pci core: assert ENOSPC when add capability
[qemu/ar7.git] / block / io.c
blobfb99a7151c4047af27d57788e203af74af48e4f1
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "qemu/cutils.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
34 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
36 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
37 int64_t sector_num,
38 QEMUIOVector *qiov,
39 int nb_sectors,
40 BdrvRequestFlags flags,
41 BlockCompletionFunc *cb,
42 void *opaque,
43 bool is_write);
44 static void coroutine_fn bdrv_co_do_rw(void *opaque);
45 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
46 int64_t offset, int count, BdrvRequestFlags flags);
48 static void bdrv_parent_drained_begin(BlockDriverState *bs)
50 BdrvChild *c;
52 QLIST_FOREACH(c, &bs->parents, next_parent) {
53 if (c->role->drained_begin) {
54 c->role->drained_begin(c);
59 static void bdrv_parent_drained_end(BlockDriverState *bs)
61 BdrvChild *c;
63 QLIST_FOREACH(c, &bs->parents, next_parent) {
64 if (c->role->drained_end) {
65 c->role->drained_end(c);
70 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
72 BlockDriver *drv = bs->drv;
73 Error *local_err = NULL;
75 memset(&bs->bl, 0, sizeof(bs->bl));
77 if (!drv) {
78 return;
81 /* Take some limits from the children as a default */
82 if (bs->file) {
83 bdrv_refresh_limits(bs->file->bs, &local_err);
84 if (local_err) {
85 error_propagate(errp, local_err);
86 return;
88 bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
89 bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
90 bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
91 bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
92 bs->bl.max_iov = bs->file->bs->bl.max_iov;
93 } else {
94 bs->bl.min_mem_alignment = 512;
95 bs->bl.opt_mem_alignment = getpagesize();
97 /* Safe default since most protocols use readv()/writev()/etc */
98 bs->bl.max_iov = IOV_MAX;
101 if (bs->backing) {
102 bdrv_refresh_limits(bs->backing->bs, &local_err);
103 if (local_err) {
104 error_propagate(errp, local_err);
105 return;
107 bs->bl.opt_transfer_length =
108 MAX(bs->bl.opt_transfer_length,
109 bs->backing->bs->bl.opt_transfer_length);
110 bs->bl.max_transfer_length =
111 MIN_NON_ZERO(bs->bl.max_transfer_length,
112 bs->backing->bs->bl.max_transfer_length);
113 bs->bl.opt_mem_alignment =
114 MAX(bs->bl.opt_mem_alignment,
115 bs->backing->bs->bl.opt_mem_alignment);
116 bs->bl.min_mem_alignment =
117 MAX(bs->bl.min_mem_alignment,
118 bs->backing->bs->bl.min_mem_alignment);
119 bs->bl.max_iov =
120 MIN(bs->bl.max_iov,
121 bs->backing->bs->bl.max_iov);
124 /* Then let the driver override it */
125 if (drv->bdrv_refresh_limits) {
126 drv->bdrv_refresh_limits(bs, errp);
131 * The copy-on-read flag is actually a reference count so multiple users may
132 * use the feature without worrying about clobbering its previous state.
133 * Copy-on-read stays enabled until all users have called to disable it.
135 void bdrv_enable_copy_on_read(BlockDriverState *bs)
137 bs->copy_on_read++;
140 void bdrv_disable_copy_on_read(BlockDriverState *bs)
142 assert(bs->copy_on_read > 0);
143 bs->copy_on_read--;
146 /* Check if any requests are in-flight (including throttled requests) */
147 bool bdrv_requests_pending(BlockDriverState *bs)
149 BdrvChild *child;
151 if (!QLIST_EMPTY(&bs->tracked_requests)) {
152 return true;
155 QLIST_FOREACH(child, &bs->children, next) {
156 if (bdrv_requests_pending(child->bs)) {
157 return true;
161 return false;
164 static void bdrv_drain_recurse(BlockDriverState *bs)
166 BdrvChild *child;
168 if (bs->drv && bs->drv->bdrv_drain) {
169 bs->drv->bdrv_drain(bs);
171 QLIST_FOREACH(child, &bs->children, next) {
172 bdrv_drain_recurse(child->bs);
176 typedef struct {
177 Coroutine *co;
178 BlockDriverState *bs;
179 QEMUBH *bh;
180 bool done;
181 } BdrvCoDrainData;
183 static void bdrv_drain_poll(BlockDriverState *bs)
185 bool busy = true;
187 while (busy) {
188 /* Keep iterating */
189 busy = bdrv_requests_pending(bs);
190 busy |= aio_poll(bdrv_get_aio_context(bs), busy);
194 static void bdrv_co_drain_bh_cb(void *opaque)
196 BdrvCoDrainData *data = opaque;
197 Coroutine *co = data->co;
199 qemu_bh_delete(data->bh);
200 bdrv_drain_poll(data->bs);
201 data->done = true;
202 qemu_coroutine_enter(co, NULL);
205 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
207 BdrvCoDrainData data;
209 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
210 * other coroutines run if they were queued from
211 * qemu_co_queue_run_restart(). */
213 assert(qemu_in_coroutine());
214 data = (BdrvCoDrainData) {
215 .co = qemu_coroutine_self(),
216 .bs = bs,
217 .done = false,
218 .bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_drain_bh_cb, &data),
220 qemu_bh_schedule(data.bh);
222 qemu_coroutine_yield();
223 /* If we are resumed from some other event (such as an aio completion or a
224 * timer callback), it is a bug in the caller that should be fixed. */
225 assert(data.done);
228 void bdrv_drained_begin(BlockDriverState *bs)
230 if (!bs->quiesce_counter++) {
231 aio_disable_external(bdrv_get_aio_context(bs));
232 bdrv_parent_drained_begin(bs);
235 bdrv_io_unplugged_begin(bs);
236 bdrv_drain_recurse(bs);
237 if (qemu_in_coroutine()) {
238 bdrv_co_yield_to_drain(bs);
239 } else {
240 bdrv_drain_poll(bs);
242 bdrv_io_unplugged_end(bs);
245 void bdrv_drained_end(BlockDriverState *bs)
247 assert(bs->quiesce_counter > 0);
248 if (--bs->quiesce_counter > 0) {
249 return;
252 bdrv_parent_drained_end(bs);
253 aio_enable_external(bdrv_get_aio_context(bs));
257 * Wait for pending requests to complete on a single BlockDriverState subtree,
258 * and suspend block driver's internal I/O until next request arrives.
260 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
261 * AioContext.
263 * Only this BlockDriverState's AioContext is run, so in-flight requests must
264 * not depend on events in other AioContexts. In that case, use
265 * bdrv_drain_all() instead.
267 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
269 assert(qemu_in_coroutine());
270 bdrv_drained_begin(bs);
271 bdrv_drained_end(bs);
274 void bdrv_drain(BlockDriverState *bs)
276 bdrv_drained_begin(bs);
277 bdrv_drained_end(bs);
281 * Wait for pending requests to complete across all BlockDriverStates
283 * This function does not flush data to disk, use bdrv_flush_all() for that
284 * after calling this function.
286 void bdrv_drain_all(void)
288 /* Always run first iteration so any pending completion BHs run */
289 bool busy = true;
290 BlockDriverState *bs;
291 BdrvNextIterator it;
292 GSList *aio_ctxs = NULL, *ctx;
294 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
295 AioContext *aio_context = bdrv_get_aio_context(bs);
297 aio_context_acquire(aio_context);
298 if (bs->job) {
299 block_job_pause(bs->job);
301 bdrv_parent_drained_begin(bs);
302 bdrv_io_unplugged_begin(bs);
303 bdrv_drain_recurse(bs);
304 aio_context_release(aio_context);
306 if (!g_slist_find(aio_ctxs, aio_context)) {
307 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
311 /* Note that completion of an asynchronous I/O operation can trigger any
312 * number of other I/O operations on other devices---for example a
313 * coroutine can submit an I/O request to another device in response to
314 * request completion. Therefore we must keep looping until there was no
315 * more activity rather than simply draining each device independently.
317 while (busy) {
318 busy = false;
320 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
321 AioContext *aio_context = ctx->data;
323 aio_context_acquire(aio_context);
324 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
325 if (aio_context == bdrv_get_aio_context(bs)) {
326 if (bdrv_requests_pending(bs)) {
327 busy = true;
328 aio_poll(aio_context, busy);
332 busy |= aio_poll(aio_context, false);
333 aio_context_release(aio_context);
337 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
338 AioContext *aio_context = bdrv_get_aio_context(bs);
340 aio_context_acquire(aio_context);
341 bdrv_io_unplugged_end(bs);
342 bdrv_parent_drained_end(bs);
343 if (bs->job) {
344 block_job_resume(bs->job);
346 aio_context_release(aio_context);
348 g_slist_free(aio_ctxs);
352 * Remove an active request from the tracked requests list
354 * This function should be called when a tracked request is completing.
356 static void tracked_request_end(BdrvTrackedRequest *req)
358 if (req->serialising) {
359 req->bs->serialising_in_flight--;
362 QLIST_REMOVE(req, list);
363 qemu_co_queue_restart_all(&req->wait_queue);
367 * Add an active request to the tracked requests list
369 static void tracked_request_begin(BdrvTrackedRequest *req,
370 BlockDriverState *bs,
371 int64_t offset,
372 unsigned int bytes,
373 enum BdrvTrackedRequestType type)
375 *req = (BdrvTrackedRequest){
376 .bs = bs,
377 .offset = offset,
378 .bytes = bytes,
379 .type = type,
380 .co = qemu_coroutine_self(),
381 .serialising = false,
382 .overlap_offset = offset,
383 .overlap_bytes = bytes,
386 qemu_co_queue_init(&req->wait_queue);
388 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
391 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
393 int64_t overlap_offset = req->offset & ~(align - 1);
394 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
395 - overlap_offset;
397 if (!req->serialising) {
398 req->bs->serialising_in_flight++;
399 req->serialising = true;
402 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
403 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
407 * Round a region to cluster boundaries
409 void bdrv_round_to_clusters(BlockDriverState *bs,
410 int64_t sector_num, int nb_sectors,
411 int64_t *cluster_sector_num,
412 int *cluster_nb_sectors)
414 BlockDriverInfo bdi;
416 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
417 *cluster_sector_num = sector_num;
418 *cluster_nb_sectors = nb_sectors;
419 } else {
420 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
421 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
422 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
423 nb_sectors, c);
427 static int bdrv_get_cluster_size(BlockDriverState *bs)
429 BlockDriverInfo bdi;
430 int ret;
432 ret = bdrv_get_info(bs, &bdi);
433 if (ret < 0 || bdi.cluster_size == 0) {
434 return bs->request_alignment;
435 } else {
436 return bdi.cluster_size;
440 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
441 int64_t offset, unsigned int bytes)
443 /* aaaa bbbb */
444 if (offset >= req->overlap_offset + req->overlap_bytes) {
445 return false;
447 /* bbbb aaaa */
448 if (req->overlap_offset >= offset + bytes) {
449 return false;
451 return true;
454 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
456 BlockDriverState *bs = self->bs;
457 BdrvTrackedRequest *req;
458 bool retry;
459 bool waited = false;
461 if (!bs->serialising_in_flight) {
462 return false;
465 do {
466 retry = false;
467 QLIST_FOREACH(req, &bs->tracked_requests, list) {
468 if (req == self || (!req->serialising && !self->serialising)) {
469 continue;
471 if (tracked_request_overlaps(req, self->overlap_offset,
472 self->overlap_bytes))
474 /* Hitting this means there was a reentrant request, for
475 * example, a block driver issuing nested requests. This must
476 * never happen since it means deadlock.
478 assert(qemu_coroutine_self() != req->co);
480 /* If the request is already (indirectly) waiting for us, or
481 * will wait for us as soon as it wakes up, then just go on
482 * (instead of producing a deadlock in the former case). */
483 if (!req->waiting_for) {
484 self->waiting_for = req;
485 qemu_co_queue_wait(&req->wait_queue);
486 self->waiting_for = NULL;
487 retry = true;
488 waited = true;
489 break;
493 } while (retry);
495 return waited;
498 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
499 size_t size)
501 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
502 return -EIO;
505 if (!bdrv_is_inserted(bs)) {
506 return -ENOMEDIUM;
509 if (offset < 0) {
510 return -EIO;
513 return 0;
516 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
517 int nb_sectors)
519 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
520 return -EIO;
523 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
524 nb_sectors * BDRV_SECTOR_SIZE);
527 typedef struct RwCo {
528 BlockDriverState *bs;
529 int64_t offset;
530 QEMUIOVector *qiov;
531 bool is_write;
532 int ret;
533 BdrvRequestFlags flags;
534 } RwCo;
536 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
538 RwCo *rwco = opaque;
540 if (!rwco->is_write) {
541 rwco->ret = bdrv_co_preadv(rwco->bs, rwco->offset,
542 rwco->qiov->size, rwco->qiov,
543 rwco->flags);
544 } else {
545 rwco->ret = bdrv_co_pwritev(rwco->bs, rwco->offset,
546 rwco->qiov->size, rwco->qiov,
547 rwco->flags);
552 * Process a vectored synchronous request using coroutines
554 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
555 QEMUIOVector *qiov, bool is_write,
556 BdrvRequestFlags flags)
558 Coroutine *co;
559 RwCo rwco = {
560 .bs = bs,
561 .offset = offset,
562 .qiov = qiov,
563 .is_write = is_write,
564 .ret = NOT_DONE,
565 .flags = flags,
568 if (qemu_in_coroutine()) {
569 /* Fast-path if already in coroutine context */
570 bdrv_rw_co_entry(&rwco);
571 } else {
572 AioContext *aio_context = bdrv_get_aio_context(bs);
574 co = qemu_coroutine_create(bdrv_rw_co_entry);
575 qemu_coroutine_enter(co, &rwco);
576 while (rwco.ret == NOT_DONE) {
577 aio_poll(aio_context, true);
580 return rwco.ret;
584 * Process a synchronous request using coroutines
586 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
587 int nb_sectors, bool is_write, BdrvRequestFlags flags)
589 QEMUIOVector qiov;
590 struct iovec iov = {
591 .iov_base = (void *)buf,
592 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
595 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
596 return -EINVAL;
599 qemu_iovec_init_external(&qiov, &iov, 1);
600 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
601 &qiov, is_write, flags);
604 /* return < 0 if error. See bdrv_write() for the return codes */
605 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
606 uint8_t *buf, int nb_sectors)
608 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
611 /* Return < 0 if error. Important errors are:
612 -EIO generic I/O error (may happen for all errors)
613 -ENOMEDIUM No media inserted.
614 -EINVAL Invalid sector number or nb_sectors
615 -EACCES Trying to write a read-only device
617 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
618 const uint8_t *buf, int nb_sectors)
620 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
623 int bdrv_pwrite_zeroes(BlockDriverState *bs, int64_t offset,
624 int count, BdrvRequestFlags flags)
626 QEMUIOVector qiov;
627 struct iovec iov = {
628 .iov_base = NULL,
629 .iov_len = count,
632 qemu_iovec_init_external(&qiov, &iov, 1);
633 return bdrv_prwv_co(bs, offset, &qiov, true,
634 BDRV_REQ_ZERO_WRITE | flags);
638 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
639 * The operation is sped up by checking the block status and only writing
640 * zeroes to the device if they currently do not return zeroes. Optional
641 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
642 * BDRV_REQ_FUA).
644 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
646 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
648 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
649 BlockDriverState *file;
650 int n;
652 target_sectors = bdrv_nb_sectors(bs);
653 if (target_sectors < 0) {
654 return target_sectors;
657 for (;;) {
658 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
659 if (nb_sectors <= 0) {
660 return 0;
662 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
663 if (ret < 0) {
664 error_report("error getting block status at sector %" PRId64 ": %s",
665 sector_num, strerror(-ret));
666 return ret;
668 if (ret & BDRV_BLOCK_ZERO) {
669 sector_num += n;
670 continue;
672 ret = bdrv_pwrite_zeroes(bs, sector_num << BDRV_SECTOR_BITS,
673 n << BDRV_SECTOR_BITS, flags);
674 if (ret < 0) {
675 error_report("error writing zeroes at sector %" PRId64 ": %s",
676 sector_num, strerror(-ret));
677 return ret;
679 sector_num += n;
683 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
685 QEMUIOVector qiov;
686 struct iovec iov = {
687 .iov_base = (void *)buf,
688 .iov_len = bytes,
690 int ret;
692 if (bytes < 0) {
693 return -EINVAL;
696 qemu_iovec_init_external(&qiov, &iov, 1);
697 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
698 if (ret < 0) {
699 return ret;
702 return bytes;
705 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
707 int ret;
709 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
710 if (ret < 0) {
711 return ret;
714 return qiov->size;
717 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
718 const void *buf, int bytes)
720 QEMUIOVector qiov;
721 struct iovec iov = {
722 .iov_base = (void *) buf,
723 .iov_len = bytes,
726 if (bytes < 0) {
727 return -EINVAL;
730 qemu_iovec_init_external(&qiov, &iov, 1);
731 return bdrv_pwritev(bs, offset, &qiov);
735 * Writes to the file and ensures that no writes are reordered across this
736 * request (acts as a barrier)
738 * Returns 0 on success, -errno in error cases.
740 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
741 const void *buf, int count)
743 int ret;
745 ret = bdrv_pwrite(bs, offset, buf, count);
746 if (ret < 0) {
747 return ret;
750 ret = bdrv_flush(bs);
751 if (ret < 0) {
752 return ret;
755 return 0;
758 typedef struct CoroutineIOCompletion {
759 Coroutine *coroutine;
760 int ret;
761 } CoroutineIOCompletion;
763 static void bdrv_co_io_em_complete(void *opaque, int ret)
765 CoroutineIOCompletion *co = opaque;
767 co->ret = ret;
768 qemu_coroutine_enter(co->coroutine, NULL);
771 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
772 uint64_t offset, uint64_t bytes,
773 QEMUIOVector *qiov, int flags)
775 BlockDriver *drv = bs->drv;
776 int64_t sector_num;
777 unsigned int nb_sectors;
779 if (drv->bdrv_co_preadv) {
780 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
783 sector_num = offset >> BDRV_SECTOR_BITS;
784 nb_sectors = bytes >> BDRV_SECTOR_BITS;
786 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
787 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
788 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
790 if (drv->bdrv_co_readv) {
791 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
792 } else {
793 BlockAIOCB *acb;
794 CoroutineIOCompletion co = {
795 .coroutine = qemu_coroutine_self(),
798 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
799 bdrv_co_io_em_complete, &co);
800 if (acb == NULL) {
801 return -EIO;
802 } else {
803 qemu_coroutine_yield();
804 return co.ret;
809 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
810 uint64_t offset, uint64_t bytes,
811 QEMUIOVector *qiov, int flags)
813 BlockDriver *drv = bs->drv;
814 int64_t sector_num;
815 unsigned int nb_sectors;
816 int ret;
818 if (drv->bdrv_co_pwritev) {
819 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
820 flags & bs->supported_write_flags);
821 flags &= ~bs->supported_write_flags;
822 goto emulate_flags;
825 sector_num = offset >> BDRV_SECTOR_BITS;
826 nb_sectors = bytes >> BDRV_SECTOR_BITS;
828 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
829 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
830 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
832 if (drv->bdrv_co_writev_flags) {
833 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
834 flags & bs->supported_write_flags);
835 flags &= ~bs->supported_write_flags;
836 } else if (drv->bdrv_co_writev) {
837 assert(!bs->supported_write_flags);
838 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
839 } else {
840 BlockAIOCB *acb;
841 CoroutineIOCompletion co = {
842 .coroutine = qemu_coroutine_self(),
845 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
846 bdrv_co_io_em_complete, &co);
847 if (acb == NULL) {
848 ret = -EIO;
849 } else {
850 qemu_coroutine_yield();
851 ret = co.ret;
855 emulate_flags:
856 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
857 ret = bdrv_co_flush(bs);
860 return ret;
863 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
864 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
866 /* Perform I/O through a temporary buffer so that users who scribble over
867 * their read buffer while the operation is in progress do not end up
868 * modifying the image file. This is critical for zero-copy guest I/O
869 * where anything might happen inside guest memory.
871 void *bounce_buffer;
873 BlockDriver *drv = bs->drv;
874 struct iovec iov;
875 QEMUIOVector bounce_qiov;
876 int64_t cluster_sector_num;
877 int cluster_nb_sectors;
878 size_t skip_bytes;
879 int ret;
881 /* Cover entire cluster so no additional backing file I/O is required when
882 * allocating cluster in the image file.
884 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
885 &cluster_sector_num, &cluster_nb_sectors);
887 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
888 cluster_sector_num, cluster_nb_sectors);
890 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
891 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
892 if (bounce_buffer == NULL) {
893 ret = -ENOMEM;
894 goto err;
897 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
899 ret = bdrv_driver_preadv(bs, cluster_sector_num * BDRV_SECTOR_SIZE,
900 cluster_nb_sectors * BDRV_SECTOR_SIZE,
901 &bounce_qiov, 0);
902 if (ret < 0) {
903 goto err;
906 if (drv->bdrv_co_pwrite_zeroes &&
907 buffer_is_zero(bounce_buffer, iov.iov_len)) {
908 ret = bdrv_co_do_pwrite_zeroes(bs,
909 cluster_sector_num * BDRV_SECTOR_SIZE,
910 cluster_nb_sectors * BDRV_SECTOR_SIZE,
912 } else {
913 /* This does not change the data on the disk, it is not necessary
914 * to flush even in cache=writethrough mode.
916 ret = bdrv_driver_pwritev(bs, cluster_sector_num * BDRV_SECTOR_SIZE,
917 cluster_nb_sectors * BDRV_SECTOR_SIZE,
918 &bounce_qiov, 0);
921 if (ret < 0) {
922 /* It might be okay to ignore write errors for guest requests. If this
923 * is a deliberate copy-on-read then we don't want to ignore the error.
924 * Simply report it in all cases.
926 goto err;
929 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
930 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
931 nb_sectors * BDRV_SECTOR_SIZE);
933 err:
934 qemu_vfree(bounce_buffer);
935 return ret;
939 * Forwards an already correctly aligned request to the BlockDriver. This
940 * handles copy on read and zeroing after EOF; any other features must be
941 * implemented by the caller.
943 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
944 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
945 int64_t align, QEMUIOVector *qiov, int flags)
947 int ret;
949 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
950 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
952 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
953 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
954 assert(!qiov || bytes == qiov->size);
955 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
957 /* Handle Copy on Read and associated serialisation */
958 if (flags & BDRV_REQ_COPY_ON_READ) {
959 /* If we touch the same cluster it counts as an overlap. This
960 * guarantees that allocating writes will be serialized and not race
961 * with each other for the same cluster. For example, in copy-on-read
962 * it ensures that the CoR read and write operations are atomic and
963 * guest writes cannot interleave between them. */
964 mark_request_serialising(req, bdrv_get_cluster_size(bs));
967 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
968 wait_serialising_requests(req);
971 if (flags & BDRV_REQ_COPY_ON_READ) {
972 int pnum;
974 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
975 if (ret < 0) {
976 goto out;
979 if (!ret || pnum != nb_sectors) {
980 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
981 goto out;
985 /* Forward the request to the BlockDriver */
986 if (!bs->zero_beyond_eof) {
987 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
988 } else {
989 /* Read zeros after EOF */
990 int64_t total_sectors, max_nb_sectors;
992 total_sectors = bdrv_nb_sectors(bs);
993 if (total_sectors < 0) {
994 ret = total_sectors;
995 goto out;
998 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
999 align >> BDRV_SECTOR_BITS);
1000 if (nb_sectors < max_nb_sectors) {
1001 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1002 } else if (max_nb_sectors > 0) {
1003 QEMUIOVector local_qiov;
1005 qemu_iovec_init(&local_qiov, qiov->niov);
1006 qemu_iovec_concat(&local_qiov, qiov, 0,
1007 max_nb_sectors * BDRV_SECTOR_SIZE);
1009 ret = bdrv_driver_preadv(bs, offset,
1010 max_nb_sectors * BDRV_SECTOR_SIZE,
1011 &local_qiov, 0);
1013 qemu_iovec_destroy(&local_qiov);
1014 } else {
1015 ret = 0;
1018 /* Reading beyond end of file is supposed to produce zeroes */
1019 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
1020 uint64_t offset = MAX(0, total_sectors - sector_num);
1021 uint64_t bytes = (sector_num + nb_sectors - offset) *
1022 BDRV_SECTOR_SIZE;
1023 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
1027 out:
1028 return ret;
1032 * Handle a read request in coroutine context
1034 int coroutine_fn bdrv_co_preadv(BlockDriverState *bs,
1035 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1036 BdrvRequestFlags flags)
1038 BlockDriver *drv = bs->drv;
1039 BdrvTrackedRequest req;
1041 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1042 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1043 uint8_t *head_buf = NULL;
1044 uint8_t *tail_buf = NULL;
1045 QEMUIOVector local_qiov;
1046 bool use_local_qiov = false;
1047 int ret;
1049 if (!drv) {
1050 return -ENOMEDIUM;
1053 ret = bdrv_check_byte_request(bs, offset, bytes);
1054 if (ret < 0) {
1055 return ret;
1058 /* Don't do copy-on-read if we read data before write operation */
1059 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
1060 flags |= BDRV_REQ_COPY_ON_READ;
1063 /* Align read if necessary by padding qiov */
1064 if (offset & (align - 1)) {
1065 head_buf = qemu_blockalign(bs, align);
1066 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1067 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1068 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1069 use_local_qiov = true;
1071 bytes += offset & (align - 1);
1072 offset = offset & ~(align - 1);
1075 if ((offset + bytes) & (align - 1)) {
1076 if (!use_local_qiov) {
1077 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1078 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1079 use_local_qiov = true;
1081 tail_buf = qemu_blockalign(bs, align);
1082 qemu_iovec_add(&local_qiov, tail_buf,
1083 align - ((offset + bytes) & (align - 1)));
1085 bytes = ROUND_UP(bytes, align);
1088 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1089 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1090 use_local_qiov ? &local_qiov : qiov,
1091 flags);
1092 tracked_request_end(&req);
1094 if (use_local_qiov) {
1095 qemu_iovec_destroy(&local_qiov);
1096 qemu_vfree(head_buf);
1097 qemu_vfree(tail_buf);
1100 return ret;
1103 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1104 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1105 BdrvRequestFlags flags)
1107 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1108 return -EINVAL;
1111 return bdrv_co_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1112 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1115 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1116 int nb_sectors, QEMUIOVector *qiov)
1118 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1120 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1123 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1125 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1126 int64_t offset, int count, BdrvRequestFlags flags)
1128 BlockDriver *drv = bs->drv;
1129 QEMUIOVector qiov;
1130 struct iovec iov = {0};
1131 int ret = 0;
1132 bool need_flush = false;
1133 int head = 0;
1134 int tail = 0;
1136 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1137 int alignment = MAX(bs->bl.pwrite_zeroes_alignment ?: 1,
1138 bs->request_alignment);
1140 assert(is_power_of_2(alignment));
1141 head = offset & (alignment - 1);
1142 tail = (offset + count) & (alignment - 1);
1143 max_write_zeroes &= ~(alignment - 1);
1145 while (count > 0 && !ret) {
1146 int num = count;
1148 /* Align request. Block drivers can expect the "bulk" of the request
1149 * to be aligned, and that unaligned requests do not cross cluster
1150 * boundaries.
1152 if (head) {
1153 /* Make a small request up to the first aligned sector. */
1154 num = MIN(count, alignment - head);
1155 head = 0;
1156 } else if (tail && num > alignment) {
1157 /* Shorten the request to the last aligned sector. */
1158 num -= tail;
1161 /* limit request size */
1162 if (num > max_write_zeroes) {
1163 num = max_write_zeroes;
1166 ret = -ENOTSUP;
1167 /* First try the efficient write zeroes operation */
1168 if (drv->bdrv_co_pwrite_zeroes) {
1169 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1170 flags & bs->supported_zero_flags);
1171 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1172 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1173 need_flush = true;
1175 } else {
1176 assert(!bs->supported_zero_flags);
1179 if (ret == -ENOTSUP) {
1180 /* Fall back to bounce buffer if write zeroes is unsupported */
1181 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1182 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1183 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1185 if ((flags & BDRV_REQ_FUA) &&
1186 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1187 /* No need for bdrv_driver_pwrite() to do a fallback
1188 * flush on each chunk; use just one at the end */
1189 write_flags &= ~BDRV_REQ_FUA;
1190 need_flush = true;
1192 num = MIN(num, max_xfer_len << BDRV_SECTOR_BITS);
1193 iov.iov_len = num;
1194 if (iov.iov_base == NULL) {
1195 iov.iov_base = qemu_try_blockalign(bs, num);
1196 if (iov.iov_base == NULL) {
1197 ret = -ENOMEM;
1198 goto fail;
1200 memset(iov.iov_base, 0, num);
1202 qemu_iovec_init_external(&qiov, &iov, 1);
1204 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1206 /* Keep bounce buffer around if it is big enough for all
1207 * all future requests.
1209 if (num < max_xfer_len << BDRV_SECTOR_BITS) {
1210 qemu_vfree(iov.iov_base);
1211 iov.iov_base = NULL;
1215 offset += num;
1216 count -= num;
1219 fail:
1220 if (ret == 0 && need_flush) {
1221 ret = bdrv_co_flush(bs);
1223 qemu_vfree(iov.iov_base);
1224 return ret;
1228 * Forwards an already correctly aligned write request to the BlockDriver.
1230 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1231 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1232 QEMUIOVector *qiov, int flags)
1234 BlockDriver *drv = bs->drv;
1235 bool waited;
1236 int ret;
1238 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1239 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1241 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1242 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1243 assert(!qiov || bytes == qiov->size);
1244 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1246 waited = wait_serialising_requests(req);
1247 assert(!waited || !req->serialising);
1248 assert(req->overlap_offset <= offset);
1249 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1251 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1253 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1254 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1255 qemu_iovec_is_zero(qiov)) {
1256 flags |= BDRV_REQ_ZERO_WRITE;
1257 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1258 flags |= BDRV_REQ_MAY_UNMAP;
1262 if (ret < 0) {
1263 /* Do nothing, write notifier decided to fail this request */
1264 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1265 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1266 ret = bdrv_co_do_pwrite_zeroes(bs, sector_num << BDRV_SECTOR_BITS,
1267 nb_sectors << BDRV_SECTOR_BITS, flags);
1268 } else {
1269 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1270 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1272 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1274 bdrv_set_dirty(bs, sector_num, nb_sectors);
1276 if (bs->wr_highest_offset < offset + bytes) {
1277 bs->wr_highest_offset = offset + bytes;
1280 if (ret >= 0) {
1281 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1284 return ret;
1287 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1288 int64_t offset,
1289 unsigned int bytes,
1290 BdrvRequestFlags flags,
1291 BdrvTrackedRequest *req)
1293 uint8_t *buf = NULL;
1294 QEMUIOVector local_qiov;
1295 struct iovec iov;
1296 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1297 unsigned int head_padding_bytes, tail_padding_bytes;
1298 int ret = 0;
1300 head_padding_bytes = offset & (align - 1);
1301 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1304 assert(flags & BDRV_REQ_ZERO_WRITE);
1305 if (head_padding_bytes || tail_padding_bytes) {
1306 buf = qemu_blockalign(bs, align);
1307 iov = (struct iovec) {
1308 .iov_base = buf,
1309 .iov_len = align,
1311 qemu_iovec_init_external(&local_qiov, &iov, 1);
1313 if (head_padding_bytes) {
1314 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1316 /* RMW the unaligned part before head. */
1317 mark_request_serialising(req, align);
1318 wait_serialising_requests(req);
1319 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1320 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1321 align, &local_qiov, 0);
1322 if (ret < 0) {
1323 goto fail;
1325 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1327 memset(buf + head_padding_bytes, 0, zero_bytes);
1328 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1329 &local_qiov,
1330 flags & ~BDRV_REQ_ZERO_WRITE);
1331 if (ret < 0) {
1332 goto fail;
1334 offset += zero_bytes;
1335 bytes -= zero_bytes;
1338 assert(!bytes || (offset & (align - 1)) == 0);
1339 if (bytes >= align) {
1340 /* Write the aligned part in the middle. */
1341 uint64_t aligned_bytes = bytes & ~(align - 1);
1342 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1343 NULL, flags);
1344 if (ret < 0) {
1345 goto fail;
1347 bytes -= aligned_bytes;
1348 offset += aligned_bytes;
1351 assert(!bytes || (offset & (align - 1)) == 0);
1352 if (bytes) {
1353 assert(align == tail_padding_bytes + bytes);
1354 /* RMW the unaligned part after tail. */
1355 mark_request_serialising(req, align);
1356 wait_serialising_requests(req);
1357 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1358 ret = bdrv_aligned_preadv(bs, req, offset, align,
1359 align, &local_qiov, 0);
1360 if (ret < 0) {
1361 goto fail;
1363 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1365 memset(buf, 0, bytes);
1366 ret = bdrv_aligned_pwritev(bs, req, offset, align,
1367 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1369 fail:
1370 qemu_vfree(buf);
1371 return ret;
1376 * Handle a write request in coroutine context
1378 int coroutine_fn bdrv_co_pwritev(BlockDriverState *bs,
1379 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1380 BdrvRequestFlags flags)
1382 BdrvTrackedRequest req;
1383 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1384 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1385 uint8_t *head_buf = NULL;
1386 uint8_t *tail_buf = NULL;
1387 QEMUIOVector local_qiov;
1388 bool use_local_qiov = false;
1389 int ret;
1391 if (!bs->drv) {
1392 return -ENOMEDIUM;
1394 if (bs->read_only) {
1395 return -EPERM;
1397 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1399 ret = bdrv_check_byte_request(bs, offset, bytes);
1400 if (ret < 0) {
1401 return ret;
1405 * Align write if necessary by performing a read-modify-write cycle.
1406 * Pad qiov with the read parts and be sure to have a tracked request not
1407 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1409 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1411 if (!qiov) {
1412 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1413 goto out;
1416 if (offset & (align - 1)) {
1417 QEMUIOVector head_qiov;
1418 struct iovec head_iov;
1420 mark_request_serialising(&req, align);
1421 wait_serialising_requests(&req);
1423 head_buf = qemu_blockalign(bs, align);
1424 head_iov = (struct iovec) {
1425 .iov_base = head_buf,
1426 .iov_len = align,
1428 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1430 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1431 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1432 align, &head_qiov, 0);
1433 if (ret < 0) {
1434 goto fail;
1436 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1438 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1439 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1440 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1441 use_local_qiov = true;
1443 bytes += offset & (align - 1);
1444 offset = offset & ~(align - 1);
1446 /* We have read the tail already if the request is smaller
1447 * than one aligned block.
1449 if (bytes < align) {
1450 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1451 bytes = align;
1455 if ((offset + bytes) & (align - 1)) {
1456 QEMUIOVector tail_qiov;
1457 struct iovec tail_iov;
1458 size_t tail_bytes;
1459 bool waited;
1461 mark_request_serialising(&req, align);
1462 waited = wait_serialising_requests(&req);
1463 assert(!waited || !use_local_qiov);
1465 tail_buf = qemu_blockalign(bs, align);
1466 tail_iov = (struct iovec) {
1467 .iov_base = tail_buf,
1468 .iov_len = align,
1470 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1472 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1473 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1474 align, &tail_qiov, 0);
1475 if (ret < 0) {
1476 goto fail;
1478 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1480 if (!use_local_qiov) {
1481 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1482 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1483 use_local_qiov = true;
1486 tail_bytes = (offset + bytes) & (align - 1);
1487 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1489 bytes = ROUND_UP(bytes, align);
1492 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1493 use_local_qiov ? &local_qiov : qiov,
1494 flags);
1496 fail:
1498 if (use_local_qiov) {
1499 qemu_iovec_destroy(&local_qiov);
1501 qemu_vfree(head_buf);
1502 qemu_vfree(tail_buf);
1503 out:
1504 tracked_request_end(&req);
1505 return ret;
1508 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1509 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1510 BdrvRequestFlags flags)
1512 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1513 return -EINVAL;
1516 return bdrv_co_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1517 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1520 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1521 int nb_sectors, QEMUIOVector *qiov)
1523 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1525 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1528 int coroutine_fn bdrv_co_pwrite_zeroes(BlockDriverState *bs,
1529 int64_t offset, int count,
1530 BdrvRequestFlags flags)
1532 trace_bdrv_co_pwrite_zeroes(bs, offset, count, flags);
1534 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1535 flags &= ~BDRV_REQ_MAY_UNMAP;
1538 return bdrv_co_pwritev(bs, offset, count, NULL,
1539 BDRV_REQ_ZERO_WRITE | flags);
1542 typedef struct BdrvCoGetBlockStatusData {
1543 BlockDriverState *bs;
1544 BlockDriverState *base;
1545 BlockDriverState **file;
1546 int64_t sector_num;
1547 int nb_sectors;
1548 int *pnum;
1549 int64_t ret;
1550 bool done;
1551 } BdrvCoGetBlockStatusData;
1554 * Returns the allocation status of the specified sectors.
1555 * Drivers not implementing the functionality are assumed to not support
1556 * backing files, hence all their sectors are reported as allocated.
1558 * If 'sector_num' is beyond the end of the disk image the return value is 0
1559 * and 'pnum' is set to 0.
1561 * 'pnum' is set to the number of sectors (including and immediately following
1562 * the specified sector) that are known to be in the same
1563 * allocated/unallocated state.
1565 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1566 * beyond the end of the disk image it will be clamped.
1568 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1569 * points to the BDS which the sector range is allocated in.
1571 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1572 int64_t sector_num,
1573 int nb_sectors, int *pnum,
1574 BlockDriverState **file)
1576 int64_t total_sectors;
1577 int64_t n;
1578 int64_t ret, ret2;
1580 total_sectors = bdrv_nb_sectors(bs);
1581 if (total_sectors < 0) {
1582 return total_sectors;
1585 if (sector_num >= total_sectors) {
1586 *pnum = 0;
1587 return 0;
1590 n = total_sectors - sector_num;
1591 if (n < nb_sectors) {
1592 nb_sectors = n;
1595 if (!bs->drv->bdrv_co_get_block_status) {
1596 *pnum = nb_sectors;
1597 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1598 if (bs->drv->protocol_name) {
1599 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1601 return ret;
1604 *file = NULL;
1605 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1606 file);
1607 if (ret < 0) {
1608 *pnum = 0;
1609 return ret;
1612 if (ret & BDRV_BLOCK_RAW) {
1613 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1614 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1615 *pnum, pnum, file);
1618 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1619 ret |= BDRV_BLOCK_ALLOCATED;
1620 } else {
1621 if (bdrv_unallocated_blocks_are_zero(bs)) {
1622 ret |= BDRV_BLOCK_ZERO;
1623 } else if (bs->backing) {
1624 BlockDriverState *bs2 = bs->backing->bs;
1625 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1626 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1627 ret |= BDRV_BLOCK_ZERO;
1632 if (*file && *file != bs &&
1633 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1634 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1635 BlockDriverState *file2;
1636 int file_pnum;
1638 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1639 *pnum, &file_pnum, &file2);
1640 if (ret2 >= 0) {
1641 /* Ignore errors. This is just providing extra information, it
1642 * is useful but not necessary.
1644 if (!file_pnum) {
1645 /* !file_pnum indicates an offset at or beyond the EOF; it is
1646 * perfectly valid for the format block driver to point to such
1647 * offsets, so catch it and mark everything as zero */
1648 ret |= BDRV_BLOCK_ZERO;
1649 } else {
1650 /* Limit request to the range reported by the protocol driver */
1651 *pnum = file_pnum;
1652 ret |= (ret2 & BDRV_BLOCK_ZERO);
1657 return ret;
1660 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1661 BlockDriverState *base,
1662 int64_t sector_num,
1663 int nb_sectors,
1664 int *pnum,
1665 BlockDriverState **file)
1667 BlockDriverState *p;
1668 int64_t ret = 0;
1670 assert(bs != base);
1671 for (p = bs; p != base; p = backing_bs(p)) {
1672 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1673 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1674 break;
1676 /* [sector_num, pnum] unallocated on this layer, which could be only
1677 * the first part of [sector_num, nb_sectors]. */
1678 nb_sectors = MIN(nb_sectors, *pnum);
1680 return ret;
1683 /* Coroutine wrapper for bdrv_get_block_status_above() */
1684 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1686 BdrvCoGetBlockStatusData *data = opaque;
1688 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1689 data->sector_num,
1690 data->nb_sectors,
1691 data->pnum,
1692 data->file);
1693 data->done = true;
1697 * Synchronous wrapper around bdrv_co_get_block_status_above().
1699 * See bdrv_co_get_block_status_above() for details.
1701 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1702 BlockDriverState *base,
1703 int64_t sector_num,
1704 int nb_sectors, int *pnum,
1705 BlockDriverState **file)
1707 Coroutine *co;
1708 BdrvCoGetBlockStatusData data = {
1709 .bs = bs,
1710 .base = base,
1711 .file = file,
1712 .sector_num = sector_num,
1713 .nb_sectors = nb_sectors,
1714 .pnum = pnum,
1715 .done = false,
1718 if (qemu_in_coroutine()) {
1719 /* Fast-path if already in coroutine context */
1720 bdrv_get_block_status_above_co_entry(&data);
1721 } else {
1722 AioContext *aio_context = bdrv_get_aio_context(bs);
1724 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1725 qemu_coroutine_enter(co, &data);
1726 while (!data.done) {
1727 aio_poll(aio_context, true);
1730 return data.ret;
1733 int64_t bdrv_get_block_status(BlockDriverState *bs,
1734 int64_t sector_num,
1735 int nb_sectors, int *pnum,
1736 BlockDriverState **file)
1738 return bdrv_get_block_status_above(bs, backing_bs(bs),
1739 sector_num, nb_sectors, pnum, file);
1742 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1743 int nb_sectors, int *pnum)
1745 BlockDriverState *file;
1746 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1747 &file);
1748 if (ret < 0) {
1749 return ret;
1751 return !!(ret & BDRV_BLOCK_ALLOCATED);
1755 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1757 * Return true if the given sector is allocated in any image between
1758 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1759 * sector is allocated in any image of the chain. Return false otherwise.
1761 * 'pnum' is set to the number of sectors (including and immediately following
1762 * the specified sector) that are known to be in the same
1763 * allocated/unallocated state.
1766 int bdrv_is_allocated_above(BlockDriverState *top,
1767 BlockDriverState *base,
1768 int64_t sector_num,
1769 int nb_sectors, int *pnum)
1771 BlockDriverState *intermediate;
1772 int ret, n = nb_sectors;
1774 intermediate = top;
1775 while (intermediate && intermediate != base) {
1776 int pnum_inter;
1777 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1778 &pnum_inter);
1779 if (ret < 0) {
1780 return ret;
1781 } else if (ret) {
1782 *pnum = pnum_inter;
1783 return 1;
1787 * [sector_num, nb_sectors] is unallocated on top but intermediate
1788 * might have
1790 * [sector_num+x, nr_sectors] allocated.
1792 if (n > pnum_inter &&
1793 (intermediate == top ||
1794 sector_num + pnum_inter < intermediate->total_sectors)) {
1795 n = pnum_inter;
1798 intermediate = backing_bs(intermediate);
1801 *pnum = n;
1802 return 0;
1805 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1806 const uint8_t *buf, int nb_sectors)
1808 BlockDriver *drv = bs->drv;
1809 int ret;
1811 if (!drv) {
1812 return -ENOMEDIUM;
1814 if (!drv->bdrv_write_compressed) {
1815 return -ENOTSUP;
1817 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1818 if (ret < 0) {
1819 return ret;
1822 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1824 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1827 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1828 int64_t pos, int size)
1830 QEMUIOVector qiov;
1831 struct iovec iov = {
1832 .iov_base = (void *) buf,
1833 .iov_len = size,
1836 qemu_iovec_init_external(&qiov, &iov, 1);
1837 return bdrv_writev_vmstate(bs, &qiov, pos);
1840 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1842 BlockDriver *drv = bs->drv;
1844 if (!drv) {
1845 return -ENOMEDIUM;
1846 } else if (drv->bdrv_save_vmstate) {
1847 return drv->bdrv_save_vmstate(bs, qiov, pos);
1848 } else if (bs->file) {
1849 return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1852 return -ENOTSUP;
1855 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1856 int64_t pos, int size)
1858 BlockDriver *drv = bs->drv;
1859 if (!drv)
1860 return -ENOMEDIUM;
1861 if (drv->bdrv_load_vmstate)
1862 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1863 if (bs->file)
1864 return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1865 return -ENOTSUP;
1868 /**************************************************************/
1869 /* async I/Os */
1871 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1872 QEMUIOVector *qiov, int nb_sectors,
1873 BlockCompletionFunc *cb, void *opaque)
1875 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1877 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1878 cb, opaque, false);
1881 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1882 QEMUIOVector *qiov, int nb_sectors,
1883 BlockCompletionFunc *cb, void *opaque)
1885 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1887 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1888 cb, opaque, true);
1891 void bdrv_aio_cancel(BlockAIOCB *acb)
1893 qemu_aio_ref(acb);
1894 bdrv_aio_cancel_async(acb);
1895 while (acb->refcnt > 1) {
1896 if (acb->aiocb_info->get_aio_context) {
1897 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1898 } else if (acb->bs) {
1899 aio_poll(bdrv_get_aio_context(acb->bs), true);
1900 } else {
1901 abort();
1904 qemu_aio_unref(acb);
1907 /* Async version of aio cancel. The caller is not blocked if the acb implements
1908 * cancel_async, otherwise we do nothing and let the request normally complete.
1909 * In either case the completion callback must be called. */
1910 void bdrv_aio_cancel_async(BlockAIOCB *acb)
1912 if (acb->aiocb_info->cancel_async) {
1913 acb->aiocb_info->cancel_async(acb);
1917 /**************************************************************/
1918 /* async block device emulation */
1920 typedef struct BlockRequest {
1921 union {
1922 /* Used during read, write, trim */
1923 struct {
1924 int64_t sector;
1925 int nb_sectors;
1926 int flags;
1927 QEMUIOVector *qiov;
1929 /* Used during ioctl */
1930 struct {
1931 int req;
1932 void *buf;
1935 BlockCompletionFunc *cb;
1936 void *opaque;
1938 int error;
1939 } BlockRequest;
1941 typedef struct BlockAIOCBCoroutine {
1942 BlockAIOCB common;
1943 BlockRequest req;
1944 bool is_write;
1945 bool need_bh;
1946 bool *done;
1947 QEMUBH* bh;
1948 } BlockAIOCBCoroutine;
1950 static const AIOCBInfo bdrv_em_co_aiocb_info = {
1951 .aiocb_size = sizeof(BlockAIOCBCoroutine),
1954 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
1956 if (!acb->need_bh) {
1957 acb->common.cb(acb->common.opaque, acb->req.error);
1958 qemu_aio_unref(acb);
1962 static void bdrv_co_em_bh(void *opaque)
1964 BlockAIOCBCoroutine *acb = opaque;
1966 assert(!acb->need_bh);
1967 qemu_bh_delete(acb->bh);
1968 bdrv_co_complete(acb);
1971 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
1973 acb->need_bh = false;
1974 if (acb->req.error != -EINPROGRESS) {
1975 BlockDriverState *bs = acb->common.bs;
1977 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
1978 qemu_bh_schedule(acb->bh);
1982 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
1983 static void coroutine_fn bdrv_co_do_rw(void *opaque)
1985 BlockAIOCBCoroutine *acb = opaque;
1986 BlockDriverState *bs = acb->common.bs;
1988 if (!acb->is_write) {
1989 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
1990 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
1991 } else {
1992 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
1993 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
1996 bdrv_co_complete(acb);
1999 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2000 int64_t sector_num,
2001 QEMUIOVector *qiov,
2002 int nb_sectors,
2003 BdrvRequestFlags flags,
2004 BlockCompletionFunc *cb,
2005 void *opaque,
2006 bool is_write)
2008 Coroutine *co;
2009 BlockAIOCBCoroutine *acb;
2011 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2012 acb->need_bh = true;
2013 acb->req.error = -EINPROGRESS;
2014 acb->req.sector = sector_num;
2015 acb->req.nb_sectors = nb_sectors;
2016 acb->req.qiov = qiov;
2017 acb->req.flags = flags;
2018 acb->is_write = is_write;
2020 co = qemu_coroutine_create(bdrv_co_do_rw);
2021 qemu_coroutine_enter(co, acb);
2023 bdrv_co_maybe_schedule_bh(acb);
2024 return &acb->common;
2027 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2029 BlockAIOCBCoroutine *acb = opaque;
2030 BlockDriverState *bs = acb->common.bs;
2032 acb->req.error = bdrv_co_flush(bs);
2033 bdrv_co_complete(acb);
2036 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2037 BlockCompletionFunc *cb, void *opaque)
2039 trace_bdrv_aio_flush(bs, opaque);
2041 Coroutine *co;
2042 BlockAIOCBCoroutine *acb;
2044 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2045 acb->need_bh = true;
2046 acb->req.error = -EINPROGRESS;
2048 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2049 qemu_coroutine_enter(co, acb);
2051 bdrv_co_maybe_schedule_bh(acb);
2052 return &acb->common;
2055 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2057 BlockAIOCBCoroutine *acb = opaque;
2058 BlockDriverState *bs = acb->common.bs;
2060 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2061 bdrv_co_complete(acb);
2064 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2065 int64_t sector_num, int nb_sectors,
2066 BlockCompletionFunc *cb, void *opaque)
2068 Coroutine *co;
2069 BlockAIOCBCoroutine *acb;
2071 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2073 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2074 acb->need_bh = true;
2075 acb->req.error = -EINPROGRESS;
2076 acb->req.sector = sector_num;
2077 acb->req.nb_sectors = nb_sectors;
2078 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2079 qemu_coroutine_enter(co, acb);
2081 bdrv_co_maybe_schedule_bh(acb);
2082 return &acb->common;
2085 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2086 BlockCompletionFunc *cb, void *opaque)
2088 BlockAIOCB *acb;
2090 acb = g_malloc(aiocb_info->aiocb_size);
2091 acb->aiocb_info = aiocb_info;
2092 acb->bs = bs;
2093 acb->cb = cb;
2094 acb->opaque = opaque;
2095 acb->refcnt = 1;
2096 return acb;
2099 void qemu_aio_ref(void *p)
2101 BlockAIOCB *acb = p;
2102 acb->refcnt++;
2105 void qemu_aio_unref(void *p)
2107 BlockAIOCB *acb = p;
2108 assert(acb->refcnt > 0);
2109 if (--acb->refcnt == 0) {
2110 g_free(acb);
2114 /**************************************************************/
2115 /* Coroutine block device emulation */
2117 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2119 RwCo *rwco = opaque;
2121 rwco->ret = bdrv_co_flush(rwco->bs);
2124 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2126 int ret;
2127 BdrvTrackedRequest req;
2129 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2130 bdrv_is_sg(bs)) {
2131 return 0;
2134 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2136 /* Write back all layers by calling one driver function */
2137 if (bs->drv->bdrv_co_flush) {
2138 ret = bs->drv->bdrv_co_flush(bs);
2139 goto out;
2142 /* Write back cached data to the OS even with cache=unsafe */
2143 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2144 if (bs->drv->bdrv_co_flush_to_os) {
2145 ret = bs->drv->bdrv_co_flush_to_os(bs);
2146 if (ret < 0) {
2147 goto out;
2151 /* But don't actually force it to the disk with cache=unsafe */
2152 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2153 goto flush_parent;
2156 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2157 if (bs->drv->bdrv_co_flush_to_disk) {
2158 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2159 } else if (bs->drv->bdrv_aio_flush) {
2160 BlockAIOCB *acb;
2161 CoroutineIOCompletion co = {
2162 .coroutine = qemu_coroutine_self(),
2165 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2166 if (acb == NULL) {
2167 ret = -EIO;
2168 } else {
2169 qemu_coroutine_yield();
2170 ret = co.ret;
2172 } else {
2174 * Some block drivers always operate in either writethrough or unsafe
2175 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2176 * know how the server works (because the behaviour is hardcoded or
2177 * depends on server-side configuration), so we can't ensure that
2178 * everything is safe on disk. Returning an error doesn't work because
2179 * that would break guests even if the server operates in writethrough
2180 * mode.
2182 * Let's hope the user knows what he's doing.
2184 ret = 0;
2186 if (ret < 0) {
2187 goto out;
2190 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2191 * in the case of cache=unsafe, so there are no useless flushes.
2193 flush_parent:
2194 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2195 out:
2196 tracked_request_end(&req);
2197 return ret;
2200 int bdrv_flush(BlockDriverState *bs)
2202 Coroutine *co;
2203 RwCo rwco = {
2204 .bs = bs,
2205 .ret = NOT_DONE,
2208 if (qemu_in_coroutine()) {
2209 /* Fast-path if already in coroutine context */
2210 bdrv_flush_co_entry(&rwco);
2211 } else {
2212 AioContext *aio_context = bdrv_get_aio_context(bs);
2214 co = qemu_coroutine_create(bdrv_flush_co_entry);
2215 qemu_coroutine_enter(co, &rwco);
2216 while (rwco.ret == NOT_DONE) {
2217 aio_poll(aio_context, true);
2221 return rwco.ret;
2224 typedef struct DiscardCo {
2225 BlockDriverState *bs;
2226 int64_t sector_num;
2227 int nb_sectors;
2228 int ret;
2229 } DiscardCo;
2230 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2232 DiscardCo *rwco = opaque;
2234 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2237 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2238 int nb_sectors)
2240 BdrvTrackedRequest req;
2241 int max_discard, ret;
2243 if (!bs->drv) {
2244 return -ENOMEDIUM;
2247 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2248 if (ret < 0) {
2249 return ret;
2250 } else if (bs->read_only) {
2251 return -EPERM;
2253 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2255 /* Do nothing if disabled. */
2256 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2257 return 0;
2260 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2261 return 0;
2264 tracked_request_begin(&req, bs, sector_num, nb_sectors,
2265 BDRV_TRACKED_DISCARD);
2266 bdrv_set_dirty(bs, sector_num, nb_sectors);
2268 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2269 while (nb_sectors > 0) {
2270 int ret;
2271 int num = nb_sectors;
2273 /* align request */
2274 if (bs->bl.discard_alignment &&
2275 num >= bs->bl.discard_alignment &&
2276 sector_num % bs->bl.discard_alignment) {
2277 if (num > bs->bl.discard_alignment) {
2278 num = bs->bl.discard_alignment;
2280 num -= sector_num % bs->bl.discard_alignment;
2283 /* limit request size */
2284 if (num > max_discard) {
2285 num = max_discard;
2288 if (bs->drv->bdrv_co_discard) {
2289 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2290 } else {
2291 BlockAIOCB *acb;
2292 CoroutineIOCompletion co = {
2293 .coroutine = qemu_coroutine_self(),
2296 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2297 bdrv_co_io_em_complete, &co);
2298 if (acb == NULL) {
2299 ret = -EIO;
2300 goto out;
2301 } else {
2302 qemu_coroutine_yield();
2303 ret = co.ret;
2306 if (ret && ret != -ENOTSUP) {
2307 goto out;
2310 sector_num += num;
2311 nb_sectors -= num;
2313 ret = 0;
2314 out:
2315 tracked_request_end(&req);
2316 return ret;
2319 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2321 Coroutine *co;
2322 DiscardCo rwco = {
2323 .bs = bs,
2324 .sector_num = sector_num,
2325 .nb_sectors = nb_sectors,
2326 .ret = NOT_DONE,
2329 if (qemu_in_coroutine()) {
2330 /* Fast-path if already in coroutine context */
2331 bdrv_discard_co_entry(&rwco);
2332 } else {
2333 AioContext *aio_context = bdrv_get_aio_context(bs);
2335 co = qemu_coroutine_create(bdrv_discard_co_entry);
2336 qemu_coroutine_enter(co, &rwco);
2337 while (rwco.ret == NOT_DONE) {
2338 aio_poll(aio_context, true);
2342 return rwco.ret;
2345 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2347 BlockDriver *drv = bs->drv;
2348 BdrvTrackedRequest tracked_req;
2349 CoroutineIOCompletion co = {
2350 .coroutine = qemu_coroutine_self(),
2352 BlockAIOCB *acb;
2354 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2355 if (!drv || !drv->bdrv_aio_ioctl) {
2356 co.ret = -ENOTSUP;
2357 goto out;
2360 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2361 if (!acb) {
2362 co.ret = -ENOTSUP;
2363 goto out;
2365 qemu_coroutine_yield();
2366 out:
2367 tracked_request_end(&tracked_req);
2368 return co.ret;
2371 typedef struct {
2372 BlockDriverState *bs;
2373 int req;
2374 void *buf;
2375 int ret;
2376 } BdrvIoctlCoData;
2378 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2380 BdrvIoctlCoData *data = opaque;
2381 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2384 /* needed for generic scsi interface */
2385 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2387 BdrvIoctlCoData data = {
2388 .bs = bs,
2389 .req = req,
2390 .buf = buf,
2391 .ret = -EINPROGRESS,
2394 if (qemu_in_coroutine()) {
2395 /* Fast-path if already in coroutine context */
2396 bdrv_co_ioctl_entry(&data);
2397 } else {
2398 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry);
2400 qemu_coroutine_enter(co, &data);
2401 while (data.ret == -EINPROGRESS) {
2402 aio_poll(bdrv_get_aio_context(bs), true);
2405 return data.ret;
2408 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2410 BlockAIOCBCoroutine *acb = opaque;
2411 acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2412 acb->req.req, acb->req.buf);
2413 bdrv_co_complete(acb);
2416 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2417 unsigned long int req, void *buf,
2418 BlockCompletionFunc *cb, void *opaque)
2420 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2421 bs, cb, opaque);
2422 Coroutine *co;
2424 acb->need_bh = true;
2425 acb->req.error = -EINPROGRESS;
2426 acb->req.req = req;
2427 acb->req.buf = buf;
2428 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry);
2429 qemu_coroutine_enter(co, acb);
2431 bdrv_co_maybe_schedule_bh(acb);
2432 return &acb->common;
2435 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2437 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2440 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2442 return memset(qemu_blockalign(bs, size), 0, size);
2445 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2447 size_t align = bdrv_opt_mem_align(bs);
2449 /* Ensure that NULL is never returned on success */
2450 assert(align > 0);
2451 if (size == 0) {
2452 size = align;
2455 return qemu_try_memalign(align, size);
2458 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2460 void *mem = qemu_try_blockalign(bs, size);
2462 if (mem) {
2463 memset(mem, 0, size);
2466 return mem;
2470 * Check if all memory in this vector is sector aligned.
2472 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2474 int i;
2475 size_t alignment = bdrv_min_mem_align(bs);
2477 for (i = 0; i < qiov->niov; i++) {
2478 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2479 return false;
2481 if (qiov->iov[i].iov_len % alignment) {
2482 return false;
2486 return true;
2489 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2490 NotifierWithReturn *notifier)
2492 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2495 void bdrv_io_plug(BlockDriverState *bs)
2497 BdrvChild *child;
2499 QLIST_FOREACH(child, &bs->children, next) {
2500 bdrv_io_plug(child->bs);
2503 if (bs->io_plugged++ == 0 && bs->io_plug_disabled == 0) {
2504 BlockDriver *drv = bs->drv;
2505 if (drv && drv->bdrv_io_plug) {
2506 drv->bdrv_io_plug(bs);
2511 void bdrv_io_unplug(BlockDriverState *bs)
2513 BdrvChild *child;
2515 assert(bs->io_plugged);
2516 if (--bs->io_plugged == 0 && bs->io_plug_disabled == 0) {
2517 BlockDriver *drv = bs->drv;
2518 if (drv && drv->bdrv_io_unplug) {
2519 drv->bdrv_io_unplug(bs);
2523 QLIST_FOREACH(child, &bs->children, next) {
2524 bdrv_io_unplug(child->bs);
2528 void bdrv_io_unplugged_begin(BlockDriverState *bs)
2530 BdrvChild *child;
2532 if (bs->io_plug_disabled++ == 0 && bs->io_plugged > 0) {
2533 BlockDriver *drv = bs->drv;
2534 if (drv && drv->bdrv_io_unplug) {
2535 drv->bdrv_io_unplug(bs);
2539 QLIST_FOREACH(child, &bs->children, next) {
2540 bdrv_io_unplugged_begin(child->bs);
2544 void bdrv_io_unplugged_end(BlockDriverState *bs)
2546 BdrvChild *child;
2548 assert(bs->io_plug_disabled);
2549 QLIST_FOREACH(child, &bs->children, next) {
2550 bdrv_io_unplugged_end(child->bs);
2553 if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) {
2554 BlockDriver *drv = bs->drv;
2555 if (drv && drv->bdrv_io_plug) {
2556 drv->bdrv_io_plug(bs);