nvic: Implement Security Attribution Unit registers
[qemu/ar7.git] / target / arm / cpu.c
blobf4f601f079d5f3421c239e65227bedf0b036b411
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
39 ARMCPU *cpu = ARM_CPU(cs);
41 cpu->env.regs[15] = value;
44 static bool arm_cpu_has_work(CPUState *cs)
46 ARMCPU *cpu = ARM_CPU(cs);
48 return (cpu->power_state != PSCI_OFF)
49 && cs->interrupt_request &
50 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52 | CPU_INTERRUPT_EXITTB);
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56 void *opaque)
58 /* We currently only support registering a single hook function */
59 assert(!cpu->el_change_hook);
60 cpu->el_change_hook = hook;
61 cpu->el_change_hook_opaque = opaque;
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
66 /* Reset a single ARMCPRegInfo register */
67 ARMCPRegInfo *ri = value;
68 ARMCPU *cpu = opaque;
70 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71 return;
74 if (ri->resetfn) {
75 ri->resetfn(&cpu->env, ri);
76 return;
79 /* A zero offset is never possible as it would be regs[0]
80 * so we use it to indicate that reset is being handled elsewhere.
81 * This is basically only used for fields in non-core coprocessors
82 * (like the pxa2xx ones).
84 if (!ri->fieldoffset) {
85 return;
88 if (cpreg_field_is_64bit(ri)) {
89 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90 } else {
91 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
95 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
97 /* Purely an assertion check: we've already done reset once,
98 * so now check that running the reset for the cpreg doesn't
99 * change its value. This traps bugs where two different cpregs
100 * both try to reset the same state field but to different values.
102 ARMCPRegInfo *ri = value;
103 ARMCPU *cpu = opaque;
104 uint64_t oldvalue, newvalue;
106 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107 return;
110 oldvalue = read_raw_cp_reg(&cpu->env, ri);
111 cp_reg_reset(key, value, opaque);
112 newvalue = read_raw_cp_reg(&cpu->env, ri);
113 assert(oldvalue == newvalue);
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
119 ARMCPU *cpu = ARM_CPU(s);
120 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121 CPUARMState *env = &cpu->env;
123 acc->parent_reset(s);
125 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
127 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
130 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
135 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136 s->halted = cpu->start_powered_off;
138 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
142 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143 /* 64 bit CPUs always start in 64 bit mode */
144 env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146 env->pstate = PSTATE_MODE_EL0t;
147 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149 /* and to the FP/Neon instructions */
150 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152 /* Reset into the highest available EL */
153 if (arm_feature(env, ARM_FEATURE_EL3)) {
154 env->pstate = PSTATE_MODE_EL3h;
155 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156 env->pstate = PSTATE_MODE_EL2h;
157 } else {
158 env->pstate = PSTATE_MODE_EL1h;
160 env->pc = cpu->rvbar;
161 #endif
162 } else {
163 #if defined(CONFIG_USER_ONLY)
164 /* Userspace expects access to cp10 and cp11 for FP/Neon */
165 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
169 #if defined(CONFIG_USER_ONLY)
170 env->uncached_cpsr = ARM_CPU_MODE_USR;
171 /* For user mode we must enable access to coprocessors */
172 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174 env->cp15.c15_cpar = 3;
175 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176 env->cp15.c15_cpar = 1;
178 #else
179 /* SVC mode with interrupts disabled. */
180 env->uncached_cpsr = ARM_CPU_MODE_SVC;
181 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
183 if (arm_feature(env, ARM_FEATURE_M)) {
184 uint32_t initial_msp; /* Loaded from 0x0 */
185 uint32_t initial_pc; /* Loaded from 0x4 */
186 uint8_t *rom;
188 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
189 env->v7m.secure = true;
190 } else {
191 /* This bit resets to 0 if security is supported, but 1 if
192 * it is not. The bit is not present in v7M, but we set it
193 * here so we can avoid having to make checks on it conditional
194 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
196 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
199 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
200 * that it resets to 1, so QEMU always does that rather than making
201 * it dependent on CPU model. In v8M it is RES1.
203 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
204 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
205 if (arm_feature(env, ARM_FEATURE_V8)) {
206 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
207 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
208 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
211 /* Unlike A/R profile, M profile defines the reset LR value */
212 env->regs[14] = 0xffffffff;
214 /* Load the initial SP and PC from the vector table at address 0 */
215 rom = rom_ptr(0);
216 if (rom) {
217 /* Address zero is covered by ROM which hasn't yet been
218 * copied into physical memory.
220 initial_msp = ldl_p(rom);
221 initial_pc = ldl_p(rom + 4);
222 } else {
223 /* Address zero not covered by a ROM blob, or the ROM blob
224 * is in non-modifiable memory and this is a second reset after
225 * it got copied into memory. In the latter case, rom_ptr
226 * will return a NULL pointer and we should use ldl_phys instead.
228 initial_msp = ldl_phys(s->as, 0);
229 initial_pc = ldl_phys(s->as, 4);
232 env->regs[13] = initial_msp & 0xFFFFFFFC;
233 env->regs[15] = initial_pc & ~1;
234 env->thumb = initial_pc & 1;
237 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
238 * executing as AArch32 then check if highvecs are enabled and
239 * adjust the PC accordingly.
241 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
242 env->regs[15] = 0xFFFF0000;
245 /* M profile requires that reset clears the exclusive monitor;
246 * A profile does not, but clearing it makes more sense than having it
247 * set with an exclusive access on address zero.
249 arm_clear_exclusive(env);
251 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
252 #endif
254 if (arm_feature(env, ARM_FEATURE_PMSA)) {
255 if (cpu->pmsav7_dregion > 0) {
256 if (arm_feature(env, ARM_FEATURE_V8)) {
257 memset(env->pmsav8.rbar[M_REG_NS], 0,
258 sizeof(*env->pmsav8.rbar[M_REG_NS])
259 * cpu->pmsav7_dregion);
260 memset(env->pmsav8.rlar[M_REG_NS], 0,
261 sizeof(*env->pmsav8.rlar[M_REG_NS])
262 * cpu->pmsav7_dregion);
263 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
264 memset(env->pmsav8.rbar[M_REG_S], 0,
265 sizeof(*env->pmsav8.rbar[M_REG_S])
266 * cpu->pmsav7_dregion);
267 memset(env->pmsav8.rlar[M_REG_S], 0,
268 sizeof(*env->pmsav8.rlar[M_REG_S])
269 * cpu->pmsav7_dregion);
271 } else if (arm_feature(env, ARM_FEATURE_V7)) {
272 memset(env->pmsav7.drbar, 0,
273 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
274 memset(env->pmsav7.drsr, 0,
275 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
276 memset(env->pmsav7.dracr, 0,
277 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
280 env->pmsav7.rnr[M_REG_NS] = 0;
281 env->pmsav7.rnr[M_REG_S] = 0;
282 env->pmsav8.mair0[M_REG_NS] = 0;
283 env->pmsav8.mair0[M_REG_S] = 0;
284 env->pmsav8.mair1[M_REG_NS] = 0;
285 env->pmsav8.mair1[M_REG_S] = 0;
288 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
289 if (cpu->sau_sregion > 0) {
290 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
291 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
293 env->sau.rnr = 0;
294 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
295 * the Cortex-M33 does.
297 env->sau.ctrl = 0;
300 set_flush_to_zero(1, &env->vfp.standard_fp_status);
301 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
302 set_default_nan_mode(1, &env->vfp.standard_fp_status);
303 set_float_detect_tininess(float_tininess_before_rounding,
304 &env->vfp.fp_status);
305 set_float_detect_tininess(float_tininess_before_rounding,
306 &env->vfp.standard_fp_status);
307 #ifndef CONFIG_USER_ONLY
308 if (kvm_enabled()) {
309 kvm_arm_reset_vcpu(cpu);
311 #endif
313 hw_breakpoint_update_all(cpu);
314 hw_watchpoint_update_all(cpu);
317 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
319 CPUClass *cc = CPU_GET_CLASS(cs);
320 CPUARMState *env = cs->env_ptr;
321 uint32_t cur_el = arm_current_el(env);
322 bool secure = arm_is_secure(env);
323 uint32_t target_el;
324 uint32_t excp_idx;
325 bool ret = false;
327 if (interrupt_request & CPU_INTERRUPT_FIQ) {
328 excp_idx = EXCP_FIQ;
329 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
330 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
331 cs->exception_index = excp_idx;
332 env->exception.target_el = target_el;
333 cc->do_interrupt(cs);
334 ret = true;
337 if (interrupt_request & CPU_INTERRUPT_HARD) {
338 excp_idx = EXCP_IRQ;
339 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
340 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
341 cs->exception_index = excp_idx;
342 env->exception.target_el = target_el;
343 cc->do_interrupt(cs);
344 ret = true;
347 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
348 excp_idx = EXCP_VIRQ;
349 target_el = 1;
350 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
351 cs->exception_index = excp_idx;
352 env->exception.target_el = target_el;
353 cc->do_interrupt(cs);
354 ret = true;
357 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
358 excp_idx = EXCP_VFIQ;
359 target_el = 1;
360 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
361 cs->exception_index = excp_idx;
362 env->exception.target_el = target_el;
363 cc->do_interrupt(cs);
364 ret = true;
368 return ret;
371 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
372 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
374 CPUClass *cc = CPU_GET_CLASS(cs);
375 ARMCPU *cpu = ARM_CPU(cs);
376 CPUARMState *env = &cpu->env;
377 bool ret = false;
379 /* ARMv7-M interrupt masking works differently than -A or -R.
380 * There is no FIQ/IRQ distinction. Instead of I and F bits
381 * masking FIQ and IRQ interrupts, an exception is taken only
382 * if it is higher priority than the current execution priority
383 * (which depends on state like BASEPRI, FAULTMASK and the
384 * currently active exception).
386 if (interrupt_request & CPU_INTERRUPT_HARD
387 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
388 cs->exception_index = EXCP_IRQ;
389 cc->do_interrupt(cs);
390 ret = true;
392 return ret;
394 #endif
396 #ifndef CONFIG_USER_ONLY
397 static void arm_cpu_set_irq(void *opaque, int irq, int level)
399 ARMCPU *cpu = opaque;
400 CPUARMState *env = &cpu->env;
401 CPUState *cs = CPU(cpu);
402 static const int mask[] = {
403 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
404 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
405 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
406 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
409 switch (irq) {
410 case ARM_CPU_VIRQ:
411 case ARM_CPU_VFIQ:
412 assert(arm_feature(env, ARM_FEATURE_EL2));
413 /* fall through */
414 case ARM_CPU_IRQ:
415 case ARM_CPU_FIQ:
416 if (level) {
417 cpu_interrupt(cs, mask[irq]);
418 } else {
419 cpu_reset_interrupt(cs, mask[irq]);
421 break;
422 default:
423 g_assert_not_reached();
427 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
429 #ifdef CONFIG_KVM
430 ARMCPU *cpu = opaque;
431 CPUState *cs = CPU(cpu);
432 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
434 switch (irq) {
435 case ARM_CPU_IRQ:
436 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
437 break;
438 case ARM_CPU_FIQ:
439 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
440 break;
441 default:
442 g_assert_not_reached();
444 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
445 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
446 #endif
449 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
451 ARMCPU *cpu = ARM_CPU(cs);
452 CPUARMState *env = &cpu->env;
454 cpu_synchronize_state(cs);
455 return arm_cpu_data_is_big_endian(env);
458 #endif
460 static inline void set_feature(CPUARMState *env, int feature)
462 env->features |= 1ULL << feature;
465 static inline void unset_feature(CPUARMState *env, int feature)
467 env->features &= ~(1ULL << feature);
470 static int
471 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
473 return print_insn_arm(pc | 1, info);
476 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
477 int length, struct disassemble_info *info)
479 assert(info->read_memory_inner_func);
480 assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
482 if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
483 assert(info->endian == BFD_ENDIAN_LITTLE);
484 return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
485 info);
486 } else {
487 return info->read_memory_inner_func(memaddr, b, length, info);
491 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
493 ARMCPU *ac = ARM_CPU(cpu);
494 CPUARMState *env = &ac->env;
496 if (is_a64(env)) {
497 /* We might not be compiled with the A64 disassembler
498 * because it needs a C++ compiler. Leave print_insn
499 * unset in this case to use the caller default behaviour.
501 #if defined(CONFIG_ARM_A64_DIS)
502 info->print_insn = print_insn_arm_a64;
503 #endif
504 } else if (env->thumb) {
505 info->print_insn = print_insn_thumb1;
506 } else {
507 info->print_insn = print_insn_arm;
509 if (bswap_code(arm_sctlr_b(env))) {
510 #ifdef TARGET_WORDS_BIGENDIAN
511 info->endian = BFD_ENDIAN_LITTLE;
512 #else
513 info->endian = BFD_ENDIAN_BIG;
514 #endif
516 if (info->read_memory_inner_func == NULL) {
517 info->read_memory_inner_func = info->read_memory_func;
518 info->read_memory_func = arm_read_memory_func;
520 info->flags &= ~INSN_ARM_BE32;
521 if (arm_sctlr_b(env)) {
522 info->flags |= INSN_ARM_BE32;
526 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
528 uint32_t Aff1 = idx / clustersz;
529 uint32_t Aff0 = idx % clustersz;
530 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
533 static void arm_cpu_initfn(Object *obj)
535 CPUState *cs = CPU(obj);
536 ARMCPU *cpu = ARM_CPU(obj);
537 static bool inited;
539 cs->env_ptr = &cpu->env;
540 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
541 g_free, g_free);
543 #ifndef CONFIG_USER_ONLY
544 /* Our inbound IRQ and FIQ lines */
545 if (kvm_enabled()) {
546 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
547 * the same interface as non-KVM CPUs.
549 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
550 } else {
551 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
554 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
555 arm_gt_ptimer_cb, cpu);
556 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
557 arm_gt_vtimer_cb, cpu);
558 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
559 arm_gt_htimer_cb, cpu);
560 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
561 arm_gt_stimer_cb, cpu);
562 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
563 ARRAY_SIZE(cpu->gt_timer_outputs));
565 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
566 "gicv3-maintenance-interrupt", 1);
567 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
568 "pmu-interrupt", 1);
569 #endif
571 /* DTB consumers generally don't in fact care what the 'compatible'
572 * string is, so always provide some string and trust that a hypothetical
573 * picky DTB consumer will also provide a helpful error message.
575 cpu->dtb_compatible = "qemu,unknown";
576 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
577 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
579 if (tcg_enabled()) {
580 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
581 if (!inited) {
582 inited = true;
583 arm_translate_init();
588 static Property arm_cpu_reset_cbar_property =
589 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
591 static Property arm_cpu_reset_hivecs_property =
592 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
594 static Property arm_cpu_rvbar_property =
595 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
597 static Property arm_cpu_has_el2_property =
598 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
600 static Property arm_cpu_has_el3_property =
601 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
603 static Property arm_cpu_cfgend_property =
604 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
606 /* use property name "pmu" to match other archs and virt tools */
607 static Property arm_cpu_has_pmu_property =
608 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
610 static Property arm_cpu_has_mpu_property =
611 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
613 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
614 * because the CPU initfn will have already set cpu->pmsav7_dregion to
615 * the right value for that particular CPU type, and we don't want
616 * to override that with an incorrect constant value.
618 static Property arm_cpu_pmsav7_dregion_property =
619 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
620 pmsav7_dregion,
621 qdev_prop_uint32, uint32_t);
623 static void arm_cpu_post_init(Object *obj)
625 ARMCPU *cpu = ARM_CPU(obj);
627 /* M profile implies PMSA. We have to do this here rather than
628 * in realize with the other feature-implication checks because
629 * we look at the PMSA bit to see if we should add some properties.
631 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
632 set_feature(&cpu->env, ARM_FEATURE_PMSA);
635 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
636 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
637 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
638 &error_abort);
641 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
642 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
643 &error_abort);
646 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
647 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
648 &error_abort);
651 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
652 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
653 * prevent "has_el3" from existing on CPUs which cannot support EL3.
655 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
656 &error_abort);
658 #ifndef CONFIG_USER_ONLY
659 object_property_add_link(obj, "secure-memory",
660 TYPE_MEMORY_REGION,
661 (Object **)&cpu->secure_memory,
662 qdev_prop_allow_set_link_before_realize,
663 OBJ_PROP_LINK_UNREF_ON_RELEASE,
664 &error_abort);
665 #endif
668 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
669 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
670 &error_abort);
673 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
674 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
675 &error_abort);
678 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
679 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
680 &error_abort);
681 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
682 qdev_property_add_static(DEVICE(obj),
683 &arm_cpu_pmsav7_dregion_property,
684 &error_abort);
688 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
689 &error_abort);
692 static void arm_cpu_finalizefn(Object *obj)
694 ARMCPU *cpu = ARM_CPU(obj);
695 g_hash_table_destroy(cpu->cp_regs);
698 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
700 CPUState *cs = CPU(dev);
701 ARMCPU *cpu = ARM_CPU(dev);
702 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
703 CPUARMState *env = &cpu->env;
704 int pagebits;
705 Error *local_err = NULL;
706 #ifndef CONFIG_USER_ONLY
707 AddressSpace *as;
708 #endif
710 cpu_exec_realizefn(cs, &local_err);
711 if (local_err != NULL) {
712 error_propagate(errp, local_err);
713 return;
716 /* Some features automatically imply others: */
717 if (arm_feature(env, ARM_FEATURE_V8)) {
718 set_feature(env, ARM_FEATURE_V7);
719 set_feature(env, ARM_FEATURE_ARM_DIV);
720 set_feature(env, ARM_FEATURE_LPAE);
722 if (arm_feature(env, ARM_FEATURE_V7)) {
723 set_feature(env, ARM_FEATURE_VAPA);
724 set_feature(env, ARM_FEATURE_THUMB2);
725 set_feature(env, ARM_FEATURE_MPIDR);
726 if (!arm_feature(env, ARM_FEATURE_M)) {
727 set_feature(env, ARM_FEATURE_V6K);
728 } else {
729 set_feature(env, ARM_FEATURE_V6);
732 /* Always define VBAR for V7 CPUs even if it doesn't exist in
733 * non-EL3 configs. This is needed by some legacy boards.
735 set_feature(env, ARM_FEATURE_VBAR);
737 if (arm_feature(env, ARM_FEATURE_V6K)) {
738 set_feature(env, ARM_FEATURE_V6);
739 set_feature(env, ARM_FEATURE_MVFR);
741 if (arm_feature(env, ARM_FEATURE_V6)) {
742 set_feature(env, ARM_FEATURE_V5);
743 set_feature(env, ARM_FEATURE_JAZELLE);
744 if (!arm_feature(env, ARM_FEATURE_M)) {
745 set_feature(env, ARM_FEATURE_AUXCR);
748 if (arm_feature(env, ARM_FEATURE_V5)) {
749 set_feature(env, ARM_FEATURE_V4T);
751 if (arm_feature(env, ARM_FEATURE_M)) {
752 set_feature(env, ARM_FEATURE_THUMB_DIV);
754 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
755 set_feature(env, ARM_FEATURE_THUMB_DIV);
757 if (arm_feature(env, ARM_FEATURE_VFP4)) {
758 set_feature(env, ARM_FEATURE_VFP3);
759 set_feature(env, ARM_FEATURE_VFP_FP16);
761 if (arm_feature(env, ARM_FEATURE_VFP3)) {
762 set_feature(env, ARM_FEATURE_VFP);
764 if (arm_feature(env, ARM_FEATURE_LPAE)) {
765 set_feature(env, ARM_FEATURE_V7MP);
766 set_feature(env, ARM_FEATURE_PXN);
768 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
769 set_feature(env, ARM_FEATURE_CBAR);
771 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
772 !arm_feature(env, ARM_FEATURE_M)) {
773 set_feature(env, ARM_FEATURE_THUMB_DSP);
776 if (arm_feature(env, ARM_FEATURE_V7) &&
777 !arm_feature(env, ARM_FEATURE_M) &&
778 !arm_feature(env, ARM_FEATURE_PMSA)) {
779 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
780 * can use 4K pages.
782 pagebits = 12;
783 } else {
784 /* For CPUs which might have tiny 1K pages, or which have an
785 * MPU and might have small region sizes, stick with 1K pages.
787 pagebits = 10;
789 if (!set_preferred_target_page_bits(pagebits)) {
790 /* This can only ever happen for hotplugging a CPU, or if
791 * the board code incorrectly creates a CPU which it has
792 * promised via minimum_page_size that it will not.
794 error_setg(errp, "This CPU requires a smaller page size than the "
795 "system is using");
796 return;
799 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
800 * We don't support setting cluster ID ([16..23]) (known as Aff2
801 * in later ARM ARM versions), or any of the higher affinity level fields,
802 * so these bits always RAZ.
804 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
805 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
806 ARM_DEFAULT_CPUS_PER_CLUSTER);
809 if (cpu->reset_hivecs) {
810 cpu->reset_sctlr |= (1 << 13);
813 if (cpu->cfgend) {
814 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
815 cpu->reset_sctlr |= SCTLR_EE;
816 } else {
817 cpu->reset_sctlr |= SCTLR_B;
821 if (!cpu->has_el3) {
822 /* If the has_el3 CPU property is disabled then we need to disable the
823 * feature.
825 unset_feature(env, ARM_FEATURE_EL3);
827 /* Disable the security extension feature bits in the processor feature
828 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
830 cpu->id_pfr1 &= ~0xf0;
831 cpu->id_aa64pfr0 &= ~0xf000;
834 if (!cpu->has_el2) {
835 unset_feature(env, ARM_FEATURE_EL2);
838 if (!cpu->has_pmu) {
839 unset_feature(env, ARM_FEATURE_PMU);
840 cpu->id_aa64dfr0 &= ~0xf00;
843 if (!arm_feature(env, ARM_FEATURE_EL2)) {
844 /* Disable the hypervisor feature bits in the processor feature
845 * registers if we don't have EL2. These are id_pfr1[15:12] and
846 * id_aa64pfr0_el1[11:8].
848 cpu->id_aa64pfr0 &= ~0xf00;
849 cpu->id_pfr1 &= ~0xf000;
852 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
853 * to false or by setting pmsav7-dregion to 0.
855 if (!cpu->has_mpu) {
856 cpu->pmsav7_dregion = 0;
858 if (cpu->pmsav7_dregion == 0) {
859 cpu->has_mpu = false;
862 if (arm_feature(env, ARM_FEATURE_PMSA) &&
863 arm_feature(env, ARM_FEATURE_V7)) {
864 uint32_t nr = cpu->pmsav7_dregion;
866 if (nr > 0xff) {
867 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
868 return;
871 if (nr) {
872 if (arm_feature(env, ARM_FEATURE_V8)) {
873 /* PMSAv8 */
874 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
875 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
876 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
877 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
878 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
880 } else {
881 env->pmsav7.drbar = g_new0(uint32_t, nr);
882 env->pmsav7.drsr = g_new0(uint32_t, nr);
883 env->pmsav7.dracr = g_new0(uint32_t, nr);
888 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
889 uint32_t nr = cpu->sau_sregion;
891 if (nr > 0xff) {
892 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
893 return;
896 if (nr) {
897 env->sau.rbar = g_new0(uint32_t, nr);
898 env->sau.rlar = g_new0(uint32_t, nr);
902 if (arm_feature(env, ARM_FEATURE_EL3)) {
903 set_feature(env, ARM_FEATURE_VBAR);
906 register_cp_regs_for_features(cpu);
907 arm_cpu_register_gdb_regs_for_features(cpu);
909 init_cpreg_list(cpu);
911 #ifndef CONFIG_USER_ONLY
912 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
913 as = g_new0(AddressSpace, 1);
915 cs->num_ases = 2;
917 if (!cpu->secure_memory) {
918 cpu->secure_memory = cs->memory;
920 address_space_init(as, cpu->secure_memory, "cpu-secure-memory");
921 cpu_address_space_init(cs, as, ARMASIdx_S);
922 } else {
923 cs->num_ases = 1;
925 as = g_new0(AddressSpace, 1);
926 address_space_init(as, cs->memory, "cpu-memory");
927 cpu_address_space_init(cs, as, ARMASIdx_NS);
928 #endif
930 qemu_init_vcpu(cs);
931 cpu_reset(cs);
933 acc->parent_realize(dev, errp);
936 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
938 ObjectClass *oc;
939 char *typename;
940 char **cpuname;
942 if (!cpu_model) {
943 return NULL;
946 cpuname = g_strsplit(cpu_model, ",", 1);
947 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpuname[0]);
948 oc = object_class_by_name(typename);
949 g_strfreev(cpuname);
950 g_free(typename);
951 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
952 object_class_is_abstract(oc)) {
953 return NULL;
955 return oc;
958 /* CPU models. These are not needed for the AArch64 linux-user build. */
959 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
961 static void arm926_initfn(Object *obj)
963 ARMCPU *cpu = ARM_CPU(obj);
965 cpu->dtb_compatible = "arm,arm926";
966 set_feature(&cpu->env, ARM_FEATURE_V5);
967 set_feature(&cpu->env, ARM_FEATURE_VFP);
968 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
969 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
970 set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
971 cpu->midr = 0x41069265;
972 cpu->reset_fpsid = 0x41011090;
973 cpu->ctr = 0x1dd20d2;
974 cpu->reset_sctlr = 0x00090078;
977 static void arm946_initfn(Object *obj)
979 ARMCPU *cpu = ARM_CPU(obj);
981 cpu->dtb_compatible = "arm,arm946";
982 set_feature(&cpu->env, ARM_FEATURE_V5);
983 set_feature(&cpu->env, ARM_FEATURE_PMSA);
984 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
985 cpu->midr = 0x41059461;
986 cpu->ctr = 0x0f004006;
987 cpu->reset_sctlr = 0x00000078;
990 static void arm1026_initfn(Object *obj)
992 ARMCPU *cpu = ARM_CPU(obj);
994 cpu->dtb_compatible = "arm,arm1026";
995 set_feature(&cpu->env, ARM_FEATURE_V5);
996 set_feature(&cpu->env, ARM_FEATURE_VFP);
997 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
998 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
999 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1000 set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1001 cpu->midr = 0x4106a262;
1002 cpu->reset_fpsid = 0x410110a0;
1003 cpu->ctr = 0x1dd20d2;
1004 cpu->reset_sctlr = 0x00090078;
1005 cpu->reset_auxcr = 1;
1007 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1008 ARMCPRegInfo ifar = {
1009 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1010 .access = PL1_RW,
1011 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1012 .resetvalue = 0
1014 define_one_arm_cp_reg(cpu, &ifar);
1018 static void arm1136_r2_initfn(Object *obj)
1020 ARMCPU *cpu = ARM_CPU(obj);
1021 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1022 * older core than plain "arm1136". In particular this does not
1023 * have the v6K features.
1024 * These ID register values are correct for 1136 but may be wrong
1025 * for 1136_r2 (in particular r0p2 does not actually implement most
1026 * of the ID registers).
1029 cpu->dtb_compatible = "arm,arm1136";
1030 set_feature(&cpu->env, ARM_FEATURE_V6);
1031 set_feature(&cpu->env, ARM_FEATURE_VFP);
1032 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1033 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1034 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1035 cpu->midr = 0x4107b362;
1036 cpu->reset_fpsid = 0x410120b4;
1037 cpu->mvfr0 = 0x11111111;
1038 cpu->mvfr1 = 0x00000000;
1039 cpu->ctr = 0x1dd20d2;
1040 cpu->reset_sctlr = 0x00050078;
1041 cpu->id_pfr0 = 0x111;
1042 cpu->id_pfr1 = 0x1;
1043 cpu->id_dfr0 = 0x2;
1044 cpu->id_afr0 = 0x3;
1045 cpu->id_mmfr0 = 0x01130003;
1046 cpu->id_mmfr1 = 0x10030302;
1047 cpu->id_mmfr2 = 0x01222110;
1048 cpu->id_isar0 = 0x00140011;
1049 cpu->id_isar1 = 0x12002111;
1050 cpu->id_isar2 = 0x11231111;
1051 cpu->id_isar3 = 0x01102131;
1052 cpu->id_isar4 = 0x141;
1053 cpu->reset_auxcr = 7;
1056 static void arm1136_initfn(Object *obj)
1058 ARMCPU *cpu = ARM_CPU(obj);
1060 cpu->dtb_compatible = "arm,arm1136";
1061 set_feature(&cpu->env, ARM_FEATURE_V6K);
1062 set_feature(&cpu->env, ARM_FEATURE_V6);
1063 set_feature(&cpu->env, ARM_FEATURE_VFP);
1064 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1065 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1066 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1067 cpu->midr = 0x4117b363;
1068 cpu->reset_fpsid = 0x410120b4;
1069 cpu->mvfr0 = 0x11111111;
1070 cpu->mvfr1 = 0x00000000;
1071 cpu->ctr = 0x1dd20d2;
1072 cpu->reset_sctlr = 0x00050078;
1073 cpu->id_pfr0 = 0x111;
1074 cpu->id_pfr1 = 0x1;
1075 cpu->id_dfr0 = 0x2;
1076 cpu->id_afr0 = 0x3;
1077 cpu->id_mmfr0 = 0x01130003;
1078 cpu->id_mmfr1 = 0x10030302;
1079 cpu->id_mmfr2 = 0x01222110;
1080 cpu->id_isar0 = 0x00140011;
1081 cpu->id_isar1 = 0x12002111;
1082 cpu->id_isar2 = 0x11231111;
1083 cpu->id_isar3 = 0x01102131;
1084 cpu->id_isar4 = 0x141;
1085 cpu->reset_auxcr = 7;
1088 static void arm1176_initfn(Object *obj)
1090 ARMCPU *cpu = ARM_CPU(obj);
1092 cpu->dtb_compatible = "arm,arm1176";
1093 set_feature(&cpu->env, ARM_FEATURE_V6K);
1094 set_feature(&cpu->env, ARM_FEATURE_VFP);
1095 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1096 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1097 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1098 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1099 set_feature(&cpu->env, ARM_FEATURE_EL3);
1100 cpu->midr = 0x410fb767;
1101 cpu->reset_fpsid = 0x410120b5;
1102 cpu->mvfr0 = 0x11111111;
1103 cpu->mvfr1 = 0x00000000;
1104 cpu->ctr = 0x1dd20d2;
1105 cpu->reset_sctlr = 0x00050078;
1106 cpu->id_pfr0 = 0x111;
1107 cpu->id_pfr1 = 0x11;
1108 cpu->id_dfr0 = 0x33;
1109 cpu->id_afr0 = 0;
1110 cpu->id_mmfr0 = 0x01130003;
1111 cpu->id_mmfr1 = 0x10030302;
1112 cpu->id_mmfr2 = 0x01222100;
1113 cpu->id_isar0 = 0x0140011;
1114 cpu->id_isar1 = 0x12002111;
1115 cpu->id_isar2 = 0x11231121;
1116 cpu->id_isar3 = 0x01102131;
1117 cpu->id_isar4 = 0x01141;
1118 cpu->reset_auxcr = 7;
1121 static void arm11mpcore_initfn(Object *obj)
1123 ARMCPU *cpu = ARM_CPU(obj);
1125 cpu->dtb_compatible = "arm,arm11mpcore";
1126 set_feature(&cpu->env, ARM_FEATURE_V6K);
1127 set_feature(&cpu->env, ARM_FEATURE_VFP);
1128 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1129 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1130 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1131 cpu->midr = 0x410fb022;
1132 cpu->reset_fpsid = 0x410120b4;
1133 cpu->mvfr0 = 0x11111111;
1134 cpu->mvfr1 = 0x00000000;
1135 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1136 cpu->id_pfr0 = 0x111;
1137 cpu->id_pfr1 = 0x1;
1138 cpu->id_dfr0 = 0;
1139 cpu->id_afr0 = 0x2;
1140 cpu->id_mmfr0 = 0x01100103;
1141 cpu->id_mmfr1 = 0x10020302;
1142 cpu->id_mmfr2 = 0x01222000;
1143 cpu->id_isar0 = 0x00100011;
1144 cpu->id_isar1 = 0x12002111;
1145 cpu->id_isar2 = 0x11221011;
1146 cpu->id_isar3 = 0x01102131;
1147 cpu->id_isar4 = 0x141;
1148 cpu->reset_auxcr = 1;
1151 static void cortex_m3_initfn(Object *obj)
1153 ARMCPU *cpu = ARM_CPU(obj);
1154 set_feature(&cpu->env, ARM_FEATURE_V7);
1155 set_feature(&cpu->env, ARM_FEATURE_M);
1156 cpu->midr = 0x410fc231;
1157 cpu->pmsav7_dregion = 8;
1160 static void cortex_m4_initfn(Object *obj)
1162 ARMCPU *cpu = ARM_CPU(obj);
1164 set_feature(&cpu->env, ARM_FEATURE_V7);
1165 set_feature(&cpu->env, ARM_FEATURE_M);
1166 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1167 cpu->midr = 0x410fc240; /* r0p0 */
1168 cpu->pmsav7_dregion = 8;
1171 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1173 CPUClass *cc = CPU_CLASS(oc);
1175 #ifndef CONFIG_USER_ONLY
1176 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1177 #endif
1179 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1182 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1183 /* Dummy the TCM region regs for the moment */
1184 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1185 .access = PL1_RW, .type = ARM_CP_CONST },
1186 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1187 .access = PL1_RW, .type = ARM_CP_CONST },
1188 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1189 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1190 REGINFO_SENTINEL
1193 static void cortex_r5_initfn(Object *obj)
1195 ARMCPU *cpu = ARM_CPU(obj);
1197 set_feature(&cpu->env, ARM_FEATURE_V7);
1198 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1199 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1200 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1201 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1202 cpu->midr = 0x411fc153; /* r1p3 */
1203 cpu->id_pfr0 = 0x0131;
1204 cpu->id_pfr1 = 0x001;
1205 cpu->id_dfr0 = 0x010400;
1206 cpu->id_afr0 = 0x0;
1207 cpu->id_mmfr0 = 0x0210030;
1208 cpu->id_mmfr1 = 0x00000000;
1209 cpu->id_mmfr2 = 0x01200000;
1210 cpu->id_mmfr3 = 0x0211;
1211 cpu->id_isar0 = 0x2101111;
1212 cpu->id_isar1 = 0x13112111;
1213 cpu->id_isar2 = 0x21232141;
1214 cpu->id_isar3 = 0x01112131;
1215 cpu->id_isar4 = 0x0010142;
1216 cpu->id_isar5 = 0x0;
1217 cpu->mp_is_up = true;
1218 cpu->pmsav7_dregion = 16;
1219 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1222 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1223 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1224 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1225 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1226 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1227 REGINFO_SENTINEL
1230 static void cortex_a8_initfn(Object *obj)
1232 ARMCPU *cpu = ARM_CPU(obj);
1234 cpu->dtb_compatible = "arm,cortex-a8";
1235 set_feature(&cpu->env, ARM_FEATURE_V7);
1236 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1237 set_feature(&cpu->env, ARM_FEATURE_NEON);
1238 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1239 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1240 set_feature(&cpu->env, ARM_FEATURE_EL3);
1241 cpu->midr = 0x410fc080;
1242 cpu->reset_fpsid = 0x410330c0;
1243 cpu->mvfr0 = 0x11110222;
1244 cpu->mvfr1 = 0x00011111;
1245 cpu->ctr = 0x82048004;
1246 cpu->reset_sctlr = 0x00c50078;
1247 cpu->id_pfr0 = 0x1031;
1248 cpu->id_pfr1 = 0x11;
1249 cpu->id_dfr0 = 0x400;
1250 cpu->id_afr0 = 0;
1251 cpu->id_mmfr0 = 0x31100003;
1252 cpu->id_mmfr1 = 0x20000000;
1253 cpu->id_mmfr2 = 0x01202000;
1254 cpu->id_mmfr3 = 0x11;
1255 cpu->id_isar0 = 0x00101111;
1256 cpu->id_isar1 = 0x12112111;
1257 cpu->id_isar2 = 0x21232031;
1258 cpu->id_isar3 = 0x11112131;
1259 cpu->id_isar4 = 0x00111142;
1260 cpu->dbgdidr = 0x15141000;
1261 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1262 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1263 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1264 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1265 cpu->reset_auxcr = 2;
1266 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1269 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1270 /* power_control should be set to maximum latency. Again,
1271 * default to 0 and set by private hook
1273 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1274 .access = PL1_RW, .resetvalue = 0,
1275 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1276 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1277 .access = PL1_RW, .resetvalue = 0,
1278 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1279 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1280 .access = PL1_RW, .resetvalue = 0,
1281 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1282 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1283 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1284 /* TLB lockdown control */
1285 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1286 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1287 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1288 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1289 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1290 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1291 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1292 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1293 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1294 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1295 REGINFO_SENTINEL
1298 static void cortex_a9_initfn(Object *obj)
1300 ARMCPU *cpu = ARM_CPU(obj);
1302 cpu->dtb_compatible = "arm,cortex-a9";
1303 set_feature(&cpu->env, ARM_FEATURE_V7);
1304 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1305 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1306 set_feature(&cpu->env, ARM_FEATURE_NEON);
1307 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1308 set_feature(&cpu->env, ARM_FEATURE_EL3);
1309 /* Note that A9 supports the MP extensions even for
1310 * A9UP and single-core A9MP (which are both different
1311 * and valid configurations; we don't model A9UP).
1313 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1314 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1315 cpu->midr = 0x410fc090;
1316 cpu->reset_fpsid = 0x41033090;
1317 cpu->mvfr0 = 0x11110222;
1318 cpu->mvfr1 = 0x01111111;
1319 cpu->ctr = 0x80038003;
1320 cpu->reset_sctlr = 0x00c50078;
1321 cpu->id_pfr0 = 0x1031;
1322 cpu->id_pfr1 = 0x11;
1323 cpu->id_dfr0 = 0x000;
1324 cpu->id_afr0 = 0;
1325 cpu->id_mmfr0 = 0x00100103;
1326 cpu->id_mmfr1 = 0x20000000;
1327 cpu->id_mmfr2 = 0x01230000;
1328 cpu->id_mmfr3 = 0x00002111;
1329 cpu->id_isar0 = 0x00101111;
1330 cpu->id_isar1 = 0x13112111;
1331 cpu->id_isar2 = 0x21232041;
1332 cpu->id_isar3 = 0x11112131;
1333 cpu->id_isar4 = 0x00111142;
1334 cpu->dbgdidr = 0x35141000;
1335 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1336 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1337 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1338 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1341 #ifndef CONFIG_USER_ONLY
1342 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1344 /* Linux wants the number of processors from here.
1345 * Might as well set the interrupt-controller bit too.
1347 return ((smp_cpus - 1) << 24) | (1 << 23);
1349 #endif
1351 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1352 #ifndef CONFIG_USER_ONLY
1353 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1354 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1355 .writefn = arm_cp_write_ignore, },
1356 #endif
1357 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1358 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1359 REGINFO_SENTINEL
1362 static void cortex_a7_initfn(Object *obj)
1364 ARMCPU *cpu = ARM_CPU(obj);
1366 cpu->dtb_compatible = "arm,cortex-a7";
1367 set_feature(&cpu->env, ARM_FEATURE_V7);
1368 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1369 set_feature(&cpu->env, ARM_FEATURE_NEON);
1370 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1371 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1372 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1373 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1374 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1375 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1376 set_feature(&cpu->env, ARM_FEATURE_EL3);
1377 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1378 cpu->midr = 0x410fc075;
1379 cpu->reset_fpsid = 0x41023075;
1380 cpu->mvfr0 = 0x10110222;
1381 cpu->mvfr1 = 0x11111111;
1382 cpu->ctr = 0x84448003;
1383 cpu->reset_sctlr = 0x00c50078;
1384 cpu->id_pfr0 = 0x00001131;
1385 cpu->id_pfr1 = 0x00011011;
1386 cpu->id_dfr0 = 0x02010555;
1387 cpu->pmceid0 = 0x00000000;
1388 cpu->pmceid1 = 0x00000000;
1389 cpu->id_afr0 = 0x00000000;
1390 cpu->id_mmfr0 = 0x10101105;
1391 cpu->id_mmfr1 = 0x40000000;
1392 cpu->id_mmfr2 = 0x01240000;
1393 cpu->id_mmfr3 = 0x02102211;
1394 cpu->id_isar0 = 0x01101110;
1395 cpu->id_isar1 = 0x13112111;
1396 cpu->id_isar2 = 0x21232041;
1397 cpu->id_isar3 = 0x11112131;
1398 cpu->id_isar4 = 0x10011142;
1399 cpu->dbgdidr = 0x3515f005;
1400 cpu->clidr = 0x0a200023;
1401 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1402 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1403 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1404 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1407 static void cortex_a15_initfn(Object *obj)
1409 ARMCPU *cpu = ARM_CPU(obj);
1411 cpu->dtb_compatible = "arm,cortex-a15";
1412 set_feature(&cpu->env, ARM_FEATURE_V7);
1413 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1414 set_feature(&cpu->env, ARM_FEATURE_NEON);
1415 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1416 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1417 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1418 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1419 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1420 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1421 set_feature(&cpu->env, ARM_FEATURE_EL3);
1422 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1423 cpu->midr = 0x412fc0f1;
1424 cpu->reset_fpsid = 0x410430f0;
1425 cpu->mvfr0 = 0x10110222;
1426 cpu->mvfr1 = 0x11111111;
1427 cpu->ctr = 0x8444c004;
1428 cpu->reset_sctlr = 0x00c50078;
1429 cpu->id_pfr0 = 0x00001131;
1430 cpu->id_pfr1 = 0x00011011;
1431 cpu->id_dfr0 = 0x02010555;
1432 cpu->pmceid0 = 0x0000000;
1433 cpu->pmceid1 = 0x00000000;
1434 cpu->id_afr0 = 0x00000000;
1435 cpu->id_mmfr0 = 0x10201105;
1436 cpu->id_mmfr1 = 0x20000000;
1437 cpu->id_mmfr2 = 0x01240000;
1438 cpu->id_mmfr3 = 0x02102211;
1439 cpu->id_isar0 = 0x02101110;
1440 cpu->id_isar1 = 0x13112111;
1441 cpu->id_isar2 = 0x21232041;
1442 cpu->id_isar3 = 0x11112131;
1443 cpu->id_isar4 = 0x10011142;
1444 cpu->dbgdidr = 0x3515f021;
1445 cpu->clidr = 0x0a200023;
1446 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1447 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1448 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1449 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1452 static void ti925t_initfn(Object *obj)
1454 ARMCPU *cpu = ARM_CPU(obj);
1455 set_feature(&cpu->env, ARM_FEATURE_V4T);
1456 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1457 cpu->midr = ARM_CPUID_TI925T;
1458 cpu->ctr = 0x5109149;
1459 cpu->reset_sctlr = 0x00000070;
1462 static void sa1100_initfn(Object *obj)
1464 ARMCPU *cpu = ARM_CPU(obj);
1466 cpu->dtb_compatible = "intel,sa1100";
1467 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1468 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1469 cpu->midr = 0x4401A11B;
1470 cpu->reset_sctlr = 0x00000070;
1473 static void sa1110_initfn(Object *obj)
1475 ARMCPU *cpu = ARM_CPU(obj);
1476 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1477 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1478 cpu->midr = 0x6901B119;
1479 cpu->reset_sctlr = 0x00000070;
1482 static void pxa250_initfn(Object *obj)
1484 ARMCPU *cpu = ARM_CPU(obj);
1486 cpu->dtb_compatible = "marvell,xscale";
1487 set_feature(&cpu->env, ARM_FEATURE_V5);
1488 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1489 cpu->midr = 0x69052100;
1490 cpu->ctr = 0xd172172;
1491 cpu->reset_sctlr = 0x00000078;
1494 static void pxa255_initfn(Object *obj)
1496 ARMCPU *cpu = ARM_CPU(obj);
1498 cpu->dtb_compatible = "marvell,xscale";
1499 set_feature(&cpu->env, ARM_FEATURE_V5);
1500 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1501 cpu->midr = 0x69052d00;
1502 cpu->ctr = 0xd172172;
1503 cpu->reset_sctlr = 0x00000078;
1506 static void pxa260_initfn(Object *obj)
1508 ARMCPU *cpu = ARM_CPU(obj);
1510 cpu->dtb_compatible = "marvell,xscale";
1511 set_feature(&cpu->env, ARM_FEATURE_V5);
1512 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1513 cpu->midr = 0x69052903;
1514 cpu->ctr = 0xd172172;
1515 cpu->reset_sctlr = 0x00000078;
1518 static void pxa261_initfn(Object *obj)
1520 ARMCPU *cpu = ARM_CPU(obj);
1522 cpu->dtb_compatible = "marvell,xscale";
1523 set_feature(&cpu->env, ARM_FEATURE_V5);
1524 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1525 cpu->midr = 0x69052d05;
1526 cpu->ctr = 0xd172172;
1527 cpu->reset_sctlr = 0x00000078;
1530 static void pxa262_initfn(Object *obj)
1532 ARMCPU *cpu = ARM_CPU(obj);
1534 cpu->dtb_compatible = "marvell,xscale";
1535 set_feature(&cpu->env, ARM_FEATURE_V5);
1536 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1537 cpu->midr = 0x69052d06;
1538 cpu->ctr = 0xd172172;
1539 cpu->reset_sctlr = 0x00000078;
1542 static void pxa270a0_initfn(Object *obj)
1544 ARMCPU *cpu = ARM_CPU(obj);
1546 cpu->dtb_compatible = "marvell,xscale";
1547 set_feature(&cpu->env, ARM_FEATURE_V5);
1548 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1549 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1550 cpu->midr = 0x69054110;
1551 cpu->ctr = 0xd172172;
1552 cpu->reset_sctlr = 0x00000078;
1555 static void pxa270a1_initfn(Object *obj)
1557 ARMCPU *cpu = ARM_CPU(obj);
1559 cpu->dtb_compatible = "marvell,xscale";
1560 set_feature(&cpu->env, ARM_FEATURE_V5);
1561 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1562 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1563 cpu->midr = 0x69054111;
1564 cpu->ctr = 0xd172172;
1565 cpu->reset_sctlr = 0x00000078;
1568 static void pxa270b0_initfn(Object *obj)
1570 ARMCPU *cpu = ARM_CPU(obj);
1572 cpu->dtb_compatible = "marvell,xscale";
1573 set_feature(&cpu->env, ARM_FEATURE_V5);
1574 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1575 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1576 cpu->midr = 0x69054112;
1577 cpu->ctr = 0xd172172;
1578 cpu->reset_sctlr = 0x00000078;
1581 static void pxa270b1_initfn(Object *obj)
1583 ARMCPU *cpu = ARM_CPU(obj);
1585 cpu->dtb_compatible = "marvell,xscale";
1586 set_feature(&cpu->env, ARM_FEATURE_V5);
1587 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1588 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1589 cpu->midr = 0x69054113;
1590 cpu->ctr = 0xd172172;
1591 cpu->reset_sctlr = 0x00000078;
1594 static void pxa270c0_initfn(Object *obj)
1596 ARMCPU *cpu = ARM_CPU(obj);
1598 cpu->dtb_compatible = "marvell,xscale";
1599 set_feature(&cpu->env, ARM_FEATURE_V5);
1600 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1601 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1602 cpu->midr = 0x69054114;
1603 cpu->ctr = 0xd172172;
1604 cpu->reset_sctlr = 0x00000078;
1607 static void pxa270c5_initfn(Object *obj)
1609 ARMCPU *cpu = ARM_CPU(obj);
1611 cpu->dtb_compatible = "marvell,xscale";
1612 set_feature(&cpu->env, ARM_FEATURE_V5);
1613 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1614 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1615 cpu->midr = 0x69054117;
1616 cpu->ctr = 0xd172172;
1617 cpu->reset_sctlr = 0x00000078;
1620 #ifdef CONFIG_USER_ONLY
1621 static void arm_any_initfn(Object *obj)
1623 ARMCPU *cpu = ARM_CPU(obj);
1624 set_feature(&cpu->env, ARM_FEATURE_V8);
1625 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1626 set_feature(&cpu->env, ARM_FEATURE_NEON);
1627 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1628 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1629 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1630 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1631 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1632 set_feature(&cpu->env, ARM_FEATURE_CRC);
1633 cpu->midr = 0xffffffff;
1635 #endif
1637 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1639 typedef struct ARMCPUInfo {
1640 const char *name;
1641 void (*initfn)(Object *obj);
1642 void (*class_init)(ObjectClass *oc, void *data);
1643 } ARMCPUInfo;
1645 static const ARMCPUInfo arm_cpus[] = {
1646 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1647 { .name = "arm926", .initfn = arm926_initfn },
1648 { .name = "arm946", .initfn = arm946_initfn },
1649 { .name = "arm1026", .initfn = arm1026_initfn },
1650 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1651 * older core than plain "arm1136". In particular this does not
1652 * have the v6K features.
1654 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1655 { .name = "arm1136", .initfn = arm1136_initfn },
1656 { .name = "arm1176", .initfn = arm1176_initfn },
1657 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1658 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1659 .class_init = arm_v7m_class_init },
1660 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1661 .class_init = arm_v7m_class_init },
1662 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1663 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
1664 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1665 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1666 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1667 { .name = "ti925t", .initfn = ti925t_initfn },
1668 { .name = "sa1100", .initfn = sa1100_initfn },
1669 { .name = "sa1110", .initfn = sa1110_initfn },
1670 { .name = "pxa250", .initfn = pxa250_initfn },
1671 { .name = "pxa255", .initfn = pxa255_initfn },
1672 { .name = "pxa260", .initfn = pxa260_initfn },
1673 { .name = "pxa261", .initfn = pxa261_initfn },
1674 { .name = "pxa262", .initfn = pxa262_initfn },
1675 /* "pxa270" is an alias for "pxa270-a0" */
1676 { .name = "pxa270", .initfn = pxa270a0_initfn },
1677 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1678 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1679 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1680 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1681 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1682 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1683 #ifdef CONFIG_USER_ONLY
1684 { .name = "any", .initfn = arm_any_initfn },
1685 #endif
1686 #endif
1687 { .name = NULL }
1690 static Property arm_cpu_properties[] = {
1691 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1692 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1693 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1694 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1695 mp_affinity, ARM64_AFFINITY_INVALID),
1696 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1697 DEFINE_PROP_END_OF_LIST()
1700 #ifdef CONFIG_USER_ONLY
1701 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1702 int mmu_idx)
1704 ARMCPU *cpu = ARM_CPU(cs);
1705 CPUARMState *env = &cpu->env;
1707 env->exception.vaddress = address;
1708 if (rw == 2) {
1709 cs->exception_index = EXCP_PREFETCH_ABORT;
1710 } else {
1711 cs->exception_index = EXCP_DATA_ABORT;
1713 return 1;
1715 #endif
1717 static gchar *arm_gdb_arch_name(CPUState *cs)
1719 ARMCPU *cpu = ARM_CPU(cs);
1720 CPUARMState *env = &cpu->env;
1722 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1723 return g_strdup("iwmmxt");
1725 return g_strdup("arm");
1728 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1730 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1731 CPUClass *cc = CPU_CLASS(acc);
1732 DeviceClass *dc = DEVICE_CLASS(oc);
1734 acc->parent_realize = dc->realize;
1735 dc->realize = arm_cpu_realizefn;
1736 dc->props = arm_cpu_properties;
1738 acc->parent_reset = cc->reset;
1739 cc->reset = arm_cpu_reset;
1741 cc->class_by_name = arm_cpu_class_by_name;
1742 cc->has_work = arm_cpu_has_work;
1743 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1744 cc->dump_state = arm_cpu_dump_state;
1745 cc->set_pc = arm_cpu_set_pc;
1746 cc->gdb_read_register = arm_cpu_gdb_read_register;
1747 cc->gdb_write_register = arm_cpu_gdb_write_register;
1748 #ifdef CONFIG_USER_ONLY
1749 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1750 #else
1751 cc->do_interrupt = arm_cpu_do_interrupt;
1752 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1753 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1754 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1755 cc->asidx_from_attrs = arm_asidx_from_attrs;
1756 cc->vmsd = &vmstate_arm_cpu;
1757 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1758 cc->write_elf64_note = arm_cpu_write_elf64_note;
1759 cc->write_elf32_note = arm_cpu_write_elf32_note;
1760 #endif
1761 cc->gdb_num_core_regs = 26;
1762 cc->gdb_core_xml_file = "arm-core.xml";
1763 cc->gdb_arch_name = arm_gdb_arch_name;
1764 cc->gdb_stop_before_watchpoint = true;
1765 cc->debug_excp_handler = arm_debug_excp_handler;
1766 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1767 #if !defined(CONFIG_USER_ONLY)
1768 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1769 #endif
1771 cc->disas_set_info = arm_disas_set_info;
1774 static void cpu_register(const ARMCPUInfo *info)
1776 TypeInfo type_info = {
1777 .parent = TYPE_ARM_CPU,
1778 .instance_size = sizeof(ARMCPU),
1779 .instance_init = info->initfn,
1780 .class_size = sizeof(ARMCPUClass),
1781 .class_init = info->class_init,
1784 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1785 type_register(&type_info);
1786 g_free((void *)type_info.name);
1789 static const TypeInfo arm_cpu_type_info = {
1790 .name = TYPE_ARM_CPU,
1791 .parent = TYPE_CPU,
1792 .instance_size = sizeof(ARMCPU),
1793 .instance_init = arm_cpu_initfn,
1794 .instance_post_init = arm_cpu_post_init,
1795 .instance_finalize = arm_cpu_finalizefn,
1796 .abstract = true,
1797 .class_size = sizeof(ARMCPUClass),
1798 .class_init = arm_cpu_class_init,
1801 static void arm_cpu_register_types(void)
1803 const ARMCPUInfo *info = arm_cpus;
1805 type_register_static(&arm_cpu_type_info);
1807 while (info->name) {
1808 cpu_register(info);
1809 info++;
1813 type_init(arm_cpu_register_types)