virtio-gpu: fix crashes upon warm reboot with vga mode
[qemu/ar7.git] / target / arm / vec_helper.c
blob37f338732e3162d1c23f3bdfd8609b4a8d29e24f
1 /*
2 * ARM AdvSIMD / SVE Vector Operations
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28 so addressing units smaller than that needs a host-endian fixup. */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x) ((x) ^ 7)
31 #define H2(x) ((x) ^ 3)
32 #define H4(x) ((x) ^ 1)
33 #else
34 #define H1(x) (x)
35 #define H2(x) (x)
36 #define H4(x) (x)
37 #endif
39 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
41 static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
43 uint64_t *d = vd + opr_sz;
44 uintptr_t i;
46 for (i = opr_sz; i < max_sz; i += 8) {
47 *d++ = 0;
51 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
52 static uint16_t inl_qrdmlah_s16(CPUARMState *env, int16_t src1,
53 int16_t src2, int16_t src3)
55 /* Simplify:
56 * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
57 * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
59 int32_t ret = (int32_t)src1 * src2;
60 ret = ((int32_t)src3 << 15) + ret + (1 << 14);
61 ret >>= 15;
62 if (ret != (int16_t)ret) {
63 SET_QC();
64 ret = (ret < 0 ? -0x8000 : 0x7fff);
66 return ret;
69 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
70 uint32_t src2, uint32_t src3)
72 uint16_t e1 = inl_qrdmlah_s16(env, src1, src2, src3);
73 uint16_t e2 = inl_qrdmlah_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
74 return deposit32(e1, 16, 16, e2);
77 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
78 void *ve, uint32_t desc)
80 uintptr_t opr_sz = simd_oprsz(desc);
81 int16_t *d = vd;
82 int16_t *n = vn;
83 int16_t *m = vm;
84 CPUARMState *env = ve;
85 uintptr_t i;
87 for (i = 0; i < opr_sz / 2; ++i) {
88 d[i] = inl_qrdmlah_s16(env, n[i], m[i], d[i]);
90 clear_tail(d, opr_sz, simd_maxsz(desc));
93 /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
94 static uint16_t inl_qrdmlsh_s16(CPUARMState *env, int16_t src1,
95 int16_t src2, int16_t src3)
97 /* Similarly, using subtraction:
98 * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
99 * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
101 int32_t ret = (int32_t)src1 * src2;
102 ret = ((int32_t)src3 << 15) - ret + (1 << 14);
103 ret >>= 15;
104 if (ret != (int16_t)ret) {
105 SET_QC();
106 ret = (ret < 0 ? -0x8000 : 0x7fff);
108 return ret;
111 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
112 uint32_t src2, uint32_t src3)
114 uint16_t e1 = inl_qrdmlsh_s16(env, src1, src2, src3);
115 uint16_t e2 = inl_qrdmlsh_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
116 return deposit32(e1, 16, 16, e2);
119 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
120 void *ve, uint32_t desc)
122 uintptr_t opr_sz = simd_oprsz(desc);
123 int16_t *d = vd;
124 int16_t *n = vn;
125 int16_t *m = vm;
126 CPUARMState *env = ve;
127 uintptr_t i;
129 for (i = 0; i < opr_sz / 2; ++i) {
130 d[i] = inl_qrdmlsh_s16(env, n[i], m[i], d[i]);
132 clear_tail(d, opr_sz, simd_maxsz(desc));
135 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
136 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
137 int32_t src2, int32_t src3)
139 /* Simplify similarly to int_qrdmlah_s16 above. */
140 int64_t ret = (int64_t)src1 * src2;
141 ret = ((int64_t)src3 << 31) + ret + (1 << 30);
142 ret >>= 31;
143 if (ret != (int32_t)ret) {
144 SET_QC();
145 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
147 return ret;
150 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
151 void *ve, uint32_t desc)
153 uintptr_t opr_sz = simd_oprsz(desc);
154 int32_t *d = vd;
155 int32_t *n = vn;
156 int32_t *m = vm;
157 CPUARMState *env = ve;
158 uintptr_t i;
160 for (i = 0; i < opr_sz / 4; ++i) {
161 d[i] = helper_neon_qrdmlah_s32(env, n[i], m[i], d[i]);
163 clear_tail(d, opr_sz, simd_maxsz(desc));
166 /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
167 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
168 int32_t src2, int32_t src3)
170 /* Simplify similarly to int_qrdmlsh_s16 above. */
171 int64_t ret = (int64_t)src1 * src2;
172 ret = ((int64_t)src3 << 31) - ret + (1 << 30);
173 ret >>= 31;
174 if (ret != (int32_t)ret) {
175 SET_QC();
176 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
178 return ret;
181 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
182 void *ve, uint32_t desc)
184 uintptr_t opr_sz = simd_oprsz(desc);
185 int32_t *d = vd;
186 int32_t *n = vn;
187 int32_t *m = vm;
188 CPUARMState *env = ve;
189 uintptr_t i;
191 for (i = 0; i < opr_sz / 4; ++i) {
192 d[i] = helper_neon_qrdmlsh_s32(env, n[i], m[i], d[i]);
194 clear_tail(d, opr_sz, simd_maxsz(desc));
197 /* Integer 8 and 16-bit dot-product.
199 * Note that for the loops herein, host endianness does not matter
200 * with respect to the ordering of data within the 64-bit lanes.
201 * All elements are treated equally, no matter where they are.
204 void HELPER(gvec_sdot_b)(void *vd, void *vn, void *vm, uint32_t desc)
206 intptr_t i, opr_sz = simd_oprsz(desc);
207 uint32_t *d = vd;
208 int8_t *n = vn, *m = vm;
210 for (i = 0; i < opr_sz / 4; ++i) {
211 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
212 + n[i * 4 + 1] * m[i * 4 + 1]
213 + n[i * 4 + 2] * m[i * 4 + 2]
214 + n[i * 4 + 3] * m[i * 4 + 3];
216 clear_tail(d, opr_sz, simd_maxsz(desc));
219 void HELPER(gvec_udot_b)(void *vd, void *vn, void *vm, uint32_t desc)
221 intptr_t i, opr_sz = simd_oprsz(desc);
222 uint32_t *d = vd;
223 uint8_t *n = vn, *m = vm;
225 for (i = 0; i < opr_sz / 4; ++i) {
226 d[i] += n[i * 4 + 0] * m[i * 4 + 0]
227 + n[i * 4 + 1] * m[i * 4 + 1]
228 + n[i * 4 + 2] * m[i * 4 + 2]
229 + n[i * 4 + 3] * m[i * 4 + 3];
231 clear_tail(d, opr_sz, simd_maxsz(desc));
234 void HELPER(gvec_sdot_h)(void *vd, void *vn, void *vm, uint32_t desc)
236 intptr_t i, opr_sz = simd_oprsz(desc);
237 uint64_t *d = vd;
238 int16_t *n = vn, *m = vm;
240 for (i = 0; i < opr_sz / 8; ++i) {
241 d[i] += (int64_t)n[i * 4 + 0] * m[i * 4 + 0]
242 + (int64_t)n[i * 4 + 1] * m[i * 4 + 1]
243 + (int64_t)n[i * 4 + 2] * m[i * 4 + 2]
244 + (int64_t)n[i * 4 + 3] * m[i * 4 + 3];
246 clear_tail(d, opr_sz, simd_maxsz(desc));
249 void HELPER(gvec_udot_h)(void *vd, void *vn, void *vm, uint32_t desc)
251 intptr_t i, opr_sz = simd_oprsz(desc);
252 uint64_t *d = vd;
253 uint16_t *n = vn, *m = vm;
255 for (i = 0; i < opr_sz / 8; ++i) {
256 d[i] += (uint64_t)n[i * 4 + 0] * m[i * 4 + 0]
257 + (uint64_t)n[i * 4 + 1] * m[i * 4 + 1]
258 + (uint64_t)n[i * 4 + 2] * m[i * 4 + 2]
259 + (uint64_t)n[i * 4 + 3] * m[i * 4 + 3];
261 clear_tail(d, opr_sz, simd_maxsz(desc));
264 void HELPER(gvec_sdot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
266 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
267 intptr_t index = simd_data(desc);
268 uint32_t *d = vd;
269 int8_t *n = vn;
270 int8_t *m_indexed = (int8_t *)vm + index * 4;
272 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
273 * Otherwise opr_sz is a multiple of 16.
275 segend = MIN(4, opr_sz_4);
276 i = 0;
277 do {
278 int8_t m0 = m_indexed[i * 4 + 0];
279 int8_t m1 = m_indexed[i * 4 + 1];
280 int8_t m2 = m_indexed[i * 4 + 2];
281 int8_t m3 = m_indexed[i * 4 + 3];
283 do {
284 d[i] += n[i * 4 + 0] * m0
285 + n[i * 4 + 1] * m1
286 + n[i * 4 + 2] * m2
287 + n[i * 4 + 3] * m3;
288 } while (++i < segend);
289 segend = i + 4;
290 } while (i < opr_sz_4);
292 clear_tail(d, opr_sz, simd_maxsz(desc));
295 void HELPER(gvec_udot_idx_b)(void *vd, void *vn, void *vm, uint32_t desc)
297 intptr_t i, segend, opr_sz = simd_oprsz(desc), opr_sz_4 = opr_sz / 4;
298 intptr_t index = simd_data(desc);
299 uint32_t *d = vd;
300 uint8_t *n = vn;
301 uint8_t *m_indexed = (uint8_t *)vm + index * 4;
303 /* Notice the special case of opr_sz == 8, from aa64/aa32 advsimd.
304 * Otherwise opr_sz is a multiple of 16.
306 segend = MIN(4, opr_sz_4);
307 i = 0;
308 do {
309 uint8_t m0 = m_indexed[i * 4 + 0];
310 uint8_t m1 = m_indexed[i * 4 + 1];
311 uint8_t m2 = m_indexed[i * 4 + 2];
312 uint8_t m3 = m_indexed[i * 4 + 3];
314 do {
315 d[i] += n[i * 4 + 0] * m0
316 + n[i * 4 + 1] * m1
317 + n[i * 4 + 2] * m2
318 + n[i * 4 + 3] * m3;
319 } while (++i < segend);
320 segend = i + 4;
321 } while (i < opr_sz_4);
323 clear_tail(d, opr_sz, simd_maxsz(desc));
326 void HELPER(gvec_sdot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
328 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
329 intptr_t index = simd_data(desc);
330 uint64_t *d = vd;
331 int16_t *n = vn;
332 int16_t *m_indexed = (int16_t *)vm + index * 4;
334 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
335 * Process the entire segment all at once, writing back the results
336 * only after we've consumed all of the inputs.
338 for (i = 0; i < opr_sz_8 ; i += 2) {
339 uint64_t d0, d1;
341 d0 = n[i * 4 + 0] * (int64_t)m_indexed[i * 4 + 0];
342 d0 += n[i * 4 + 1] * (int64_t)m_indexed[i * 4 + 1];
343 d0 += n[i * 4 + 2] * (int64_t)m_indexed[i * 4 + 2];
344 d0 += n[i * 4 + 3] * (int64_t)m_indexed[i * 4 + 3];
345 d1 = n[i * 4 + 4] * (int64_t)m_indexed[i * 4 + 0];
346 d1 += n[i * 4 + 5] * (int64_t)m_indexed[i * 4 + 1];
347 d1 += n[i * 4 + 6] * (int64_t)m_indexed[i * 4 + 2];
348 d1 += n[i * 4 + 7] * (int64_t)m_indexed[i * 4 + 3];
350 d[i + 0] += d0;
351 d[i + 1] += d1;
354 clear_tail(d, opr_sz, simd_maxsz(desc));
357 void HELPER(gvec_udot_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
359 intptr_t i, opr_sz = simd_oprsz(desc), opr_sz_8 = opr_sz / 8;
360 intptr_t index = simd_data(desc);
361 uint64_t *d = vd;
362 uint16_t *n = vn;
363 uint16_t *m_indexed = (uint16_t *)vm + index * 4;
365 /* This is supported by SVE only, so opr_sz is always a multiple of 16.
366 * Process the entire segment all at once, writing back the results
367 * only after we've consumed all of the inputs.
369 for (i = 0; i < opr_sz_8 ; i += 2) {
370 uint64_t d0, d1;
372 d0 = n[i * 4 + 0] * (uint64_t)m_indexed[i * 4 + 0];
373 d0 += n[i * 4 + 1] * (uint64_t)m_indexed[i * 4 + 1];
374 d0 += n[i * 4 + 2] * (uint64_t)m_indexed[i * 4 + 2];
375 d0 += n[i * 4 + 3] * (uint64_t)m_indexed[i * 4 + 3];
376 d1 = n[i * 4 + 4] * (uint64_t)m_indexed[i * 4 + 0];
377 d1 += n[i * 4 + 5] * (uint64_t)m_indexed[i * 4 + 1];
378 d1 += n[i * 4 + 6] * (uint64_t)m_indexed[i * 4 + 2];
379 d1 += n[i * 4 + 7] * (uint64_t)m_indexed[i * 4 + 3];
381 d[i + 0] += d0;
382 d[i + 1] += d1;
385 clear_tail(d, opr_sz, simd_maxsz(desc));
388 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
389 void *vfpst, uint32_t desc)
391 uintptr_t opr_sz = simd_oprsz(desc);
392 float16 *d = vd;
393 float16 *n = vn;
394 float16 *m = vm;
395 float_status *fpst = vfpst;
396 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
397 uint32_t neg_imag = neg_real ^ 1;
398 uintptr_t i;
400 /* Shift boolean to the sign bit so we can xor to negate. */
401 neg_real <<= 15;
402 neg_imag <<= 15;
404 for (i = 0; i < opr_sz / 2; i += 2) {
405 float16 e0 = n[H2(i)];
406 float16 e1 = m[H2(i + 1)] ^ neg_imag;
407 float16 e2 = n[H2(i + 1)];
408 float16 e3 = m[H2(i)] ^ neg_real;
410 d[H2(i)] = float16_add(e0, e1, fpst);
411 d[H2(i + 1)] = float16_add(e2, e3, fpst);
413 clear_tail(d, opr_sz, simd_maxsz(desc));
416 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
417 void *vfpst, uint32_t desc)
419 uintptr_t opr_sz = simd_oprsz(desc);
420 float32 *d = vd;
421 float32 *n = vn;
422 float32 *m = vm;
423 float_status *fpst = vfpst;
424 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
425 uint32_t neg_imag = neg_real ^ 1;
426 uintptr_t i;
428 /* Shift boolean to the sign bit so we can xor to negate. */
429 neg_real <<= 31;
430 neg_imag <<= 31;
432 for (i = 0; i < opr_sz / 4; i += 2) {
433 float32 e0 = n[H4(i)];
434 float32 e1 = m[H4(i + 1)] ^ neg_imag;
435 float32 e2 = n[H4(i + 1)];
436 float32 e3 = m[H4(i)] ^ neg_real;
438 d[H4(i)] = float32_add(e0, e1, fpst);
439 d[H4(i + 1)] = float32_add(e2, e3, fpst);
441 clear_tail(d, opr_sz, simd_maxsz(desc));
444 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
445 void *vfpst, uint32_t desc)
447 uintptr_t opr_sz = simd_oprsz(desc);
448 float64 *d = vd;
449 float64 *n = vn;
450 float64 *m = vm;
451 float_status *fpst = vfpst;
452 uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
453 uint64_t neg_imag = neg_real ^ 1;
454 uintptr_t i;
456 /* Shift boolean to the sign bit so we can xor to negate. */
457 neg_real <<= 63;
458 neg_imag <<= 63;
460 for (i = 0; i < opr_sz / 8; i += 2) {
461 float64 e0 = n[i];
462 float64 e1 = m[i + 1] ^ neg_imag;
463 float64 e2 = n[i + 1];
464 float64 e3 = m[i] ^ neg_real;
466 d[i] = float64_add(e0, e1, fpst);
467 d[i + 1] = float64_add(e2, e3, fpst);
469 clear_tail(d, opr_sz, simd_maxsz(desc));
472 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
473 void *vfpst, uint32_t desc)
475 uintptr_t opr_sz = simd_oprsz(desc);
476 float16 *d = vd;
477 float16 *n = vn;
478 float16 *m = vm;
479 float_status *fpst = vfpst;
480 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
481 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
482 uint32_t neg_real = flip ^ neg_imag;
483 uintptr_t i;
485 /* Shift boolean to the sign bit so we can xor to negate. */
486 neg_real <<= 15;
487 neg_imag <<= 15;
489 for (i = 0; i < opr_sz / 2; i += 2) {
490 float16 e2 = n[H2(i + flip)];
491 float16 e1 = m[H2(i + flip)] ^ neg_real;
492 float16 e4 = e2;
493 float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
495 d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
496 d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
498 clear_tail(d, opr_sz, simd_maxsz(desc));
501 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
502 void *vfpst, uint32_t desc)
504 uintptr_t opr_sz = simd_oprsz(desc);
505 float16 *d = vd;
506 float16 *n = vn;
507 float16 *m = vm;
508 float_status *fpst = vfpst;
509 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
510 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
511 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
512 uint32_t neg_real = flip ^ neg_imag;
513 intptr_t elements = opr_sz / sizeof(float16);
514 intptr_t eltspersegment = 16 / sizeof(float16);
515 intptr_t i, j;
517 /* Shift boolean to the sign bit so we can xor to negate. */
518 neg_real <<= 15;
519 neg_imag <<= 15;
521 for (i = 0; i < elements; i += eltspersegment) {
522 float16 mr = m[H2(i + 2 * index + 0)];
523 float16 mi = m[H2(i + 2 * index + 1)];
524 float16 e1 = neg_real ^ (flip ? mi : mr);
525 float16 e3 = neg_imag ^ (flip ? mr : mi);
527 for (j = i; j < i + eltspersegment; j += 2) {
528 float16 e2 = n[H2(j + flip)];
529 float16 e4 = e2;
531 d[H2(j)] = float16_muladd(e2, e1, d[H2(j)], 0, fpst);
532 d[H2(j + 1)] = float16_muladd(e4, e3, d[H2(j + 1)], 0, fpst);
535 clear_tail(d, opr_sz, simd_maxsz(desc));
538 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
539 void *vfpst, uint32_t desc)
541 uintptr_t opr_sz = simd_oprsz(desc);
542 float32 *d = vd;
543 float32 *n = vn;
544 float32 *m = vm;
545 float_status *fpst = vfpst;
546 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
547 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
548 uint32_t neg_real = flip ^ neg_imag;
549 uintptr_t i;
551 /* Shift boolean to the sign bit so we can xor to negate. */
552 neg_real <<= 31;
553 neg_imag <<= 31;
555 for (i = 0; i < opr_sz / 4; i += 2) {
556 float32 e2 = n[H4(i + flip)];
557 float32 e1 = m[H4(i + flip)] ^ neg_real;
558 float32 e4 = e2;
559 float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
561 d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
562 d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
564 clear_tail(d, opr_sz, simd_maxsz(desc));
567 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
568 void *vfpst, uint32_t desc)
570 uintptr_t opr_sz = simd_oprsz(desc);
571 float32 *d = vd;
572 float32 *n = vn;
573 float32 *m = vm;
574 float_status *fpst = vfpst;
575 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
576 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
577 intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
578 uint32_t neg_real = flip ^ neg_imag;
579 intptr_t elements = opr_sz / sizeof(float32);
580 intptr_t eltspersegment = 16 / sizeof(float32);
581 intptr_t i, j;
583 /* Shift boolean to the sign bit so we can xor to negate. */
584 neg_real <<= 31;
585 neg_imag <<= 31;
587 for (i = 0; i < elements; i += eltspersegment) {
588 float32 mr = m[H4(i + 2 * index + 0)];
589 float32 mi = m[H4(i + 2 * index + 1)];
590 float32 e1 = neg_real ^ (flip ? mi : mr);
591 float32 e3 = neg_imag ^ (flip ? mr : mi);
593 for (j = i; j < i + eltspersegment; j += 2) {
594 float32 e2 = n[H4(j + flip)];
595 float32 e4 = e2;
597 d[H4(j)] = float32_muladd(e2, e1, d[H4(j)], 0, fpst);
598 d[H4(j + 1)] = float32_muladd(e4, e3, d[H4(j + 1)], 0, fpst);
601 clear_tail(d, opr_sz, simd_maxsz(desc));
604 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
605 void *vfpst, uint32_t desc)
607 uintptr_t opr_sz = simd_oprsz(desc);
608 float64 *d = vd;
609 float64 *n = vn;
610 float64 *m = vm;
611 float_status *fpst = vfpst;
612 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
613 uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
614 uint64_t neg_real = flip ^ neg_imag;
615 uintptr_t i;
617 /* Shift boolean to the sign bit so we can xor to negate. */
618 neg_real <<= 63;
619 neg_imag <<= 63;
621 for (i = 0; i < opr_sz / 8; i += 2) {
622 float64 e2 = n[i + flip];
623 float64 e1 = m[i + flip] ^ neg_real;
624 float64 e4 = e2;
625 float64 e3 = m[i + 1 - flip] ^ neg_imag;
627 d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
628 d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
630 clear_tail(d, opr_sz, simd_maxsz(desc));
633 #define DO_2OP(NAME, FUNC, TYPE) \
634 void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
636 intptr_t i, oprsz = simd_oprsz(desc); \
637 TYPE *d = vd, *n = vn; \
638 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
639 d[i] = FUNC(n[i], stat); \
643 DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
644 DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
645 DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
647 DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
648 DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
649 DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
651 #undef DO_2OP
653 /* Floating-point trigonometric starting value.
654 * See the ARM ARM pseudocode function FPTrigSMul.
656 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
658 float16 result = float16_mul(op1, op1, stat);
659 if (!float16_is_any_nan(result)) {
660 result = float16_set_sign(result, op2 & 1);
662 return result;
665 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
667 float32 result = float32_mul(op1, op1, stat);
668 if (!float32_is_any_nan(result)) {
669 result = float32_set_sign(result, op2 & 1);
671 return result;
674 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
676 float64 result = float64_mul(op1, op1, stat);
677 if (!float64_is_any_nan(result)) {
678 result = float64_set_sign(result, op2 & 1);
680 return result;
683 #define DO_3OP(NAME, FUNC, TYPE) \
684 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
686 intptr_t i, oprsz = simd_oprsz(desc); \
687 TYPE *d = vd, *n = vn, *m = vm; \
688 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
689 d[i] = FUNC(n[i], m[i], stat); \
693 DO_3OP(gvec_fadd_h, float16_add, float16)
694 DO_3OP(gvec_fadd_s, float32_add, float32)
695 DO_3OP(gvec_fadd_d, float64_add, float64)
697 DO_3OP(gvec_fsub_h, float16_sub, float16)
698 DO_3OP(gvec_fsub_s, float32_sub, float32)
699 DO_3OP(gvec_fsub_d, float64_sub, float64)
701 DO_3OP(gvec_fmul_h, float16_mul, float16)
702 DO_3OP(gvec_fmul_s, float32_mul, float32)
703 DO_3OP(gvec_fmul_d, float64_mul, float64)
705 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
706 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
707 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
709 #ifdef TARGET_AARCH64
711 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
712 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
713 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
715 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
716 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
717 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
719 #endif
720 #undef DO_3OP
722 /* For the indexed ops, SVE applies the index per 128-bit vector segment.
723 * For AdvSIMD, there is of course only one such vector segment.
726 #define DO_MUL_IDX(NAME, TYPE, H) \
727 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
729 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
730 intptr_t idx = simd_data(desc); \
731 TYPE *d = vd, *n = vn, *m = vm; \
732 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
733 TYPE mm = m[H(i + idx)]; \
734 for (j = 0; j < segment; j++) { \
735 d[i + j] = TYPE##_mul(n[i + j], mm, stat); \
740 DO_MUL_IDX(gvec_fmul_idx_h, float16, H2)
741 DO_MUL_IDX(gvec_fmul_idx_s, float32, H4)
742 DO_MUL_IDX(gvec_fmul_idx_d, float64, )
744 #undef DO_MUL_IDX
746 #define DO_FMLA_IDX(NAME, TYPE, H) \
747 void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
748 void *stat, uint32_t desc) \
750 intptr_t i, j, oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
751 TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
752 intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
753 TYPE *d = vd, *n = vn, *m = vm, *a = va; \
754 op1_neg <<= (8 * sizeof(TYPE) - 1); \
755 for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
756 TYPE mm = m[H(i + idx)]; \
757 for (j = 0; j < segment; j++) { \
758 d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
759 mm, a[i + j], 0, stat); \
764 DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
765 DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
766 DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
768 #undef DO_FMLA_IDX