unsigned int reserved_memslots = get_reserved_memslots(ms);
180 unsigned int required_memslots, memslot_limit;
183 * Instruct the device to decide how many memslots to use, if applicable,
184 * before we query the number of required memslots the first time.
186 if (mdc->decide_memslots) {
187 memslot_limit = memory_device_memslot_decision_limit(ms, mr);
188 mdc->decide_memslots(md, memslot_limit);
190 required_memslots = memory_device_get_memslots(md);
192 /* we will need memory slots for kvm and vhost */
193 if (kvm_enabled() &&
194 kvm_get_free_memslots() < required_memslots + reserved_memslots) {
195 error_setg(errp, "hypervisor has not enough free memory slots left");
196 return;
198 if (vhost_get_free_memslots() < required_memslots + reserved_memslots) {
199 error_setg(errp, "a used vhost backend has not enough free memory slots left");
200 return;
203 /* will we exceed the total amount of memory specified */
204 if (used_region_size + size < used_region_size ||
205 used_region_size + size > ms->maxram_size - ms->ram_size) {
206 error_setg(errp, "not enough space, currently 0x%" PRIx64
207 " in use of total space for memory devices 0x" RAM_ADDR_FMT,
208 used_region_size, ms->maxram_size - ms->ram_size);
209 return;
214 static uint64_t memory_device_get_free_addr(MachineState *ms,
215 const uint64_t *hint,
216 uint64_t align, uint64_t size,
217 Error **errp)
219 GSList *list = NULL, *item;
220 Range as, new = range_empty;
222 range_init_nofail(&as, ms->device_memory->base,
223 memory_region_size(&ms->device_memory->mr));
225 /* start of address space indicates the maximum alignment we expect */
226 if (!QEMU_IS_ALIGNED(range_lob(&as), align)) {
227 warn_report("the alignment (0x%" PRIx64 ") exceeds the expected"
228 " maximum alignment, memory will get fragmented and not"
229 " all 'maxmem' might be usable for memory devices.",
230 align);
233 if (hint && !QEMU_IS_ALIGNED(*hint, align)) {
234 error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
235 align);
236 return 0;
239 if (hint) {
240 if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) {
241 error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
242 "], usable range for memory devices [0x%" PRIx64 ":0x%"
243 PRIx64 "]", *hint, size, range_lob(&as),
244 range_size(&as));
245 return 0;
247 } else {
248 if (range_init(&new, QEMU_ALIGN_UP(range_lob(&as), align), size)) {
249 error_setg(errp, "can't add memory device, device too big");
250 return 0;
254 /* find address range that will fit new memory device */
255 object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
256 for (item = list; item; item = g_slist_next(item)) {
257 const MemoryDeviceState *md = item->data;
258 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
259 uint64_t next_addr;
260 Range tmp;
262 if (memory_device_is_empty(md)) {
263 continue;
266 range_init_nofail(&tmp, mdc->get_addr(md),
267 memory_device_get_region_size(md, &error_abort));
269 if (range_overlaps_range(&tmp, &new)) {
270 if (hint) {
271 const DeviceState *d = DEVICE(md);
272 error_setg(errp, "address range conflicts with memory device"
273 " id='%s'", d->id ? d->id : "(unnamed)");
274 goto out;
277 next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align);
278 if (!next_addr || range_init(&new, next_addr, range_size(&new))) {
279 range_make_empty(&new);
280 break;
282 } else if (range_lob(&tmp) > range_upb(&new)) {
283 break;
287 if (!range_contains_range(&as, &new)) {
288 error_setg(errp, "could not find position in guest address space for "
289 "memory device - memory fragmented due to alignments");
291 out:
292 g_slist_free(list);
293 return range_lob(&new);
296 MemoryDeviceInfoList *qmp_memory_device_list(void)
298 GSList *devices = NULL, *item;
299 MemoryDeviceInfoList *list = NULL, **tail = &list;
301 object_child_foreach(qdev_get_machine(), memory_device_build_list,
302 &devices);
304 for (item = devices; item; item = g_slist_next(item)) {
305 const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
306 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
307 MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
309 /* Let's query infotmation even for empty memory devices. */
310 mdc->fill_device_info(md, info);
312 QAPI_LIST_APPEND(tail, info);
315 g_slist_free(devices);
317 return list;
320 static int memory_device_plugged_size(Object *obj, void *opaque)
322 uint64_t *size = opaque;
324 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
325 const DeviceState *dev = DEVICE(obj);
326 const MemoryDeviceState *md = MEMORY_DEVICE(obj);
327 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
329 if (dev->realized && !memory_device_is_empty(md)) {
330 *size += mdc->get_plugged_size(md, &error_abort);
334 object_child_foreach(obj, memory_device_plugged_size, opaque);
335 return 0;
338 uint64_t get_plugged_memory_size(void)
340 uint64_t size = 0;
342 memory_device_plugged_size(qdev_get_machine(), &size);
344 return size;
347 void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
348 const uint64_t *legacy_align, Error **errp)
350 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
351 Error *local_err = NULL;
352 uint64_t addr, align = 0;
353 MemoryRegion *mr;
355 /* We support empty memory devices even without device memory. */
356 if (memory_device_is_empty(md)) {
357 return;
360 if (!ms->device_memory) {
361 error_setg(errp, "the configuration is not prepared for memory devices"
362 " (e.g., for memory hotplug), consider specifying the"
363 " maxmem option");
364 return;
367 mr = mdc->get_memory_region(md, &local_err);
368 if (local_err) {
369 goto out;
372 memory_device_check_addable(ms, md, mr, &local_err);
373 if (local_err) {
374 goto out;
378 * We always want the memory region size to be multiples of the memory
379 * region alignment: for example, DIMMs with 1G+1byte size don't make
380 * any sense. Note that we don't check that the size is multiples
381 * of any additional alignment requirements the memory device might
382 * have when it comes to the address in physical address space.
384 if (!QEMU_IS_ALIGNED(memory_region_size(mr),
385 memory_region_get_alignment(mr))) {
386 error_setg(errp, "backend memory size must be multiple of 0x%"
387 PRIx64, memory_region_get_alignment(mr));
388 return;
391 if (legacy_align) {
392 align = *legacy_align;
393 } else {
394 if (mdc->get_min_alignment) {
395 align = mdc->get_min_alignment(md);
397 align = MAX(align, memory_region_get_alignment(mr));
399 addr = mdc->get_addr(md);
400 addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
401 memory_region_size(mr), &local_err);
402 if (local_err) {
403 goto out;
405 mdc->set_addr(md, addr, &local_err);
406 if (!local_err) {
407 trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
408 addr);
410 out:
411 error_propagate(errp, local_err);
414 void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
416 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
417 unsigned int memslots;
418 uint64_t addr;
419 MemoryRegion *mr;
421 if (memory_device_is_empty(md)) {
422 return;
425 memslots = memory_device_get_memslots(md);
426 addr = mdc->get_addr(md);
429 * We expect that a previous call to memory_device_pre_plug() succeeded, so
430 * it can't fail at this point.
432 mr = mdc->get_memory_region(md, &error_abort);
433 g_assert(ms->device_memory);
435 ms->device_memory->used_region_size += memory_region_size(mr);
436 ms->device_memory->required_memslots += memslots;
437 if (mdc->decide_memslots && memslots > 1) {
438 ms->device_memory->memslot_auto_decision_active++;
441 memory_region_add_subregion(&ms->device_memory->mr,
442 addr - ms->device_memory->base, mr);
443 trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
446 void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
448 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
449 const unsigned int memslots = memory_device_get_memslots(md);
450 MemoryRegion *mr;
452 if (memory_device_is_empty(md)) {
453 return;
457 * We expect that a previous call to memory_device_pre_plug() succeeded, so
458 * it can't fail at this point.
460 mr = mdc->get_memory_region(md, &error_abort);
461 g_assert(ms->device_memory);
463 memory_region_del_subregion(&ms->device_memory->mr, mr);
465 if (mdc->decide_memslots && memslots > 1) {
466 ms->device_memory->memslot_auto_decision_active--;
468 ms->device_memory->used_region_size -= memory_region_size(mr);
469 ms->device_memory->required_memslots -= memslots;
470 trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
471 mdc->get_addr(md));
474 uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
475 Error **errp)
477 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
478 MemoryRegion *mr;
480 /* dropping const here is fine as we don't touch the memory region */
481 mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
482 if (!mr) {
483 return 0;
486 return memory_region_size(mr);
489 static void memory_devices_region_mod(MemoryListener *listener,
490 MemoryRegionSection *mrs, bool add)
492 DeviceMemoryState *dms = container_of(listener, DeviceMemoryState,
493 listener);
495 if (!memory_region_is_ram(mrs->mr)) {
496 warn_report("Unexpected memory region mapped into device memory region.");
497 return;
501 * The expectation is that each distinct RAM memory region section in
502 * our region for memory devices consumes exactly one memslot in KVM
503 * and in vhost. For vhost, this is true, except:
504 * * ROM memory regions don't consume a memslot. These get used very
505 * rarely for memory devices (R/O NVDIMMs).
506 * * Memslots without a fd (memory-backend-ram) don't necessarily
507 * consume a memslot. Such setups are quite rare and possibly bogus:
508 * the memory would be inaccessible by such vhost devices.
510 * So for vhost, in corner cases we might over-estimate the number of
511 * memslots that are currently used or that might still be reserved
512 * (required - used).
514 dms->used_memslots += add ? 1 : -1;
516 if (dms->used_memslots > dms->required_memslots) {
517 warn_report("Memory devices use more memory slots than indicated as required.");
521 static void memory_devices_region_add(MemoryListener *listener,
522 MemoryRegionSection *mrs)
524 return memory_devices_region_mod(listener, mrs, true);
527 static void memory_devices_region_del(MemoryListener *listener,
528 MemoryRegionSection *mrs)
530 return memory_devices_region_mod(listener, mrs, false);
533 void machine_memory_devices_init(MachineState *ms, hwaddr base, uint64_t size)
535 g_assert(size);
536 g_assert(!ms->device_memory);
537 ms->device_memory = g_new0(DeviceMemoryState, 1);
538 ms->device_memory->base = base;
540 memory_region_init(&ms->device_memory->mr, OBJECT(ms), "device-memory",
541 size);
542 address_space_init(&ms->device_memory->as, &ms->device_memory->mr,
543 "device-memory");
544 memory_region_add_subregion(get_system_memory(), ms->device_memory->base,
545 &ms->device_memory->mr);
547 /* Track the number of memslots used by memory devices. */
548 ms->device_memory->listener.region_add = memory_devices_region_add;
549 ms->device_memory->listener.region_del = memory_devices_region_del;
550 memory_listener_register(&ms->device_memory->listener,
551 &ms->device_memory->as);
554 static const TypeInfo memory_device_info = {
555 .name = TYPE_MEMORY_DEVICE,
556 .parent = TYPE_INTERFACE,
557 .class_size = sizeof(MemoryDeviceClass),
560 static void memory_device_register_types(void)
562 type_register_static(&memory_device_info);
565 type_init(memory_device_register_types)