util/qemu-sockets: revert Yoda Conditions to normal
[qemu/ar7.git] / exec.c
blobce3fb9ec8ef731a74cdf81f378110239ed51e129
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
47 #include "trace.h"
48 #endif
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
57 #include "exec/log.h"
59 #include "migration/vmstate.h"
61 #include "qemu/range.h"
62 #ifndef _WIN32
63 #include "qemu/mmap-alloc.h"
64 #endif
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
72 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
74 static MemoryRegion *system_memory;
75 static MemoryRegion *system_io;
77 AddressSpace address_space_io;
78 AddressSpace address_space_memory;
80 MemoryRegion io_mem_rom, io_mem_notdirty;
81 static MemoryRegion io_mem_unassigned;
83 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84 #define RAM_PREALLOC (1 << 0)
86 /* RAM is mmap-ed with MAP_SHARED */
87 #define RAM_SHARED (1 << 1)
89 /* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
92 #define RAM_RESIZEABLE (1 << 2)
94 #endif
96 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
97 /* current CPU in the current thread. It is only valid inside
98 cpu_exec() */
99 __thread CPUState *current_cpu;
100 /* 0 = Do not count executed instructions.
101 1 = Precise instruction counting.
102 2 = Adaptive rate instruction counting. */
103 int use_icount;
105 #if !defined(CONFIG_USER_ONLY)
107 typedef struct PhysPageEntry PhysPageEntry;
109 struct PhysPageEntry {
110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
111 uint32_t skip : 6;
112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
113 uint32_t ptr : 26;
116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
118 /* Size of the L2 (and L3, etc) page tables. */
119 #define ADDR_SPACE_BITS 64
121 #define P_L2_BITS 9
122 #define P_L2_SIZE (1 << P_L2_BITS)
124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
126 typedef PhysPageEntry Node[P_L2_SIZE];
128 typedef struct PhysPageMap {
129 struct rcu_head rcu;
131 unsigned sections_nb;
132 unsigned sections_nb_alloc;
133 unsigned nodes_nb;
134 unsigned nodes_nb_alloc;
135 Node *nodes;
136 MemoryRegionSection *sections;
137 } PhysPageMap;
139 struct AddressSpaceDispatch {
140 struct rcu_head rcu;
142 MemoryRegionSection *mru_section;
143 /* This is a multi-level map on the physical address space.
144 * The bottom level has pointers to MemoryRegionSections.
146 PhysPageEntry phys_map;
147 PhysPageMap map;
148 AddressSpace *as;
151 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152 typedef struct subpage_t {
153 MemoryRegion iomem;
154 AddressSpace *as;
155 hwaddr base;
156 uint16_t sub_section[TARGET_PAGE_SIZE];
157 } subpage_t;
159 #define PHYS_SECTION_UNASSIGNED 0
160 #define PHYS_SECTION_NOTDIRTY 1
161 #define PHYS_SECTION_ROM 2
162 #define PHYS_SECTION_WATCH 3
164 static void io_mem_init(void);
165 static void memory_map_init(void);
166 static void tcg_commit(MemoryListener *listener);
168 static MemoryRegion io_mem_watch;
171 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
172 * @cpu: the CPU whose AddressSpace this is
173 * @as: the AddressSpace itself
174 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
175 * @tcg_as_listener: listener for tracking changes to the AddressSpace
177 struct CPUAddressSpace {
178 CPUState *cpu;
179 AddressSpace *as;
180 struct AddressSpaceDispatch *memory_dispatch;
181 MemoryListener tcg_as_listener;
184 #endif
186 #if !defined(CONFIG_USER_ONLY)
188 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
190 static unsigned alloc_hint = 16;
191 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
192 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
193 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
194 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
195 alloc_hint = map->nodes_nb_alloc;
199 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
201 unsigned i;
202 uint32_t ret;
203 PhysPageEntry e;
204 PhysPageEntry *p;
206 ret = map->nodes_nb++;
207 p = map->nodes[ret];
208 assert(ret != PHYS_MAP_NODE_NIL);
209 assert(ret != map->nodes_nb_alloc);
211 e.skip = leaf ? 0 : 1;
212 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
213 for (i = 0; i < P_L2_SIZE; ++i) {
214 memcpy(&p[i], &e, sizeof(e));
216 return ret;
219 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
220 hwaddr *index, hwaddr *nb, uint16_t leaf,
221 int level)
223 PhysPageEntry *p;
224 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
226 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
227 lp->ptr = phys_map_node_alloc(map, level == 0);
229 p = map->nodes[lp->ptr];
230 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
232 while (*nb && lp < &p[P_L2_SIZE]) {
233 if ((*index & (step - 1)) == 0 && *nb >= step) {
234 lp->skip = 0;
235 lp->ptr = leaf;
236 *index += step;
237 *nb -= step;
238 } else {
239 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
241 ++lp;
245 static void phys_page_set(AddressSpaceDispatch *d,
246 hwaddr index, hwaddr nb,
247 uint16_t leaf)
249 /* Wildly overreserve - it doesn't matter much. */
250 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
252 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
255 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
256 * and update our entry so we can skip it and go directly to the destination.
258 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
260 unsigned valid_ptr = P_L2_SIZE;
261 int valid = 0;
262 PhysPageEntry *p;
263 int i;
265 if (lp->ptr == PHYS_MAP_NODE_NIL) {
266 return;
269 p = nodes[lp->ptr];
270 for (i = 0; i < P_L2_SIZE; i++) {
271 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
272 continue;
275 valid_ptr = i;
276 valid++;
277 if (p[i].skip) {
278 phys_page_compact(&p[i], nodes, compacted);
282 /* We can only compress if there's only one child. */
283 if (valid != 1) {
284 return;
287 assert(valid_ptr < P_L2_SIZE);
289 /* Don't compress if it won't fit in the # of bits we have. */
290 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
291 return;
294 lp->ptr = p[valid_ptr].ptr;
295 if (!p[valid_ptr].skip) {
296 /* If our only child is a leaf, make this a leaf. */
297 /* By design, we should have made this node a leaf to begin with so we
298 * should never reach here.
299 * But since it's so simple to handle this, let's do it just in case we
300 * change this rule.
302 lp->skip = 0;
303 } else {
304 lp->skip += p[valid_ptr].skip;
308 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
310 DECLARE_BITMAP(compacted, nodes_nb);
312 if (d->phys_map.skip) {
313 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
317 static inline bool section_covers_addr(const MemoryRegionSection *section,
318 hwaddr addr)
320 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
321 * the section must cover the entire address space.
323 return section->size.hi ||
324 range_covers_byte(section->offset_within_address_space,
325 section->size.lo, addr);
328 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
329 Node *nodes, MemoryRegionSection *sections)
331 PhysPageEntry *p;
332 hwaddr index = addr >> TARGET_PAGE_BITS;
333 int i;
335 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
336 if (lp.ptr == PHYS_MAP_NODE_NIL) {
337 return &sections[PHYS_SECTION_UNASSIGNED];
339 p = nodes[lp.ptr];
340 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
343 if (section_covers_addr(&sections[lp.ptr], addr)) {
344 return &sections[lp.ptr];
345 } else {
346 return &sections[PHYS_SECTION_UNASSIGNED];
350 bool memory_region_is_unassigned(MemoryRegion *mr)
352 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
353 && mr != &io_mem_watch;
356 /* Called from RCU critical section */
357 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
358 hwaddr addr,
359 bool resolve_subpage)
361 MemoryRegionSection *section = atomic_read(&d->mru_section);
362 subpage_t *subpage;
363 bool update;
365 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
366 section_covers_addr(section, addr)) {
367 update = false;
368 } else {
369 section = phys_page_find(d->phys_map, addr, d->map.nodes,
370 d->map.sections);
371 update = true;
373 if (resolve_subpage && section->mr->subpage) {
374 subpage = container_of(section->mr, subpage_t, iomem);
375 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
377 if (update) {
378 atomic_set(&d->mru_section, section);
380 return section;
383 /* Called from RCU critical section */
384 static MemoryRegionSection *
385 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
386 hwaddr *plen, bool resolve_subpage)
388 MemoryRegionSection *section;
389 MemoryRegion *mr;
390 Int128 diff;
392 section = address_space_lookup_region(d, addr, resolve_subpage);
393 /* Compute offset within MemoryRegionSection */
394 addr -= section->offset_within_address_space;
396 /* Compute offset within MemoryRegion */
397 *xlat = addr + section->offset_within_region;
399 mr = section->mr;
401 /* MMIO registers can be expected to perform full-width accesses based only
402 * on their address, without considering adjacent registers that could
403 * decode to completely different MemoryRegions. When such registers
404 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
405 * regions overlap wildly. For this reason we cannot clamp the accesses
406 * here.
408 * If the length is small (as is the case for address_space_ldl/stl),
409 * everything works fine. If the incoming length is large, however,
410 * the caller really has to do the clamping through memory_access_size.
412 if (memory_region_is_ram(mr)) {
413 diff = int128_sub(section->size, int128_make64(addr));
414 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
416 return section;
419 /* Called from RCU critical section */
420 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
421 hwaddr *xlat, hwaddr *plen,
422 bool is_write)
424 IOMMUTLBEntry iotlb;
425 MemoryRegionSection *section;
426 MemoryRegion *mr;
428 for (;;) {
429 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
430 section = address_space_translate_internal(d, addr, &addr, plen, true);
431 mr = section->mr;
433 if (!mr->iommu_ops) {
434 break;
437 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
438 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
439 | (addr & iotlb.addr_mask));
440 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
441 if (!(iotlb.perm & (1 << is_write))) {
442 mr = &io_mem_unassigned;
443 break;
446 as = iotlb.target_as;
449 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
450 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
451 *plen = MIN(page, *plen);
454 *xlat = addr;
455 return mr;
458 /* Called from RCU critical section */
459 MemoryRegionSection *
460 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
461 hwaddr *xlat, hwaddr *plen)
463 MemoryRegionSection *section;
464 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
466 section = address_space_translate_internal(d, addr, xlat, plen, false);
468 assert(!section->mr->iommu_ops);
469 return section;
471 #endif
473 #if !defined(CONFIG_USER_ONLY)
475 static int cpu_common_post_load(void *opaque, int version_id)
477 CPUState *cpu = opaque;
479 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
480 version_id is increased. */
481 cpu->interrupt_request &= ~0x01;
482 tlb_flush(cpu, 1);
484 return 0;
487 static int cpu_common_pre_load(void *opaque)
489 CPUState *cpu = opaque;
491 cpu->exception_index = -1;
493 return 0;
496 static bool cpu_common_exception_index_needed(void *opaque)
498 CPUState *cpu = opaque;
500 return tcg_enabled() && cpu->exception_index != -1;
503 static const VMStateDescription vmstate_cpu_common_exception_index = {
504 .name = "cpu_common/exception_index",
505 .version_id = 1,
506 .minimum_version_id = 1,
507 .needed = cpu_common_exception_index_needed,
508 .fields = (VMStateField[]) {
509 VMSTATE_INT32(exception_index, CPUState),
510 VMSTATE_END_OF_LIST()
514 static bool cpu_common_crash_occurred_needed(void *opaque)
516 CPUState *cpu = opaque;
518 return cpu->crash_occurred;
521 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
522 .name = "cpu_common/crash_occurred",
523 .version_id = 1,
524 .minimum_version_id = 1,
525 .needed = cpu_common_crash_occurred_needed,
526 .fields = (VMStateField[]) {
527 VMSTATE_BOOL(crash_occurred, CPUState),
528 VMSTATE_END_OF_LIST()
532 const VMStateDescription vmstate_cpu_common = {
533 .name = "cpu_common",
534 .version_id = 1,
535 .minimum_version_id = 1,
536 .pre_load = cpu_common_pre_load,
537 .post_load = cpu_common_post_load,
538 .fields = (VMStateField[]) {
539 VMSTATE_UINT32(halted, CPUState),
540 VMSTATE_UINT32(interrupt_request, CPUState),
541 VMSTATE_END_OF_LIST()
543 .subsections = (const VMStateDescription*[]) {
544 &vmstate_cpu_common_exception_index,
545 &vmstate_cpu_common_crash_occurred,
546 NULL
550 #endif
552 CPUState *qemu_get_cpu(int index)
554 CPUState *cpu;
556 CPU_FOREACH(cpu) {
557 if (cpu->cpu_index == index) {
558 return cpu;
562 return NULL;
565 #if !defined(CONFIG_USER_ONLY)
566 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
568 CPUAddressSpace *newas;
570 /* Target code should have set num_ases before calling us */
571 assert(asidx < cpu->num_ases);
573 if (asidx == 0) {
574 /* address space 0 gets the convenience alias */
575 cpu->as = as;
578 /* KVM cannot currently support multiple address spaces. */
579 assert(asidx == 0 || !kvm_enabled());
581 if (!cpu->cpu_ases) {
582 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
585 newas = &cpu->cpu_ases[asidx];
586 newas->cpu = cpu;
587 newas->as = as;
588 if (tcg_enabled()) {
589 newas->tcg_as_listener.commit = tcg_commit;
590 memory_listener_register(&newas->tcg_as_listener, as);
594 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
596 /* Return the AddressSpace corresponding to the specified index */
597 return cpu->cpu_ases[asidx].as;
599 #endif
601 static bool cpu_index_auto_assigned;
603 static int cpu_get_free_index(void)
605 CPUState *some_cpu;
606 int cpu_index = 0;
608 cpu_index_auto_assigned = true;
609 CPU_FOREACH(some_cpu) {
610 cpu_index++;
612 return cpu_index;
615 void cpu_exec_exit(CPUState *cpu)
617 CPUClass *cc = CPU_GET_CLASS(cpu);
619 cpu_list_lock();
620 if (!QTAILQ_IN_USE(cpu, node)) {
621 /* there is nothing to undo since cpu_exec_init() hasn't been called */
622 cpu_list_unlock();
623 return;
626 assert(!(cpu_index_auto_assigned && cpu != QTAILQ_LAST(&cpus, CPUTailQ)));
628 QTAILQ_REMOVE(&cpus, cpu, node);
629 cpu->cpu_index = UNASSIGNED_CPU_INDEX;
630 cpu_list_unlock();
632 if (cc->vmsd != NULL) {
633 vmstate_unregister(NULL, cc->vmsd, cpu);
635 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
636 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
640 void cpu_exec_init(CPUState *cpu, Error **errp)
642 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
643 Error *local_err ATTRIBUTE_UNUSED = NULL;
645 cpu->as = NULL;
646 cpu->num_ases = 0;
648 #ifndef CONFIG_USER_ONLY
649 cpu->thread_id = qemu_get_thread_id();
651 /* This is a softmmu CPU object, so create a property for it
652 * so users can wire up its memory. (This can't go in qom/cpu.c
653 * because that file is compiled only once for both user-mode
654 * and system builds.) The default if no link is set up is to use
655 * the system address space.
657 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
658 (Object **)&cpu->memory,
659 qdev_prop_allow_set_link_before_realize,
660 OBJ_PROP_LINK_UNREF_ON_RELEASE,
661 &error_abort);
662 cpu->memory = system_memory;
663 object_ref(OBJECT(cpu->memory));
664 #endif
666 cpu_list_lock();
667 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
668 cpu->cpu_index = cpu_get_free_index();
669 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
670 } else {
671 assert(!cpu_index_auto_assigned);
673 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
674 cpu_list_unlock();
676 #ifndef CONFIG_USER_ONLY
677 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
678 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
680 if (cc->vmsd != NULL) {
681 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
683 #endif
686 #if defined(CONFIG_USER_ONLY)
687 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
689 tb_invalidate_phys_page_range(pc, pc + 1, 0);
691 #else
692 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
694 MemTxAttrs attrs;
695 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
696 int asidx = cpu_asidx_from_attrs(cpu, attrs);
697 if (phys != -1) {
698 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
699 phys | (pc & ~TARGET_PAGE_MASK));
702 #endif
704 #if defined(CONFIG_USER_ONLY)
705 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
710 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
711 int flags)
713 return -ENOSYS;
716 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
720 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
721 int flags, CPUWatchpoint **watchpoint)
723 return -ENOSYS;
725 #else
726 /* Add a watchpoint. */
727 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
728 int flags, CPUWatchpoint **watchpoint)
730 CPUWatchpoint *wp;
732 /* forbid ranges which are empty or run off the end of the address space */
733 if (len == 0 || (addr + len - 1) < addr) {
734 error_report("tried to set invalid watchpoint at %"
735 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
736 return -EINVAL;
738 wp = g_malloc(sizeof(*wp));
740 wp->vaddr = addr;
741 wp->len = len;
742 wp->flags = flags;
744 /* keep all GDB-injected watchpoints in front */
745 if (flags & BP_GDB) {
746 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
747 } else {
748 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
751 tlb_flush_page(cpu, addr);
753 if (watchpoint)
754 *watchpoint = wp;
755 return 0;
758 /* Remove a specific watchpoint. */
759 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
760 int flags)
762 CPUWatchpoint *wp;
764 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
765 if (addr == wp->vaddr && len == wp->len
766 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
767 cpu_watchpoint_remove_by_ref(cpu, wp);
768 return 0;
771 return -ENOENT;
774 /* Remove a specific watchpoint by reference. */
775 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
777 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
779 tlb_flush_page(cpu, watchpoint->vaddr);
781 g_free(watchpoint);
784 /* Remove all matching watchpoints. */
785 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
787 CPUWatchpoint *wp, *next;
789 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
790 if (wp->flags & mask) {
791 cpu_watchpoint_remove_by_ref(cpu, wp);
796 /* Return true if this watchpoint address matches the specified
797 * access (ie the address range covered by the watchpoint overlaps
798 * partially or completely with the address range covered by the
799 * access).
801 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
802 vaddr addr,
803 vaddr len)
805 /* We know the lengths are non-zero, but a little caution is
806 * required to avoid errors in the case where the range ends
807 * exactly at the top of the address space and so addr + len
808 * wraps round to zero.
810 vaddr wpend = wp->vaddr + wp->len - 1;
811 vaddr addrend = addr + len - 1;
813 return !(addr > wpend || wp->vaddr > addrend);
816 #endif
818 /* Add a breakpoint. */
819 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
820 CPUBreakpoint **breakpoint)
822 CPUBreakpoint *bp;
824 bp = g_malloc(sizeof(*bp));
826 bp->pc = pc;
827 bp->flags = flags;
829 /* keep all GDB-injected breakpoints in front */
830 if (flags & BP_GDB) {
831 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
832 } else {
833 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
836 breakpoint_invalidate(cpu, pc);
838 if (breakpoint) {
839 *breakpoint = bp;
841 return 0;
844 /* Remove a specific breakpoint. */
845 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
847 CPUBreakpoint *bp;
849 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
850 if (bp->pc == pc && bp->flags == flags) {
851 cpu_breakpoint_remove_by_ref(cpu, bp);
852 return 0;
855 return -ENOENT;
858 /* Remove a specific breakpoint by reference. */
859 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
861 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
863 breakpoint_invalidate(cpu, breakpoint->pc);
865 g_free(breakpoint);
868 /* Remove all matching breakpoints. */
869 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
871 CPUBreakpoint *bp, *next;
873 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
874 if (bp->flags & mask) {
875 cpu_breakpoint_remove_by_ref(cpu, bp);
880 /* enable or disable single step mode. EXCP_DEBUG is returned by the
881 CPU loop after each instruction */
882 void cpu_single_step(CPUState *cpu, int enabled)
884 if (cpu->singlestep_enabled != enabled) {
885 cpu->singlestep_enabled = enabled;
886 if (kvm_enabled()) {
887 kvm_update_guest_debug(cpu, 0);
888 } else {
889 /* must flush all the translated code to avoid inconsistencies */
890 /* XXX: only flush what is necessary */
891 tb_flush(cpu);
896 void cpu_abort(CPUState *cpu, const char *fmt, ...)
898 va_list ap;
899 va_list ap2;
901 va_start(ap, fmt);
902 va_copy(ap2, ap);
903 fprintf(stderr, "qemu: fatal: ");
904 vfprintf(stderr, fmt, ap);
905 fprintf(stderr, "\n");
906 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
907 if (qemu_log_separate()) {
908 qemu_log("qemu: fatal: ");
909 qemu_log_vprintf(fmt, ap2);
910 qemu_log("\n");
911 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
912 qemu_log_flush();
913 qemu_log_close();
915 va_end(ap2);
916 va_end(ap);
917 replay_finish();
918 #if defined(CONFIG_USER_ONLY)
920 struct sigaction act;
921 sigfillset(&act.sa_mask);
922 act.sa_handler = SIG_DFL;
923 sigaction(SIGABRT, &act, NULL);
925 #endif
926 abort();
929 #if !defined(CONFIG_USER_ONLY)
930 /* Called from RCU critical section */
931 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
933 RAMBlock *block;
935 block = atomic_rcu_read(&ram_list.mru_block);
936 if (block && addr - block->offset < block->max_length) {
937 return block;
939 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
940 if (addr - block->offset < block->max_length) {
941 goto found;
945 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
946 abort();
948 found:
949 /* It is safe to write mru_block outside the iothread lock. This
950 * is what happens:
952 * mru_block = xxx
953 * rcu_read_unlock()
954 * xxx removed from list
955 * rcu_read_lock()
956 * read mru_block
957 * mru_block = NULL;
958 * call_rcu(reclaim_ramblock, xxx);
959 * rcu_read_unlock()
961 * atomic_rcu_set is not needed here. The block was already published
962 * when it was placed into the list. Here we're just making an extra
963 * copy of the pointer.
965 ram_list.mru_block = block;
966 return block;
969 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
971 CPUState *cpu;
972 ram_addr_t start1;
973 RAMBlock *block;
974 ram_addr_t end;
976 end = TARGET_PAGE_ALIGN(start + length);
977 start &= TARGET_PAGE_MASK;
979 rcu_read_lock();
980 block = qemu_get_ram_block(start);
981 assert(block == qemu_get_ram_block(end - 1));
982 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
983 CPU_FOREACH(cpu) {
984 tlb_reset_dirty(cpu, start1, length);
986 rcu_read_unlock();
989 /* Note: start and end must be within the same ram block. */
990 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
991 ram_addr_t length,
992 unsigned client)
994 DirtyMemoryBlocks *blocks;
995 unsigned long end, page;
996 bool dirty = false;
998 if (length == 0) {
999 return false;
1002 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1003 page = start >> TARGET_PAGE_BITS;
1005 rcu_read_lock();
1007 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1009 while (page < end) {
1010 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1011 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1012 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1014 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1015 offset, num);
1016 page += num;
1019 rcu_read_unlock();
1021 if (dirty && tcg_enabled()) {
1022 tlb_reset_dirty_range_all(start, length);
1025 return dirty;
1028 /* Called from RCU critical section */
1029 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1030 MemoryRegionSection *section,
1031 target_ulong vaddr,
1032 hwaddr paddr, hwaddr xlat,
1033 int prot,
1034 target_ulong *address)
1036 hwaddr iotlb;
1037 CPUWatchpoint *wp;
1039 if (memory_region_is_ram(section->mr)) {
1040 /* Normal RAM. */
1041 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1042 if (!section->readonly) {
1043 iotlb |= PHYS_SECTION_NOTDIRTY;
1044 } else {
1045 iotlb |= PHYS_SECTION_ROM;
1047 } else {
1048 AddressSpaceDispatch *d;
1050 d = atomic_rcu_read(&section->address_space->dispatch);
1051 iotlb = section - d->map.sections;
1052 iotlb += xlat;
1055 /* Make accesses to pages with watchpoints go via the
1056 watchpoint trap routines. */
1057 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1058 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1059 /* Avoid trapping reads of pages with a write breakpoint. */
1060 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1061 iotlb = PHYS_SECTION_WATCH + paddr;
1062 *address |= TLB_MMIO;
1063 break;
1068 return iotlb;
1070 #endif /* defined(CONFIG_USER_ONLY) */
1072 #if !defined(CONFIG_USER_ONLY)
1074 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1075 uint16_t section);
1076 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1078 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1079 qemu_anon_ram_alloc;
1082 * Set a custom physical guest memory alloator.
1083 * Accelerators with unusual needs may need this. Hopefully, we can
1084 * get rid of it eventually.
1086 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1088 phys_mem_alloc = alloc;
1091 static uint16_t phys_section_add(PhysPageMap *map,
1092 MemoryRegionSection *section)
1094 /* The physical section number is ORed with a page-aligned
1095 * pointer to produce the iotlb entries. Thus it should
1096 * never overflow into the page-aligned value.
1098 assert(map->sections_nb < TARGET_PAGE_SIZE);
1100 if (map->sections_nb == map->sections_nb_alloc) {
1101 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1102 map->sections = g_renew(MemoryRegionSection, map->sections,
1103 map->sections_nb_alloc);
1105 map->sections[map->sections_nb] = *section;
1106 memory_region_ref(section->mr);
1107 return map->sections_nb++;
1110 static void phys_section_destroy(MemoryRegion *mr)
1112 bool have_sub_page = mr->subpage;
1114 memory_region_unref(mr);
1116 if (have_sub_page) {
1117 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1118 object_unref(OBJECT(&subpage->iomem));
1119 g_free(subpage);
1123 static void phys_sections_free(PhysPageMap *map)
1125 while (map->sections_nb > 0) {
1126 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1127 phys_section_destroy(section->mr);
1129 g_free(map->sections);
1130 g_free(map->nodes);
1133 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1135 subpage_t *subpage;
1136 hwaddr base = section->offset_within_address_space
1137 & TARGET_PAGE_MASK;
1138 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1139 d->map.nodes, d->map.sections);
1140 MemoryRegionSection subsection = {
1141 .offset_within_address_space = base,
1142 .size = int128_make64(TARGET_PAGE_SIZE),
1144 hwaddr start, end;
1146 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1148 if (!(existing->mr->subpage)) {
1149 subpage = subpage_init(d->as, base);
1150 subsection.address_space = d->as;
1151 subsection.mr = &subpage->iomem;
1152 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1153 phys_section_add(&d->map, &subsection));
1154 } else {
1155 subpage = container_of(existing->mr, subpage_t, iomem);
1157 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1158 end = start + int128_get64(section->size) - 1;
1159 subpage_register(subpage, start, end,
1160 phys_section_add(&d->map, section));
1164 static void register_multipage(AddressSpaceDispatch *d,
1165 MemoryRegionSection *section)
1167 hwaddr start_addr = section->offset_within_address_space;
1168 uint16_t section_index = phys_section_add(&d->map, section);
1169 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1170 TARGET_PAGE_BITS));
1172 assert(num_pages);
1173 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1176 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1178 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1179 AddressSpaceDispatch *d = as->next_dispatch;
1180 MemoryRegionSection now = *section, remain = *section;
1181 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1183 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1184 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1185 - now.offset_within_address_space;
1187 now.size = int128_min(int128_make64(left), now.size);
1188 register_subpage(d, &now);
1189 } else {
1190 now.size = int128_zero();
1192 while (int128_ne(remain.size, now.size)) {
1193 remain.size = int128_sub(remain.size, now.size);
1194 remain.offset_within_address_space += int128_get64(now.size);
1195 remain.offset_within_region += int128_get64(now.size);
1196 now = remain;
1197 if (int128_lt(remain.size, page_size)) {
1198 register_subpage(d, &now);
1199 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1200 now.size = page_size;
1201 register_subpage(d, &now);
1202 } else {
1203 now.size = int128_and(now.size, int128_neg(page_size));
1204 register_multipage(d, &now);
1209 void qemu_flush_coalesced_mmio_buffer(void)
1211 if (kvm_enabled())
1212 kvm_flush_coalesced_mmio_buffer();
1215 void qemu_mutex_lock_ramlist(void)
1217 qemu_mutex_lock(&ram_list.mutex);
1220 void qemu_mutex_unlock_ramlist(void)
1222 qemu_mutex_unlock(&ram_list.mutex);
1225 #ifdef __linux__
1226 static void *file_ram_alloc(RAMBlock *block,
1227 ram_addr_t memory,
1228 const char *path,
1229 Error **errp)
1231 bool unlink_on_error = false;
1232 char *filename;
1233 char *sanitized_name;
1234 char *c;
1235 void *area = MAP_FAILED;
1236 int fd = -1;
1237 int64_t page_size;
1239 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1240 error_setg(errp,
1241 "host lacks kvm mmu notifiers, -mem-path unsupported");
1242 return NULL;
1245 for (;;) {
1246 fd = open(path, O_RDWR);
1247 if (fd >= 0) {
1248 /* @path names an existing file, use it */
1249 break;
1251 if (errno == ENOENT) {
1252 /* @path names a file that doesn't exist, create it */
1253 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1254 if (fd >= 0) {
1255 unlink_on_error = true;
1256 break;
1258 } else if (errno == EISDIR) {
1259 /* @path names a directory, create a file there */
1260 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1261 sanitized_name = g_strdup(memory_region_name(block->mr));
1262 for (c = sanitized_name; *c != '\0'; c++) {
1263 if (*c == '/') {
1264 *c = '_';
1268 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1269 sanitized_name);
1270 g_free(sanitized_name);
1272 fd = mkstemp(filename);
1273 if (fd >= 0) {
1274 unlink(filename);
1275 g_free(filename);
1276 break;
1278 g_free(filename);
1280 if (errno != EEXIST && errno != EINTR) {
1281 error_setg_errno(errp, errno,
1282 "can't open backing store %s for guest RAM",
1283 path);
1284 goto error;
1287 * Try again on EINTR and EEXIST. The latter happens when
1288 * something else creates the file between our two open().
1292 page_size = qemu_fd_getpagesize(fd);
1293 block->mr->align = MAX(page_size, QEMU_VMALLOC_ALIGN);
1295 if (memory < page_size) {
1296 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1297 "or larger than page size 0x%" PRIx64,
1298 memory, page_size);
1299 goto error;
1302 memory = ROUND_UP(memory, page_size);
1305 * ftruncate is not supported by hugetlbfs in older
1306 * hosts, so don't bother bailing out on errors.
1307 * If anything goes wrong with it under other filesystems,
1308 * mmap will fail.
1310 if (ftruncate(fd, memory)) {
1311 perror("ftruncate");
1314 area = qemu_ram_mmap(fd, memory, block->mr->align,
1315 block->flags & RAM_SHARED);
1316 if (area == MAP_FAILED) {
1317 error_setg_errno(errp, errno,
1318 "unable to map backing store for guest RAM");
1319 goto error;
1322 if (mem_prealloc) {
1323 os_mem_prealloc(fd, area, memory, errp);
1324 if (errp && *errp) {
1325 goto error;
1329 block->fd = fd;
1330 return area;
1332 error:
1333 if (area != MAP_FAILED) {
1334 qemu_ram_munmap(area, memory);
1336 if (unlink_on_error) {
1337 unlink(path);
1339 if (fd != -1) {
1340 close(fd);
1342 return NULL;
1344 #endif
1346 /* Called with the ramlist lock held. */
1347 static ram_addr_t find_ram_offset(ram_addr_t size)
1349 RAMBlock *block, *next_block;
1350 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1352 assert(size != 0); /* it would hand out same offset multiple times */
1354 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1355 return 0;
1358 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1359 ram_addr_t end, next = RAM_ADDR_MAX;
1361 end = block->offset + block->max_length;
1363 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1364 if (next_block->offset >= end) {
1365 next = MIN(next, next_block->offset);
1368 if (next - end >= size && next - end < mingap) {
1369 offset = end;
1370 mingap = next - end;
1374 if (offset == RAM_ADDR_MAX) {
1375 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1376 (uint64_t)size);
1377 abort();
1380 return offset;
1383 ram_addr_t last_ram_offset(void)
1385 RAMBlock *block;
1386 ram_addr_t last = 0;
1388 rcu_read_lock();
1389 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1390 last = MAX(last, block->offset + block->max_length);
1392 rcu_read_unlock();
1393 return last;
1396 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1398 int ret;
1400 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1401 if (!machine_dump_guest_core(current_machine)) {
1402 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1403 if (ret) {
1404 perror("qemu_madvise");
1405 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1406 "but dump_guest_core=off specified\n");
1411 const char *qemu_ram_get_idstr(RAMBlock *rb)
1413 return rb->idstr;
1416 /* Called with iothread lock held. */
1417 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1419 RAMBlock *block;
1421 assert(new_block);
1422 assert(!new_block->idstr[0]);
1424 if (dev) {
1425 char *id = qdev_get_dev_path(dev);
1426 if (id) {
1427 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1428 g_free(id);
1431 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1433 rcu_read_lock();
1434 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1435 if (block != new_block &&
1436 !strcmp(block->idstr, new_block->idstr)) {
1437 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1438 new_block->idstr);
1439 abort();
1442 rcu_read_unlock();
1445 /* Called with iothread lock held. */
1446 void qemu_ram_unset_idstr(RAMBlock *block)
1448 /* FIXME: arch_init.c assumes that this is not called throughout
1449 * migration. Ignore the problem since hot-unplug during migration
1450 * does not work anyway.
1452 if (block) {
1453 memset(block->idstr, 0, sizeof(block->idstr));
1457 static int memory_try_enable_merging(void *addr, size_t len)
1459 if (!machine_mem_merge(current_machine)) {
1460 /* disabled by the user */
1461 return 0;
1464 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1467 /* Only legal before guest might have detected the memory size: e.g. on
1468 * incoming migration, or right after reset.
1470 * As memory core doesn't know how is memory accessed, it is up to
1471 * resize callback to update device state and/or add assertions to detect
1472 * misuse, if necessary.
1474 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1476 assert(block);
1478 newsize = HOST_PAGE_ALIGN(newsize);
1480 if (block->used_length == newsize) {
1481 return 0;
1484 if (!(block->flags & RAM_RESIZEABLE)) {
1485 error_setg_errno(errp, EINVAL,
1486 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1487 " in != 0x" RAM_ADDR_FMT, block->idstr,
1488 newsize, block->used_length);
1489 return -EINVAL;
1492 if (block->max_length < newsize) {
1493 error_setg_errno(errp, EINVAL,
1494 "Length too large: %s: 0x" RAM_ADDR_FMT
1495 " > 0x" RAM_ADDR_FMT, block->idstr,
1496 newsize, block->max_length);
1497 return -EINVAL;
1500 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1501 block->used_length = newsize;
1502 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1503 DIRTY_CLIENTS_ALL);
1504 memory_region_set_size(block->mr, newsize);
1505 if (block->resized) {
1506 block->resized(block->idstr, newsize, block->host);
1508 return 0;
1511 /* Called with ram_list.mutex held */
1512 static void dirty_memory_extend(ram_addr_t old_ram_size,
1513 ram_addr_t new_ram_size)
1515 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1516 DIRTY_MEMORY_BLOCK_SIZE);
1517 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1518 DIRTY_MEMORY_BLOCK_SIZE);
1519 int i;
1521 /* Only need to extend if block count increased */
1522 if (new_num_blocks <= old_num_blocks) {
1523 return;
1526 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1527 DirtyMemoryBlocks *old_blocks;
1528 DirtyMemoryBlocks *new_blocks;
1529 int j;
1531 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1532 new_blocks = g_malloc(sizeof(*new_blocks) +
1533 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1535 if (old_num_blocks) {
1536 memcpy(new_blocks->blocks, old_blocks->blocks,
1537 old_num_blocks * sizeof(old_blocks->blocks[0]));
1540 for (j = old_num_blocks; j < new_num_blocks; j++) {
1541 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1544 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1546 if (old_blocks) {
1547 g_free_rcu(old_blocks, rcu);
1552 static void ram_block_add(RAMBlock *new_block, Error **errp)
1554 RAMBlock *block;
1555 RAMBlock *last_block = NULL;
1556 ram_addr_t old_ram_size, new_ram_size;
1557 Error *err = NULL;
1559 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1561 qemu_mutex_lock_ramlist();
1562 new_block->offset = find_ram_offset(new_block->max_length);
1564 if (!new_block->host) {
1565 if (xen_enabled()) {
1566 xen_ram_alloc(new_block->offset, new_block->max_length,
1567 new_block->mr, &err);
1568 if (err) {
1569 error_propagate(errp, err);
1570 qemu_mutex_unlock_ramlist();
1571 return;
1573 } else {
1574 new_block->host = phys_mem_alloc(new_block->max_length,
1575 &new_block->mr->align);
1576 if (!new_block->host) {
1577 error_setg_errno(errp, errno,
1578 "cannot set up guest memory '%s'",
1579 memory_region_name(new_block->mr));
1580 qemu_mutex_unlock_ramlist();
1581 return;
1583 memory_try_enable_merging(new_block->host, new_block->max_length);
1587 new_ram_size = MAX(old_ram_size,
1588 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1589 if (new_ram_size > old_ram_size) {
1590 migration_bitmap_extend(old_ram_size, new_ram_size);
1591 dirty_memory_extend(old_ram_size, new_ram_size);
1593 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1594 * QLIST (which has an RCU-friendly variant) does not have insertion at
1595 * tail, so save the last element in last_block.
1597 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1598 last_block = block;
1599 if (block->max_length < new_block->max_length) {
1600 break;
1603 if (block) {
1604 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1605 } else if (last_block) {
1606 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1607 } else { /* list is empty */
1608 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1610 ram_list.mru_block = NULL;
1612 /* Write list before version */
1613 smp_wmb();
1614 ram_list.version++;
1615 qemu_mutex_unlock_ramlist();
1617 cpu_physical_memory_set_dirty_range(new_block->offset,
1618 new_block->used_length,
1619 DIRTY_CLIENTS_ALL);
1621 if (new_block->host) {
1622 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1623 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1624 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1625 if (kvm_enabled()) {
1626 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1631 #ifdef __linux__
1632 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1633 bool share, const char *mem_path,
1634 Error **errp)
1636 RAMBlock *new_block;
1637 Error *local_err = NULL;
1639 if (xen_enabled()) {
1640 error_setg(errp, "-mem-path not supported with Xen");
1641 return NULL;
1644 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1646 * file_ram_alloc() needs to allocate just like
1647 * phys_mem_alloc, but we haven't bothered to provide
1648 * a hook there.
1650 error_setg(errp,
1651 "-mem-path not supported with this accelerator");
1652 return NULL;
1655 size = HOST_PAGE_ALIGN(size);
1656 new_block = g_malloc0(sizeof(*new_block));
1657 new_block->mr = mr;
1658 new_block->used_length = size;
1659 new_block->max_length = size;
1660 new_block->flags = share ? RAM_SHARED : 0;
1661 new_block->host = file_ram_alloc(new_block, size,
1662 mem_path, errp);
1663 if (!new_block->host) {
1664 g_free(new_block);
1665 return NULL;
1668 ram_block_add(new_block, &local_err);
1669 if (local_err) {
1670 g_free(new_block);
1671 error_propagate(errp, local_err);
1672 return NULL;
1674 return new_block;
1676 #endif
1678 static
1679 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1680 void (*resized)(const char*,
1681 uint64_t length,
1682 void *host),
1683 void *host, bool resizeable,
1684 MemoryRegion *mr, Error **errp)
1686 RAMBlock *new_block;
1687 Error *local_err = NULL;
1689 size = HOST_PAGE_ALIGN(size);
1690 max_size = HOST_PAGE_ALIGN(max_size);
1691 new_block = g_malloc0(sizeof(*new_block));
1692 new_block->mr = mr;
1693 new_block->resized = resized;
1694 new_block->used_length = size;
1695 new_block->max_length = max_size;
1696 assert(max_size >= size);
1697 new_block->fd = -1;
1698 new_block->host = host;
1699 if (host) {
1700 new_block->flags |= RAM_PREALLOC;
1702 if (resizeable) {
1703 new_block->flags |= RAM_RESIZEABLE;
1705 ram_block_add(new_block, &local_err);
1706 if (local_err) {
1707 g_free(new_block);
1708 error_propagate(errp, local_err);
1709 return NULL;
1711 return new_block;
1714 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1715 MemoryRegion *mr, Error **errp)
1717 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1720 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1722 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1725 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1726 void (*resized)(const char*,
1727 uint64_t length,
1728 void *host),
1729 MemoryRegion *mr, Error **errp)
1731 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1734 static void reclaim_ramblock(RAMBlock *block)
1736 if (block->flags & RAM_PREALLOC) {
1738 } else if (xen_enabled()) {
1739 xen_invalidate_map_cache_entry(block->host);
1740 #ifndef _WIN32
1741 } else if (block->fd >= 0) {
1742 qemu_ram_munmap(block->host, block->max_length);
1743 close(block->fd);
1744 #endif
1745 } else {
1746 qemu_anon_ram_free(block->host, block->max_length);
1748 g_free(block);
1751 void qemu_ram_free(RAMBlock *block)
1753 if (!block) {
1754 return;
1757 qemu_mutex_lock_ramlist();
1758 QLIST_REMOVE_RCU(block, next);
1759 ram_list.mru_block = NULL;
1760 /* Write list before version */
1761 smp_wmb();
1762 ram_list.version++;
1763 call_rcu(block, reclaim_ramblock, rcu);
1764 qemu_mutex_unlock_ramlist();
1767 #ifndef _WIN32
1768 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1770 RAMBlock *block;
1771 ram_addr_t offset;
1772 int flags;
1773 void *area, *vaddr;
1775 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1776 offset = addr - block->offset;
1777 if (offset < block->max_length) {
1778 vaddr = ramblock_ptr(block, offset);
1779 if (block->flags & RAM_PREALLOC) {
1781 } else if (xen_enabled()) {
1782 abort();
1783 } else {
1784 flags = MAP_FIXED;
1785 if (block->fd >= 0) {
1786 flags |= (block->flags & RAM_SHARED ?
1787 MAP_SHARED : MAP_PRIVATE);
1788 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1789 flags, block->fd, offset);
1790 } else {
1792 * Remap needs to match alloc. Accelerators that
1793 * set phys_mem_alloc never remap. If they did,
1794 * we'd need a remap hook here.
1796 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1798 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1799 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1800 flags, -1, 0);
1802 if (area != vaddr) {
1803 fprintf(stderr, "Could not remap addr: "
1804 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1805 length, addr);
1806 exit(1);
1808 memory_try_enable_merging(vaddr, length);
1809 qemu_ram_setup_dump(vaddr, length);
1814 #endif /* !_WIN32 */
1816 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1817 * This should not be used for general purpose DMA. Use address_space_map
1818 * or address_space_rw instead. For local memory (e.g. video ram) that the
1819 * device owns, use memory_region_get_ram_ptr.
1821 * Called within RCU critical section.
1823 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1825 RAMBlock *block = ram_block;
1827 if (block == NULL) {
1828 block = qemu_get_ram_block(addr);
1829 addr -= block->offset;
1832 if (xen_enabled() && block->host == NULL) {
1833 /* We need to check if the requested address is in the RAM
1834 * because we don't want to map the entire memory in QEMU.
1835 * In that case just map until the end of the page.
1837 if (block->offset == 0) {
1838 return xen_map_cache(addr, 0, 0);
1841 block->host = xen_map_cache(block->offset, block->max_length, 1);
1843 return ramblock_ptr(block, addr);
1846 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1847 * but takes a size argument.
1849 * Called within RCU critical section.
1851 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1852 hwaddr *size)
1854 RAMBlock *block = ram_block;
1855 if (*size == 0) {
1856 return NULL;
1859 if (block == NULL) {
1860 block = qemu_get_ram_block(addr);
1861 addr -= block->offset;
1863 *size = MIN(*size, block->max_length - addr);
1865 if (xen_enabled() && block->host == NULL) {
1866 /* We need to check if the requested address is in the RAM
1867 * because we don't want to map the entire memory in QEMU.
1868 * In that case just map the requested area.
1870 if (block->offset == 0) {
1871 return xen_map_cache(addr, *size, 1);
1874 block->host = xen_map_cache(block->offset, block->max_length, 1);
1877 return ramblock_ptr(block, addr);
1881 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1882 * in that RAMBlock.
1884 * ptr: Host pointer to look up
1885 * round_offset: If true round the result offset down to a page boundary
1886 * *ram_addr: set to result ram_addr
1887 * *offset: set to result offset within the RAMBlock
1889 * Returns: RAMBlock (or NULL if not found)
1891 * By the time this function returns, the returned pointer is not protected
1892 * by RCU anymore. If the caller is not within an RCU critical section and
1893 * does not hold the iothread lock, it must have other means of protecting the
1894 * pointer, such as a reference to the region that includes the incoming
1895 * ram_addr_t.
1897 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1898 ram_addr_t *offset)
1900 RAMBlock *block;
1901 uint8_t *host = ptr;
1903 if (xen_enabled()) {
1904 ram_addr_t ram_addr;
1905 rcu_read_lock();
1906 ram_addr = xen_ram_addr_from_mapcache(ptr);
1907 block = qemu_get_ram_block(ram_addr);
1908 if (block) {
1909 *offset = ram_addr - block->offset;
1911 rcu_read_unlock();
1912 return block;
1915 rcu_read_lock();
1916 block = atomic_rcu_read(&ram_list.mru_block);
1917 if (block && block->host && host - block->host < block->max_length) {
1918 goto found;
1921 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1922 /* This case append when the block is not mapped. */
1923 if (block->host == NULL) {
1924 continue;
1926 if (host - block->host < block->max_length) {
1927 goto found;
1931 rcu_read_unlock();
1932 return NULL;
1934 found:
1935 *offset = (host - block->host);
1936 if (round_offset) {
1937 *offset &= TARGET_PAGE_MASK;
1939 rcu_read_unlock();
1940 return block;
1944 * Finds the named RAMBlock
1946 * name: The name of RAMBlock to find
1948 * Returns: RAMBlock (or NULL if not found)
1950 RAMBlock *qemu_ram_block_by_name(const char *name)
1952 RAMBlock *block;
1954 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1955 if (!strcmp(name, block->idstr)) {
1956 return block;
1960 return NULL;
1963 /* Some of the softmmu routines need to translate from a host pointer
1964 (typically a TLB entry) back to a ram offset. */
1965 ram_addr_t qemu_ram_addr_from_host(void *ptr)
1967 RAMBlock *block;
1968 ram_addr_t offset;
1970 block = qemu_ram_block_from_host(ptr, false, &offset);
1971 if (!block) {
1972 return RAM_ADDR_INVALID;
1975 return block->offset + offset;
1978 /* Called within RCU critical section. */
1979 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1980 uint64_t val, unsigned size)
1982 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1983 tb_invalidate_phys_page_fast(ram_addr, size);
1985 switch (size) {
1986 case 1:
1987 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
1988 break;
1989 case 2:
1990 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
1991 break;
1992 case 4:
1993 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
1994 break;
1995 default:
1996 abort();
1998 /* Set both VGA and migration bits for simplicity and to remove
1999 * the notdirty callback faster.
2001 cpu_physical_memory_set_dirty_range(ram_addr, size,
2002 DIRTY_CLIENTS_NOCODE);
2003 /* we remove the notdirty callback only if the code has been
2004 flushed */
2005 if (!cpu_physical_memory_is_clean(ram_addr)) {
2006 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2010 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2011 unsigned size, bool is_write)
2013 return is_write;
2016 static const MemoryRegionOps notdirty_mem_ops = {
2017 .write = notdirty_mem_write,
2018 .valid.accepts = notdirty_mem_accepts,
2019 .endianness = DEVICE_NATIVE_ENDIAN,
2022 /* Generate a debug exception if a watchpoint has been hit. */
2023 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2025 CPUState *cpu = current_cpu;
2026 CPUClass *cc = CPU_GET_CLASS(cpu);
2027 CPUArchState *env = cpu->env_ptr;
2028 target_ulong pc, cs_base;
2029 target_ulong vaddr;
2030 CPUWatchpoint *wp;
2031 uint32_t cpu_flags;
2033 if (cpu->watchpoint_hit) {
2034 /* We re-entered the check after replacing the TB. Now raise
2035 * the debug interrupt so that is will trigger after the
2036 * current instruction. */
2037 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2038 return;
2040 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2041 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2042 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2043 && (wp->flags & flags)) {
2044 if (flags == BP_MEM_READ) {
2045 wp->flags |= BP_WATCHPOINT_HIT_READ;
2046 } else {
2047 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2049 wp->hitaddr = vaddr;
2050 wp->hitattrs = attrs;
2051 if (!cpu->watchpoint_hit) {
2052 if (wp->flags & BP_CPU &&
2053 !cc->debug_check_watchpoint(cpu, wp)) {
2054 wp->flags &= ~BP_WATCHPOINT_HIT;
2055 continue;
2057 cpu->watchpoint_hit = wp;
2058 tb_check_watchpoint(cpu);
2059 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2060 cpu->exception_index = EXCP_DEBUG;
2061 cpu_loop_exit(cpu);
2062 } else {
2063 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2064 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2065 cpu_loop_exit_noexc(cpu);
2068 } else {
2069 wp->flags &= ~BP_WATCHPOINT_HIT;
2074 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2075 so these check for a hit then pass through to the normal out-of-line
2076 phys routines. */
2077 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2078 unsigned size, MemTxAttrs attrs)
2080 MemTxResult res;
2081 uint64_t data;
2082 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2083 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2085 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2086 switch (size) {
2087 case 1:
2088 data = address_space_ldub(as, addr, attrs, &res);
2089 break;
2090 case 2:
2091 data = address_space_lduw(as, addr, attrs, &res);
2092 break;
2093 case 4:
2094 data = address_space_ldl(as, addr, attrs, &res);
2095 break;
2096 default: abort();
2098 *pdata = data;
2099 return res;
2102 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2103 uint64_t val, unsigned size,
2104 MemTxAttrs attrs)
2106 MemTxResult res;
2107 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2108 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2110 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2111 switch (size) {
2112 case 1:
2113 address_space_stb(as, addr, val, attrs, &res);
2114 break;
2115 case 2:
2116 address_space_stw(as, addr, val, attrs, &res);
2117 break;
2118 case 4:
2119 address_space_stl(as, addr, val, attrs, &res);
2120 break;
2121 default: abort();
2123 return res;
2126 static const MemoryRegionOps watch_mem_ops = {
2127 .read_with_attrs = watch_mem_read,
2128 .write_with_attrs = watch_mem_write,
2129 .endianness = DEVICE_NATIVE_ENDIAN,
2132 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2133 unsigned len, MemTxAttrs attrs)
2135 subpage_t *subpage = opaque;
2136 uint8_t buf[8];
2137 MemTxResult res;
2139 #if defined(DEBUG_SUBPAGE)
2140 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2141 subpage, len, addr);
2142 #endif
2143 res = address_space_read(subpage->as, addr + subpage->base,
2144 attrs, buf, len);
2145 if (res) {
2146 return res;
2148 switch (len) {
2149 case 1:
2150 *data = ldub_p(buf);
2151 return MEMTX_OK;
2152 case 2:
2153 *data = lduw_p(buf);
2154 return MEMTX_OK;
2155 case 4:
2156 *data = ldl_p(buf);
2157 return MEMTX_OK;
2158 case 8:
2159 *data = ldq_p(buf);
2160 return MEMTX_OK;
2161 default:
2162 abort();
2166 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2167 uint64_t value, unsigned len, MemTxAttrs attrs)
2169 subpage_t *subpage = opaque;
2170 uint8_t buf[8];
2172 #if defined(DEBUG_SUBPAGE)
2173 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2174 " value %"PRIx64"\n",
2175 __func__, subpage, len, addr, value);
2176 #endif
2177 switch (len) {
2178 case 1:
2179 stb_p(buf, value);
2180 break;
2181 case 2:
2182 stw_p(buf, value);
2183 break;
2184 case 4:
2185 stl_p(buf, value);
2186 break;
2187 case 8:
2188 stq_p(buf, value);
2189 break;
2190 default:
2191 abort();
2193 return address_space_write(subpage->as, addr + subpage->base,
2194 attrs, buf, len);
2197 static bool subpage_accepts(void *opaque, hwaddr addr,
2198 unsigned len, bool is_write)
2200 subpage_t *subpage = opaque;
2201 #if defined(DEBUG_SUBPAGE)
2202 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2203 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2204 #endif
2206 return address_space_access_valid(subpage->as, addr + subpage->base,
2207 len, is_write);
2210 static const MemoryRegionOps subpage_ops = {
2211 .read_with_attrs = subpage_read,
2212 .write_with_attrs = subpage_write,
2213 .impl.min_access_size = 1,
2214 .impl.max_access_size = 8,
2215 .valid.min_access_size = 1,
2216 .valid.max_access_size = 8,
2217 .valid.accepts = subpage_accepts,
2218 .endianness = DEVICE_NATIVE_ENDIAN,
2221 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2222 uint16_t section)
2224 int idx, eidx;
2226 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2227 return -1;
2228 idx = SUBPAGE_IDX(start);
2229 eidx = SUBPAGE_IDX(end);
2230 #if defined(DEBUG_SUBPAGE)
2231 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2232 __func__, mmio, start, end, idx, eidx, section);
2233 #endif
2234 for (; idx <= eidx; idx++) {
2235 mmio->sub_section[idx] = section;
2238 return 0;
2241 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2243 subpage_t *mmio;
2245 mmio = g_malloc0(sizeof(subpage_t));
2247 mmio->as = as;
2248 mmio->base = base;
2249 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2250 NULL, TARGET_PAGE_SIZE);
2251 mmio->iomem.subpage = true;
2252 #if defined(DEBUG_SUBPAGE)
2253 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2254 mmio, base, TARGET_PAGE_SIZE);
2255 #endif
2256 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2258 return mmio;
2261 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2262 MemoryRegion *mr)
2264 assert(as);
2265 MemoryRegionSection section = {
2266 .address_space = as,
2267 .mr = mr,
2268 .offset_within_address_space = 0,
2269 .offset_within_region = 0,
2270 .size = int128_2_64(),
2273 return phys_section_add(map, &section);
2276 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2278 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2279 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2280 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2281 MemoryRegionSection *sections = d->map.sections;
2283 return sections[index & ~TARGET_PAGE_MASK].mr;
2286 static void io_mem_init(void)
2288 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2289 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2290 NULL, UINT64_MAX);
2291 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2292 NULL, UINT64_MAX);
2293 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2294 NULL, UINT64_MAX);
2297 static void mem_begin(MemoryListener *listener)
2299 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2300 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2301 uint16_t n;
2303 n = dummy_section(&d->map, as, &io_mem_unassigned);
2304 assert(n == PHYS_SECTION_UNASSIGNED);
2305 n = dummy_section(&d->map, as, &io_mem_notdirty);
2306 assert(n == PHYS_SECTION_NOTDIRTY);
2307 n = dummy_section(&d->map, as, &io_mem_rom);
2308 assert(n == PHYS_SECTION_ROM);
2309 n = dummy_section(&d->map, as, &io_mem_watch);
2310 assert(n == PHYS_SECTION_WATCH);
2312 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2313 d->as = as;
2314 as->next_dispatch = d;
2317 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2319 phys_sections_free(&d->map);
2320 g_free(d);
2323 static void mem_commit(MemoryListener *listener)
2325 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2326 AddressSpaceDispatch *cur = as->dispatch;
2327 AddressSpaceDispatch *next = as->next_dispatch;
2329 phys_page_compact_all(next, next->map.nodes_nb);
2331 atomic_rcu_set(&as->dispatch, next);
2332 if (cur) {
2333 call_rcu(cur, address_space_dispatch_free, rcu);
2337 static void tcg_commit(MemoryListener *listener)
2339 CPUAddressSpace *cpuas;
2340 AddressSpaceDispatch *d;
2342 /* since each CPU stores ram addresses in its TLB cache, we must
2343 reset the modified entries */
2344 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2345 cpu_reloading_memory_map();
2346 /* The CPU and TLB are protected by the iothread lock.
2347 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2348 * may have split the RCU critical section.
2350 d = atomic_rcu_read(&cpuas->as->dispatch);
2351 cpuas->memory_dispatch = d;
2352 tlb_flush(cpuas->cpu, 1);
2355 void address_space_init_dispatch(AddressSpace *as)
2357 as->dispatch = NULL;
2358 as->dispatch_listener = (MemoryListener) {
2359 .begin = mem_begin,
2360 .commit = mem_commit,
2361 .region_add = mem_add,
2362 .region_nop = mem_add,
2363 .priority = 0,
2365 memory_listener_register(&as->dispatch_listener, as);
2368 void address_space_unregister(AddressSpace *as)
2370 memory_listener_unregister(&as->dispatch_listener);
2373 void address_space_destroy_dispatch(AddressSpace *as)
2375 AddressSpaceDispatch *d = as->dispatch;
2377 atomic_rcu_set(&as->dispatch, NULL);
2378 if (d) {
2379 call_rcu(d, address_space_dispatch_free, rcu);
2383 static void memory_map_init(void)
2385 system_memory = g_malloc(sizeof(*system_memory));
2387 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2388 address_space_init(&address_space_memory, system_memory, "memory");
2390 system_io = g_malloc(sizeof(*system_io));
2391 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2392 65536);
2393 address_space_init(&address_space_io, system_io, "I/O");
2396 MemoryRegion *get_system_memory(void)
2398 return system_memory;
2401 MemoryRegion *get_system_io(void)
2403 return system_io;
2406 #endif /* !defined(CONFIG_USER_ONLY) */
2408 /* physical memory access (slow version, mainly for debug) */
2409 #if defined(CONFIG_USER_ONLY)
2410 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2411 uint8_t *buf, int len, int is_write)
2413 int l, flags;
2414 target_ulong page;
2415 void * p;
2417 while (len > 0) {
2418 page = addr & TARGET_PAGE_MASK;
2419 l = (page + TARGET_PAGE_SIZE) - addr;
2420 if (l > len)
2421 l = len;
2422 flags = page_get_flags(page);
2423 if (!(flags & PAGE_VALID))
2424 return -1;
2425 if (is_write) {
2426 if (!(flags & PAGE_WRITE))
2427 return -1;
2428 /* XXX: this code should not depend on lock_user */
2429 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2430 return -1;
2431 memcpy(p, buf, l);
2432 unlock_user(p, addr, l);
2433 } else {
2434 if (!(flags & PAGE_READ))
2435 return -1;
2436 /* XXX: this code should not depend on lock_user */
2437 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2438 return -1;
2439 memcpy(buf, p, l);
2440 unlock_user(p, addr, 0);
2442 len -= l;
2443 buf += l;
2444 addr += l;
2446 return 0;
2449 #else
2451 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2452 hwaddr length)
2454 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2455 addr += memory_region_get_ram_addr(mr);
2457 /* No early return if dirty_log_mask is or becomes 0, because
2458 * cpu_physical_memory_set_dirty_range will still call
2459 * xen_modified_memory.
2461 if (dirty_log_mask) {
2462 dirty_log_mask =
2463 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2465 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2466 tb_invalidate_phys_range(addr, addr + length);
2467 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2469 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2472 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2474 unsigned access_size_max = mr->ops->valid.max_access_size;
2476 /* Regions are assumed to support 1-4 byte accesses unless
2477 otherwise specified. */
2478 if (access_size_max == 0) {
2479 access_size_max = 4;
2482 /* Bound the maximum access by the alignment of the address. */
2483 if (!mr->ops->impl.unaligned) {
2484 unsigned align_size_max = addr & -addr;
2485 if (align_size_max != 0 && align_size_max < access_size_max) {
2486 access_size_max = align_size_max;
2490 /* Don't attempt accesses larger than the maximum. */
2491 if (l > access_size_max) {
2492 l = access_size_max;
2494 l = pow2floor(l);
2496 return l;
2499 static bool prepare_mmio_access(MemoryRegion *mr)
2501 bool unlocked = !qemu_mutex_iothread_locked();
2502 bool release_lock = false;
2504 if (unlocked && mr->global_locking) {
2505 qemu_mutex_lock_iothread();
2506 unlocked = false;
2507 release_lock = true;
2509 if (mr->flush_coalesced_mmio) {
2510 if (unlocked) {
2511 qemu_mutex_lock_iothread();
2513 qemu_flush_coalesced_mmio_buffer();
2514 if (unlocked) {
2515 qemu_mutex_unlock_iothread();
2519 return release_lock;
2522 /* Called within RCU critical section. */
2523 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2524 MemTxAttrs attrs,
2525 const uint8_t *buf,
2526 int len, hwaddr addr1,
2527 hwaddr l, MemoryRegion *mr)
2529 uint8_t *ptr;
2530 uint64_t val;
2531 MemTxResult result = MEMTX_OK;
2532 bool release_lock = false;
2534 for (;;) {
2535 if (!memory_access_is_direct(mr, true)) {
2536 release_lock |= prepare_mmio_access(mr);
2537 l = memory_access_size(mr, l, addr1);
2538 /* XXX: could force current_cpu to NULL to avoid
2539 potential bugs */
2540 switch (l) {
2541 case 8:
2542 /* 64 bit write access */
2543 val = ldq_p(buf);
2544 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2545 attrs);
2546 break;
2547 case 4:
2548 /* 32 bit write access */
2549 val = ldl_p(buf);
2550 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2551 attrs);
2552 break;
2553 case 2:
2554 /* 16 bit write access */
2555 val = lduw_p(buf);
2556 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2557 attrs);
2558 break;
2559 case 1:
2560 /* 8 bit write access */
2561 val = ldub_p(buf);
2562 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2563 attrs);
2564 break;
2565 default:
2566 abort();
2568 } else {
2569 /* RAM case */
2570 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2571 memcpy(ptr, buf, l);
2572 invalidate_and_set_dirty(mr, addr1, l);
2575 if (release_lock) {
2576 qemu_mutex_unlock_iothread();
2577 release_lock = false;
2580 len -= l;
2581 buf += l;
2582 addr += l;
2584 if (!len) {
2585 break;
2588 l = len;
2589 mr = address_space_translate(as, addr, &addr1, &l, true);
2592 return result;
2595 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2596 const uint8_t *buf, int len)
2598 hwaddr l;
2599 hwaddr addr1;
2600 MemoryRegion *mr;
2601 MemTxResult result = MEMTX_OK;
2603 if (len > 0) {
2604 rcu_read_lock();
2605 l = len;
2606 mr = address_space_translate(as, addr, &addr1, &l, true);
2607 result = address_space_write_continue(as, addr, attrs, buf, len,
2608 addr1, l, mr);
2609 rcu_read_unlock();
2612 return result;
2615 /* Called within RCU critical section. */
2616 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2617 MemTxAttrs attrs, uint8_t *buf,
2618 int len, hwaddr addr1, hwaddr l,
2619 MemoryRegion *mr)
2621 uint8_t *ptr;
2622 uint64_t val;
2623 MemTxResult result = MEMTX_OK;
2624 bool release_lock = false;
2626 for (;;) {
2627 if (!memory_access_is_direct(mr, false)) {
2628 /* I/O case */
2629 release_lock |= prepare_mmio_access(mr);
2630 l = memory_access_size(mr, l, addr1);
2631 switch (l) {
2632 case 8:
2633 /* 64 bit read access */
2634 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2635 attrs);
2636 stq_p(buf, val);
2637 break;
2638 case 4:
2639 /* 32 bit read access */
2640 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2641 attrs);
2642 stl_p(buf, val);
2643 break;
2644 case 2:
2645 /* 16 bit read access */
2646 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2647 attrs);
2648 stw_p(buf, val);
2649 break;
2650 case 1:
2651 /* 8 bit read access */
2652 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2653 attrs);
2654 stb_p(buf, val);
2655 break;
2656 default:
2657 abort();
2659 } else {
2660 /* RAM case */
2661 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2662 memcpy(buf, ptr, l);
2665 if (release_lock) {
2666 qemu_mutex_unlock_iothread();
2667 release_lock = false;
2670 len -= l;
2671 buf += l;
2672 addr += l;
2674 if (!len) {
2675 break;
2678 l = len;
2679 mr = address_space_translate(as, addr, &addr1, &l, false);
2682 return result;
2685 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2686 MemTxAttrs attrs, uint8_t *buf, int len)
2688 hwaddr l;
2689 hwaddr addr1;
2690 MemoryRegion *mr;
2691 MemTxResult result = MEMTX_OK;
2693 if (len > 0) {
2694 rcu_read_lock();
2695 l = len;
2696 mr = address_space_translate(as, addr, &addr1, &l, false);
2697 result = address_space_read_continue(as, addr, attrs, buf, len,
2698 addr1, l, mr);
2699 rcu_read_unlock();
2702 return result;
2705 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2706 uint8_t *buf, int len, bool is_write)
2708 if (is_write) {
2709 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2710 } else {
2711 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2715 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2716 int len, int is_write)
2718 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2719 buf, len, is_write);
2722 enum write_rom_type {
2723 WRITE_DATA,
2724 FLUSH_CACHE,
2727 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2728 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2730 hwaddr l;
2731 uint8_t *ptr;
2732 hwaddr addr1;
2733 MemoryRegion *mr;
2735 rcu_read_lock();
2736 while (len > 0) {
2737 l = len;
2738 mr = address_space_translate(as, addr, &addr1, &l, true);
2740 if (!(memory_region_is_ram(mr) ||
2741 memory_region_is_romd(mr))) {
2742 l = memory_access_size(mr, l, addr1);
2743 } else {
2744 /* ROM/RAM case */
2745 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2746 switch (type) {
2747 case WRITE_DATA:
2748 memcpy(ptr, buf, l);
2749 invalidate_and_set_dirty(mr, addr1, l);
2750 break;
2751 case FLUSH_CACHE:
2752 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2753 break;
2756 len -= l;
2757 buf += l;
2758 addr += l;
2760 rcu_read_unlock();
2763 /* used for ROM loading : can write in RAM and ROM */
2764 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2765 const uint8_t *buf, int len)
2767 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2770 void cpu_flush_icache_range(hwaddr start, int len)
2773 * This function should do the same thing as an icache flush that was
2774 * triggered from within the guest. For TCG we are always cache coherent,
2775 * so there is no need to flush anything. For KVM / Xen we need to flush
2776 * the host's instruction cache at least.
2778 if (tcg_enabled()) {
2779 return;
2782 cpu_physical_memory_write_rom_internal(&address_space_memory,
2783 start, NULL, len, FLUSH_CACHE);
2786 typedef struct {
2787 MemoryRegion *mr;
2788 void *buffer;
2789 hwaddr addr;
2790 hwaddr len;
2791 bool in_use;
2792 } BounceBuffer;
2794 static BounceBuffer bounce;
2796 typedef struct MapClient {
2797 QEMUBH *bh;
2798 QLIST_ENTRY(MapClient) link;
2799 } MapClient;
2801 QemuMutex map_client_list_lock;
2802 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2803 = QLIST_HEAD_INITIALIZER(map_client_list);
2805 static void cpu_unregister_map_client_do(MapClient *client)
2807 QLIST_REMOVE(client, link);
2808 g_free(client);
2811 static void cpu_notify_map_clients_locked(void)
2813 MapClient *client;
2815 while (!QLIST_EMPTY(&map_client_list)) {
2816 client = QLIST_FIRST(&map_client_list);
2817 qemu_bh_schedule(client->bh);
2818 cpu_unregister_map_client_do(client);
2822 void cpu_register_map_client(QEMUBH *bh)
2824 MapClient *client = g_malloc(sizeof(*client));
2826 qemu_mutex_lock(&map_client_list_lock);
2827 client->bh = bh;
2828 QLIST_INSERT_HEAD(&map_client_list, client, link);
2829 if (!atomic_read(&bounce.in_use)) {
2830 cpu_notify_map_clients_locked();
2832 qemu_mutex_unlock(&map_client_list_lock);
2835 void cpu_exec_init_all(void)
2837 qemu_mutex_init(&ram_list.mutex);
2838 io_mem_init();
2839 memory_map_init();
2840 qemu_mutex_init(&map_client_list_lock);
2843 void cpu_unregister_map_client(QEMUBH *bh)
2845 MapClient *client;
2847 qemu_mutex_lock(&map_client_list_lock);
2848 QLIST_FOREACH(client, &map_client_list, link) {
2849 if (client->bh == bh) {
2850 cpu_unregister_map_client_do(client);
2851 break;
2854 qemu_mutex_unlock(&map_client_list_lock);
2857 static void cpu_notify_map_clients(void)
2859 qemu_mutex_lock(&map_client_list_lock);
2860 cpu_notify_map_clients_locked();
2861 qemu_mutex_unlock(&map_client_list_lock);
2864 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2866 MemoryRegion *mr;
2867 hwaddr l, xlat;
2869 rcu_read_lock();
2870 while (len > 0) {
2871 l = len;
2872 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2873 if (!memory_access_is_direct(mr, is_write)) {
2874 l = memory_access_size(mr, l, addr);
2875 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2876 return false;
2880 len -= l;
2881 addr += l;
2883 rcu_read_unlock();
2884 return true;
2887 /* Map a physical memory region into a host virtual address.
2888 * May map a subset of the requested range, given by and returned in *plen.
2889 * May return NULL if resources needed to perform the mapping are exhausted.
2890 * Use only for reads OR writes - not for read-modify-write operations.
2891 * Use cpu_register_map_client() to know when retrying the map operation is
2892 * likely to succeed.
2894 void *address_space_map(AddressSpace *as,
2895 hwaddr addr,
2896 hwaddr *plen,
2897 bool is_write)
2899 hwaddr len = *plen;
2900 hwaddr done = 0;
2901 hwaddr l, xlat, base;
2902 MemoryRegion *mr, *this_mr;
2903 void *ptr;
2905 if (len == 0) {
2906 return NULL;
2909 l = len;
2910 rcu_read_lock();
2911 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2913 if (!memory_access_is_direct(mr, is_write)) {
2914 if (atomic_xchg(&bounce.in_use, true)) {
2915 rcu_read_unlock();
2916 return NULL;
2918 /* Avoid unbounded allocations */
2919 l = MIN(l, TARGET_PAGE_SIZE);
2920 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2921 bounce.addr = addr;
2922 bounce.len = l;
2924 memory_region_ref(mr);
2925 bounce.mr = mr;
2926 if (!is_write) {
2927 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2928 bounce.buffer, l);
2931 rcu_read_unlock();
2932 *plen = l;
2933 return bounce.buffer;
2936 base = xlat;
2938 for (;;) {
2939 len -= l;
2940 addr += l;
2941 done += l;
2942 if (len == 0) {
2943 break;
2946 l = len;
2947 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2948 if (this_mr != mr || xlat != base + done) {
2949 break;
2953 memory_region_ref(mr);
2954 *plen = done;
2955 ptr = qemu_ram_ptr_length(mr->ram_block, base, plen);
2956 rcu_read_unlock();
2958 return ptr;
2961 /* Unmaps a memory region previously mapped by address_space_map().
2962 * Will also mark the memory as dirty if is_write == 1. access_len gives
2963 * the amount of memory that was actually read or written by the caller.
2965 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2966 int is_write, hwaddr access_len)
2968 if (buffer != bounce.buffer) {
2969 MemoryRegion *mr;
2970 ram_addr_t addr1;
2972 mr = memory_region_from_host(buffer, &addr1);
2973 assert(mr != NULL);
2974 if (is_write) {
2975 invalidate_and_set_dirty(mr, addr1, access_len);
2977 if (xen_enabled()) {
2978 xen_invalidate_map_cache_entry(buffer);
2980 memory_region_unref(mr);
2981 return;
2983 if (is_write) {
2984 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2985 bounce.buffer, access_len);
2987 qemu_vfree(bounce.buffer);
2988 bounce.buffer = NULL;
2989 memory_region_unref(bounce.mr);
2990 atomic_mb_set(&bounce.in_use, false);
2991 cpu_notify_map_clients();
2994 void *cpu_physical_memory_map(hwaddr addr,
2995 hwaddr *plen,
2996 int is_write)
2998 return address_space_map(&address_space_memory, addr, plen, is_write);
3001 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3002 int is_write, hwaddr access_len)
3004 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3007 /* warning: addr must be aligned */
3008 static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3009 MemTxAttrs attrs,
3010 MemTxResult *result,
3011 enum device_endian endian)
3013 uint8_t *ptr;
3014 uint64_t val;
3015 MemoryRegion *mr;
3016 hwaddr l = 4;
3017 hwaddr addr1;
3018 MemTxResult r;
3019 bool release_lock = false;
3021 rcu_read_lock();
3022 mr = address_space_translate(as, addr, &addr1, &l, false);
3023 if (l < 4 || !memory_access_is_direct(mr, false)) {
3024 release_lock |= prepare_mmio_access(mr);
3026 /* I/O case */
3027 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
3028 #if defined(TARGET_WORDS_BIGENDIAN)
3029 if (endian == DEVICE_LITTLE_ENDIAN) {
3030 val = bswap32(val);
3032 #else
3033 if (endian == DEVICE_BIG_ENDIAN) {
3034 val = bswap32(val);
3036 #endif
3037 } else {
3038 /* RAM case */
3039 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3040 switch (endian) {
3041 case DEVICE_LITTLE_ENDIAN:
3042 val = ldl_le_p(ptr);
3043 break;
3044 case DEVICE_BIG_ENDIAN:
3045 val = ldl_be_p(ptr);
3046 break;
3047 default:
3048 val = ldl_p(ptr);
3049 break;
3051 r = MEMTX_OK;
3053 if (result) {
3054 *result = r;
3056 if (release_lock) {
3057 qemu_mutex_unlock_iothread();
3059 rcu_read_unlock();
3060 return val;
3063 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3064 MemTxAttrs attrs, MemTxResult *result)
3066 return address_space_ldl_internal(as, addr, attrs, result,
3067 DEVICE_NATIVE_ENDIAN);
3070 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3071 MemTxAttrs attrs, MemTxResult *result)
3073 return address_space_ldl_internal(as, addr, attrs, result,
3074 DEVICE_LITTLE_ENDIAN);
3077 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3078 MemTxAttrs attrs, MemTxResult *result)
3080 return address_space_ldl_internal(as, addr, attrs, result,
3081 DEVICE_BIG_ENDIAN);
3084 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
3086 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3089 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
3091 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3094 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
3096 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3099 /* warning: addr must be aligned */
3100 static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3101 MemTxAttrs attrs,
3102 MemTxResult *result,
3103 enum device_endian endian)
3105 uint8_t *ptr;
3106 uint64_t val;
3107 MemoryRegion *mr;
3108 hwaddr l = 8;
3109 hwaddr addr1;
3110 MemTxResult r;
3111 bool release_lock = false;
3113 rcu_read_lock();
3114 mr = address_space_translate(as, addr, &addr1, &l,
3115 false);
3116 if (l < 8 || !memory_access_is_direct(mr, false)) {
3117 release_lock |= prepare_mmio_access(mr);
3119 /* I/O case */
3120 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
3121 #if defined(TARGET_WORDS_BIGENDIAN)
3122 if (endian == DEVICE_LITTLE_ENDIAN) {
3123 val = bswap64(val);
3125 #else
3126 if (endian == DEVICE_BIG_ENDIAN) {
3127 val = bswap64(val);
3129 #endif
3130 } else {
3131 /* RAM case */
3132 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3133 switch (endian) {
3134 case DEVICE_LITTLE_ENDIAN:
3135 val = ldq_le_p(ptr);
3136 break;
3137 case DEVICE_BIG_ENDIAN:
3138 val = ldq_be_p(ptr);
3139 break;
3140 default:
3141 val = ldq_p(ptr);
3142 break;
3144 r = MEMTX_OK;
3146 if (result) {
3147 *result = r;
3149 if (release_lock) {
3150 qemu_mutex_unlock_iothread();
3152 rcu_read_unlock();
3153 return val;
3156 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3157 MemTxAttrs attrs, MemTxResult *result)
3159 return address_space_ldq_internal(as, addr, attrs, result,
3160 DEVICE_NATIVE_ENDIAN);
3163 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3164 MemTxAttrs attrs, MemTxResult *result)
3166 return address_space_ldq_internal(as, addr, attrs, result,
3167 DEVICE_LITTLE_ENDIAN);
3170 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3171 MemTxAttrs attrs, MemTxResult *result)
3173 return address_space_ldq_internal(as, addr, attrs, result,
3174 DEVICE_BIG_ENDIAN);
3177 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
3179 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3182 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
3184 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3187 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
3189 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3192 /* XXX: optimize */
3193 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3194 MemTxAttrs attrs, MemTxResult *result)
3196 uint8_t val;
3197 MemTxResult r;
3199 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3200 if (result) {
3201 *result = r;
3203 return val;
3206 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3208 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3211 /* warning: addr must be aligned */
3212 static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3213 hwaddr addr,
3214 MemTxAttrs attrs,
3215 MemTxResult *result,
3216 enum device_endian endian)
3218 uint8_t *ptr;
3219 uint64_t val;
3220 MemoryRegion *mr;
3221 hwaddr l = 2;
3222 hwaddr addr1;
3223 MemTxResult r;
3224 bool release_lock = false;
3226 rcu_read_lock();
3227 mr = address_space_translate(as, addr, &addr1, &l,
3228 false);
3229 if (l < 2 || !memory_access_is_direct(mr, false)) {
3230 release_lock |= prepare_mmio_access(mr);
3232 /* I/O case */
3233 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
3234 #if defined(TARGET_WORDS_BIGENDIAN)
3235 if (endian == DEVICE_LITTLE_ENDIAN) {
3236 val = bswap16(val);
3238 #else
3239 if (endian == DEVICE_BIG_ENDIAN) {
3240 val = bswap16(val);
3242 #endif
3243 } else {
3244 /* RAM case */
3245 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3246 switch (endian) {
3247 case DEVICE_LITTLE_ENDIAN:
3248 val = lduw_le_p(ptr);
3249 break;
3250 case DEVICE_BIG_ENDIAN:
3251 val = lduw_be_p(ptr);
3252 break;
3253 default:
3254 val = lduw_p(ptr);
3255 break;
3257 r = MEMTX_OK;
3259 if (result) {
3260 *result = r;
3262 if (release_lock) {
3263 qemu_mutex_unlock_iothread();
3265 rcu_read_unlock();
3266 return val;
3269 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3270 MemTxAttrs attrs, MemTxResult *result)
3272 return address_space_lduw_internal(as, addr, attrs, result,
3273 DEVICE_NATIVE_ENDIAN);
3276 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3277 MemTxAttrs attrs, MemTxResult *result)
3279 return address_space_lduw_internal(as, addr, attrs, result,
3280 DEVICE_LITTLE_ENDIAN);
3283 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3284 MemTxAttrs attrs, MemTxResult *result)
3286 return address_space_lduw_internal(as, addr, attrs, result,
3287 DEVICE_BIG_ENDIAN);
3290 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
3292 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3295 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
3297 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3300 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
3302 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3305 /* warning: addr must be aligned. The ram page is not masked as dirty
3306 and the code inside is not invalidated. It is useful if the dirty
3307 bits are used to track modified PTEs */
3308 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3309 MemTxAttrs attrs, MemTxResult *result)
3311 uint8_t *ptr;
3312 MemoryRegion *mr;
3313 hwaddr l = 4;
3314 hwaddr addr1;
3315 MemTxResult r;
3316 uint8_t dirty_log_mask;
3317 bool release_lock = false;
3319 rcu_read_lock();
3320 mr = address_space_translate(as, addr, &addr1, &l,
3321 true);
3322 if (l < 4 || !memory_access_is_direct(mr, true)) {
3323 release_lock |= prepare_mmio_access(mr);
3325 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3326 } else {
3327 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3328 stl_p(ptr, val);
3330 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3331 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3332 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
3333 4, dirty_log_mask);
3334 r = MEMTX_OK;
3336 if (result) {
3337 *result = r;
3339 if (release_lock) {
3340 qemu_mutex_unlock_iothread();
3342 rcu_read_unlock();
3345 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3347 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3350 /* warning: addr must be aligned */
3351 static inline void address_space_stl_internal(AddressSpace *as,
3352 hwaddr addr, uint32_t val,
3353 MemTxAttrs attrs,
3354 MemTxResult *result,
3355 enum device_endian endian)
3357 uint8_t *ptr;
3358 MemoryRegion *mr;
3359 hwaddr l = 4;
3360 hwaddr addr1;
3361 MemTxResult r;
3362 bool release_lock = false;
3364 rcu_read_lock();
3365 mr = address_space_translate(as, addr, &addr1, &l,
3366 true);
3367 if (l < 4 || !memory_access_is_direct(mr, true)) {
3368 release_lock |= prepare_mmio_access(mr);
3370 #if defined(TARGET_WORDS_BIGENDIAN)
3371 if (endian == DEVICE_LITTLE_ENDIAN) {
3372 val = bswap32(val);
3374 #else
3375 if (endian == DEVICE_BIG_ENDIAN) {
3376 val = bswap32(val);
3378 #endif
3379 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3380 } else {
3381 /* RAM case */
3382 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3383 switch (endian) {
3384 case DEVICE_LITTLE_ENDIAN:
3385 stl_le_p(ptr, val);
3386 break;
3387 case DEVICE_BIG_ENDIAN:
3388 stl_be_p(ptr, val);
3389 break;
3390 default:
3391 stl_p(ptr, val);
3392 break;
3394 invalidate_and_set_dirty(mr, addr1, 4);
3395 r = MEMTX_OK;
3397 if (result) {
3398 *result = r;
3400 if (release_lock) {
3401 qemu_mutex_unlock_iothread();
3403 rcu_read_unlock();
3406 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3407 MemTxAttrs attrs, MemTxResult *result)
3409 address_space_stl_internal(as, addr, val, attrs, result,
3410 DEVICE_NATIVE_ENDIAN);
3413 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3414 MemTxAttrs attrs, MemTxResult *result)
3416 address_space_stl_internal(as, addr, val, attrs, result,
3417 DEVICE_LITTLE_ENDIAN);
3420 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3421 MemTxAttrs attrs, MemTxResult *result)
3423 address_space_stl_internal(as, addr, val, attrs, result,
3424 DEVICE_BIG_ENDIAN);
3427 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3429 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3432 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3434 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3437 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3439 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3442 /* XXX: optimize */
3443 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3444 MemTxAttrs attrs, MemTxResult *result)
3446 uint8_t v = val;
3447 MemTxResult r;
3449 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3450 if (result) {
3451 *result = r;
3455 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3457 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3460 /* warning: addr must be aligned */
3461 static inline void address_space_stw_internal(AddressSpace *as,
3462 hwaddr addr, uint32_t val,
3463 MemTxAttrs attrs,
3464 MemTxResult *result,
3465 enum device_endian endian)
3467 uint8_t *ptr;
3468 MemoryRegion *mr;
3469 hwaddr l = 2;
3470 hwaddr addr1;
3471 MemTxResult r;
3472 bool release_lock = false;
3474 rcu_read_lock();
3475 mr = address_space_translate(as, addr, &addr1, &l, true);
3476 if (l < 2 || !memory_access_is_direct(mr, true)) {
3477 release_lock |= prepare_mmio_access(mr);
3479 #if defined(TARGET_WORDS_BIGENDIAN)
3480 if (endian == DEVICE_LITTLE_ENDIAN) {
3481 val = bswap16(val);
3483 #else
3484 if (endian == DEVICE_BIG_ENDIAN) {
3485 val = bswap16(val);
3487 #endif
3488 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
3489 } else {
3490 /* RAM case */
3491 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3492 switch (endian) {
3493 case DEVICE_LITTLE_ENDIAN:
3494 stw_le_p(ptr, val);
3495 break;
3496 case DEVICE_BIG_ENDIAN:
3497 stw_be_p(ptr, val);
3498 break;
3499 default:
3500 stw_p(ptr, val);
3501 break;
3503 invalidate_and_set_dirty(mr, addr1, 2);
3504 r = MEMTX_OK;
3506 if (result) {
3507 *result = r;
3509 if (release_lock) {
3510 qemu_mutex_unlock_iothread();
3512 rcu_read_unlock();
3515 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3516 MemTxAttrs attrs, MemTxResult *result)
3518 address_space_stw_internal(as, addr, val, attrs, result,
3519 DEVICE_NATIVE_ENDIAN);
3522 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3523 MemTxAttrs attrs, MemTxResult *result)
3525 address_space_stw_internal(as, addr, val, attrs, result,
3526 DEVICE_LITTLE_ENDIAN);
3529 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3530 MemTxAttrs attrs, MemTxResult *result)
3532 address_space_stw_internal(as, addr, val, attrs, result,
3533 DEVICE_BIG_ENDIAN);
3536 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3538 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3541 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3543 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3546 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3548 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3551 /* XXX: optimize */
3552 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3553 MemTxAttrs attrs, MemTxResult *result)
3555 MemTxResult r;
3556 val = tswap64(val);
3557 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3558 if (result) {
3559 *result = r;
3563 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3564 MemTxAttrs attrs, MemTxResult *result)
3566 MemTxResult r;
3567 val = cpu_to_le64(val);
3568 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3569 if (result) {
3570 *result = r;
3573 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3574 MemTxAttrs attrs, MemTxResult *result)
3576 MemTxResult r;
3577 val = cpu_to_be64(val);
3578 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3579 if (result) {
3580 *result = r;
3584 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3586 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3589 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3591 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3594 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3596 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3599 /* virtual memory access for debug (includes writing to ROM) */
3600 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3601 uint8_t *buf, int len, int is_write)
3603 int l;
3604 hwaddr phys_addr;
3605 target_ulong page;
3607 while (len > 0) {
3608 int asidx;
3609 MemTxAttrs attrs;
3611 page = addr & TARGET_PAGE_MASK;
3612 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3613 asidx = cpu_asidx_from_attrs(cpu, attrs);
3614 /* if no physical page mapped, return an error */
3615 if (phys_addr == -1)
3616 return -1;
3617 l = (page + TARGET_PAGE_SIZE) - addr;
3618 if (l > len)
3619 l = len;
3620 phys_addr += (addr & ~TARGET_PAGE_MASK);
3621 if (is_write) {
3622 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3623 phys_addr, buf, l);
3624 } else {
3625 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3626 MEMTXATTRS_UNSPECIFIED,
3627 buf, l, 0);
3629 len -= l;
3630 buf += l;
3631 addr += l;
3633 return 0;
3637 * Allows code that needs to deal with migration bitmaps etc to still be built
3638 * target independent.
3640 size_t qemu_target_page_bits(void)
3642 return TARGET_PAGE_BITS;
3645 #endif
3648 * A helper function for the _utterly broken_ virtio device model to find out if
3649 * it's running on a big endian machine. Don't do this at home kids!
3651 bool target_words_bigendian(void);
3652 bool target_words_bigendian(void)
3654 #if defined(TARGET_WORDS_BIGENDIAN)
3655 return true;
3656 #else
3657 return false;
3658 #endif
3661 #ifndef CONFIG_USER_ONLY
3662 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3664 MemoryRegion*mr;
3665 hwaddr l = 1;
3666 bool res;
3668 rcu_read_lock();
3669 mr = address_space_translate(&address_space_memory,
3670 phys_addr, &phys_addr, &l, false);
3672 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3673 rcu_read_unlock();
3674 return res;
3677 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3679 RAMBlock *block;
3680 int ret = 0;
3682 rcu_read_lock();
3683 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3684 ret = func(block->idstr, block->host, block->offset,
3685 block->used_length, opaque);
3686 if (ret) {
3687 break;
3690 rcu_read_unlock();
3691 return ret;
3693 #endif