virtio-gpu: fix crashes upon warm reboot with vga mode
[qemu/ar7.git] / linux-user / elfload.c
blobdf0705536179183f6a0ec9483288cadf200cf8ac
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 int info_is_fdpic(struct image_info *info)
83 return info->personality == PER_LINUX_FDPIC;
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA ELFDATA2MSB
98 #else
99 #define ELF_DATA ELFDATA2LSB
100 #endif
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong target_elf_greg_t;
104 #define tswapreg(ptr) tswap64(ptr)
105 #else
106 typedef abi_ulong target_elf_greg_t;
107 #define tswapreg(ptr) tswapal(ptr)
108 #endif
110 #ifdef USE_UID16
111 typedef abi_ushort target_uid_t;
112 typedef abi_ushort target_gid_t;
113 #else
114 typedef abi_uint target_uid_t;
115 typedef abi_uint target_gid_t;
116 #endif
117 typedef abi_int target_pid_t;
119 #ifdef TARGET_I386
121 #define ELF_PLATFORM get_elf_platform()
123 static const char *get_elf_platform(void)
125 static char elf_platform[] = "i386";
126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
134 #define ELF_HWCAP get_elf_hwcap()
136 static uint32_t get_elf_hwcap(void)
138 X86CPU *cpu = X86_CPU(thread_cpu);
140 return cpu->env.features[FEAT_1_EDX];
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
156 #define ELF_NREG 27
157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
164 * See linux kernel: arch/x86/include/asm/elf.h
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197 #else
199 #define ELF_START_MMAP 0x80000000
202 * This is used to ensure we don't load something for the wrong architecture.
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207 * These are used to set parameters in the core dumps.
209 #define ELF_CLASS ELFCLASS32
210 #define ELF_ARCH EM_386
212 static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
228 #define ELF_NREG 17
229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
236 * See linux kernel: arch/x86/include/asm/elf.h
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
258 #endif
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE 4096
263 #endif
265 #ifdef TARGET_ARM
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
270 #define ELF_START_MMAP 0x80000000
272 #define ELF_ARCH EM_ARM
273 #define ELF_CLASS ELFCLASS32
275 static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
278 abi_long stack = infop->start_stack;
279 memset(regs, 0, sizeof(*regs));
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
287 /* FIXME - what to for failure of get_user()? */
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
290 /* XXX: it seems that r0 is zeroed after ! */
291 regs->uregs[0] = 0;
292 /* For uClinux PIC binaries. */
293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294 regs->uregs[10] = infop->start_data;
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
316 #define ELF_NREG 18
317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE 4096
345 enum
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
371 enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
379 /* The commpage only exists for 32 bit kernels */
381 /* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
389 static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
392 unsigned long real_start, test_page_addr;
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
407 if (test_page_addr >= guest_base
408 && test_page_addr < (guest_base + guest_size)) {
409 return -1;
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
442 return 1; /* All good */
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
448 static uint32_t get_elf_hwcap(void)
450 ARMCPU *cpu = ARM_CPU(thread_cpu);
451 uint32_t hwcaps = 0;
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
458 /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475 * to our VFP_FP16 feature bit.
477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
480 return hwcaps;
483 static uint32_t get_elf_hwcap2(void)
485 ARMCPU *cpu = ARM_CPU(thread_cpu);
486 uint32_t hwcaps = 0;
488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493 return hwcaps;
496 #undef GET_FEATURE
498 #else
499 /* 64 bit ARM definitions */
500 #define ELF_START_MMAP 0x80000000
502 #define ELF_ARCH EM_AARCH64
503 #define ELF_CLASS ELFCLASS64
504 #define ELF_PLATFORM "aarch64"
506 static inline void init_thread(struct target_pt_regs *regs,
507 struct image_info *infop)
509 abi_long stack = infop->start_stack;
510 memset(regs, 0, sizeof(*regs));
512 regs->pc = infop->entry & ~0x3ULL;
513 regs->sp = stack;
516 #define ELF_NREG 34
517 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
519 static void elf_core_copy_regs(target_elf_gregset_t *regs,
520 const CPUARMState *env)
522 int i;
524 for (i = 0; i < 32; i++) {
525 (*regs)[i] = tswapreg(env->xregs[i]);
527 (*regs)[32] = tswapreg(env->pc);
528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
531 #define USE_ELF_CORE_DUMP
532 #define ELF_EXEC_PAGESIZE 4096
534 enum {
535 ARM_HWCAP_A64_FP = 1 << 0,
536 ARM_HWCAP_A64_ASIMD = 1 << 1,
537 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
538 ARM_HWCAP_A64_AES = 1 << 3,
539 ARM_HWCAP_A64_PMULL = 1 << 4,
540 ARM_HWCAP_A64_SHA1 = 1 << 5,
541 ARM_HWCAP_A64_SHA2 = 1 << 6,
542 ARM_HWCAP_A64_CRC32 = 1 << 7,
543 ARM_HWCAP_A64_ATOMICS = 1 << 8,
544 ARM_HWCAP_A64_FPHP = 1 << 9,
545 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
546 ARM_HWCAP_A64_CPUID = 1 << 11,
547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
548 ARM_HWCAP_A64_JSCVT = 1 << 13,
549 ARM_HWCAP_A64_FCMA = 1 << 14,
550 ARM_HWCAP_A64_LRCPC = 1 << 15,
551 ARM_HWCAP_A64_DCPOP = 1 << 16,
552 ARM_HWCAP_A64_SHA3 = 1 << 17,
553 ARM_HWCAP_A64_SM3 = 1 << 18,
554 ARM_HWCAP_A64_SM4 = 1 << 19,
555 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
556 ARM_HWCAP_A64_SHA512 = 1 << 21,
557 ARM_HWCAP_A64_SVE = 1 << 22,
560 #define ELF_HWCAP get_elf_hwcap()
562 static uint32_t get_elf_hwcap(void)
564 ARMCPU *cpu = ARM_CPU(thread_cpu);
565 uint32_t hwcaps = 0;
567 hwcaps |= ARM_HWCAP_A64_FP;
568 hwcaps |= ARM_HWCAP_A64_ASIMD;
570 /* probe for the extra features */
571 #define GET_FEATURE(feat, hwcap) \
572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
582 GET_FEATURE(ARM_FEATURE_V8_FP16,
583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
586 GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
587 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
588 GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
589 #undef GET_FEATURE
591 return hwcaps;
594 #endif /* not TARGET_AARCH64 */
595 #endif /* TARGET_ARM */
597 #ifdef TARGET_SPARC
598 #ifdef TARGET_SPARC64
600 #define ELF_START_MMAP 0x80000000
601 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
603 #ifndef TARGET_ABI32
604 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
605 #else
606 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607 #endif
609 #define ELF_CLASS ELFCLASS64
610 #define ELF_ARCH EM_SPARCV9
612 #define STACK_BIAS 2047
614 static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
617 #ifndef TARGET_ABI32
618 regs->tstate = 0;
619 #endif
620 regs->pc = infop->entry;
621 regs->npc = regs->pc + 4;
622 regs->y = 0;
623 #ifdef TARGET_ABI32
624 regs->u_regs[14] = infop->start_stack - 16 * 4;
625 #else
626 if (personality(infop->personality) == PER_LINUX32)
627 regs->u_regs[14] = infop->start_stack - 16 * 4;
628 else
629 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
630 #endif
633 #else
634 #define ELF_START_MMAP 0x80000000
635 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636 | HWCAP_SPARC_MULDIV)
638 #define ELF_CLASS ELFCLASS32
639 #define ELF_ARCH EM_SPARC
641 static inline void init_thread(struct target_pt_regs *regs,
642 struct image_info *infop)
644 regs->psr = 0;
645 regs->pc = infop->entry;
646 regs->npc = regs->pc + 4;
647 regs->y = 0;
648 regs->u_regs[14] = infop->start_stack - 16 * 4;
651 #endif
652 #endif
654 #ifdef TARGET_PPC
656 #define ELF_MACHINE PPC_ELF_MACHINE
657 #define ELF_START_MMAP 0x80000000
659 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
661 #define elf_check_arch(x) ( (x) == EM_PPC64 )
663 #define ELF_CLASS ELFCLASS64
665 #else
667 #define ELF_CLASS ELFCLASS32
669 #endif
671 #define ELF_ARCH EM_PPC
673 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674 See arch/powerpc/include/asm/cputable.h. */
675 enum {
676 QEMU_PPC_FEATURE_32 = 0x80000000,
677 QEMU_PPC_FEATURE_64 = 0x40000000,
678 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691 QEMU_PPC_FEATURE_CELL = 0x00010000,
692 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693 QEMU_PPC_FEATURE_SMT = 0x00004000,
694 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696 QEMU_PPC_FEATURE_PA6T = 0x00000800,
697 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
703 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
706 /* Feature definitions in AT_HWCAP2. */
707 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
715 #define ELF_HWCAP get_elf_hwcap()
717 static uint32_t get_elf_hwcap(void)
719 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
720 uint32_t features = 0;
722 /* We don't have to be terribly complete here; the high points are
723 Altivec/FP/SPE support. Anything else is just a bonus. */
724 #define GET_FEATURE(flag, feature) \
725 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
726 #define GET_FEATURE2(flags, feature) \
727 do { \
728 if ((cpu->env.insns_flags2 & flags) == flags) { \
729 features |= feature; \
731 } while (0)
732 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
733 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
734 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
735 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
736 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
737 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
738 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
739 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
740 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
741 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
742 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
743 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
744 QEMU_PPC_FEATURE_ARCH_2_06);
745 #undef GET_FEATURE
746 #undef GET_FEATURE2
748 return features;
751 #define ELF_HWCAP2 get_elf_hwcap2()
753 static uint32_t get_elf_hwcap2(void)
755 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
756 uint32_t features = 0;
758 #define GET_FEATURE(flag, feature) \
759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
763 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
764 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
765 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
766 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
768 #undef GET_FEATURE
769 #undef GET_FEATURE2
771 return features;
775 * The requirements here are:
776 * - keep the final alignment of sp (sp & 0xf)
777 * - make sure the 32-bit value at the first 16 byte aligned position of
778 * AUXV is greater than 16 for glibc compatibility.
779 * AT_IGNOREPPC is used for that.
780 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
781 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
783 #define DLINFO_ARCH_ITEMS 5
784 #define ARCH_DLINFO \
785 do { \
786 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
787 /* \
788 * Handle glibc compatibility: these magic entries must \
789 * be at the lowest addresses in the final auxv. \
790 */ \
791 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
792 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
793 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
794 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
795 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
796 } while (0)
798 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
800 _regs->gpr[1] = infop->start_stack;
801 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
802 if (get_ppc64_abi(infop) < 2) {
803 uint64_t val;
804 get_user_u64(val, infop->entry + 8);
805 _regs->gpr[2] = val + infop->load_bias;
806 get_user_u64(val, infop->entry);
807 infop->entry = val + infop->load_bias;
808 } else {
809 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
811 #endif
812 _regs->nip = infop->entry;
815 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
816 #define ELF_NREG 48
817 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
819 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
821 int i;
822 target_ulong ccr = 0;
824 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
825 (*regs)[i] = tswapreg(env->gpr[i]);
828 (*regs)[32] = tswapreg(env->nip);
829 (*regs)[33] = tswapreg(env->msr);
830 (*regs)[35] = tswapreg(env->ctr);
831 (*regs)[36] = tswapreg(env->lr);
832 (*regs)[37] = tswapreg(env->xer);
834 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
835 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
837 (*regs)[38] = tswapreg(ccr);
840 #define USE_ELF_CORE_DUMP
841 #define ELF_EXEC_PAGESIZE 4096
843 #endif
845 #ifdef TARGET_MIPS
847 #define ELF_START_MMAP 0x80000000
849 #ifdef TARGET_MIPS64
850 #define ELF_CLASS ELFCLASS64
851 #else
852 #define ELF_CLASS ELFCLASS32
853 #endif
854 #define ELF_ARCH EM_MIPS
856 static inline void init_thread(struct target_pt_regs *regs,
857 struct image_info *infop)
859 regs->cp0_status = 2 << CP0St_KSU;
860 regs->cp0_epc = infop->entry;
861 regs->regs[29] = infop->start_stack;
864 /* See linux kernel: arch/mips/include/asm/elf.h. */
865 #define ELF_NREG 45
866 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
868 /* See linux kernel: arch/mips/include/asm/reg.h. */
869 enum {
870 #ifdef TARGET_MIPS64
871 TARGET_EF_R0 = 0,
872 #else
873 TARGET_EF_R0 = 6,
874 #endif
875 TARGET_EF_R26 = TARGET_EF_R0 + 26,
876 TARGET_EF_R27 = TARGET_EF_R0 + 27,
877 TARGET_EF_LO = TARGET_EF_R0 + 32,
878 TARGET_EF_HI = TARGET_EF_R0 + 33,
879 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
880 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
881 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
882 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
885 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
886 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
888 int i;
890 for (i = 0; i < TARGET_EF_R0; i++) {
891 (*regs)[i] = 0;
893 (*regs)[TARGET_EF_R0] = 0;
895 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
896 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
899 (*regs)[TARGET_EF_R26] = 0;
900 (*regs)[TARGET_EF_R27] = 0;
901 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
902 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
903 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
904 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
905 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
906 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
909 #define USE_ELF_CORE_DUMP
910 #define ELF_EXEC_PAGESIZE 4096
912 /* See arch/mips/include/uapi/asm/hwcap.h. */
913 enum {
914 HWCAP_MIPS_R6 = (1 << 0),
915 HWCAP_MIPS_MSA = (1 << 1),
918 #define ELF_HWCAP get_elf_hwcap()
920 static uint32_t get_elf_hwcap(void)
922 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
923 uint32_t hwcaps = 0;
925 #define GET_FEATURE(flag, hwcap) \
926 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
928 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
929 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
931 #undef GET_FEATURE
933 return hwcaps;
936 #endif /* TARGET_MIPS */
938 #ifdef TARGET_MICROBLAZE
940 #define ELF_START_MMAP 0x80000000
942 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
944 #define ELF_CLASS ELFCLASS32
945 #define ELF_ARCH EM_MICROBLAZE
947 static inline void init_thread(struct target_pt_regs *regs,
948 struct image_info *infop)
950 regs->pc = infop->entry;
951 regs->r1 = infop->start_stack;
955 #define ELF_EXEC_PAGESIZE 4096
957 #define USE_ELF_CORE_DUMP
958 #define ELF_NREG 38
959 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
961 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
962 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
964 int i, pos = 0;
966 for (i = 0; i < 32; i++) {
967 (*regs)[pos++] = tswapreg(env->regs[i]);
970 for (i = 0; i < 6; i++) {
971 (*regs)[pos++] = tswapreg(env->sregs[i]);
975 #endif /* TARGET_MICROBLAZE */
977 #ifdef TARGET_NIOS2
979 #define ELF_START_MMAP 0x80000000
981 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
983 #define ELF_CLASS ELFCLASS32
984 #define ELF_ARCH EM_ALTERA_NIOS2
986 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
988 regs->ea = infop->entry;
989 regs->sp = infop->start_stack;
990 regs->estatus = 0x3;
993 #define ELF_EXEC_PAGESIZE 4096
995 #define USE_ELF_CORE_DUMP
996 #define ELF_NREG 49
997 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
999 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1000 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1001 const CPUNios2State *env)
1003 int i;
1005 (*regs)[0] = -1;
1006 for (i = 1; i < 8; i++) /* r0-r7 */
1007 (*regs)[i] = tswapreg(env->regs[i + 7]);
1009 for (i = 8; i < 16; i++) /* r8-r15 */
1010 (*regs)[i] = tswapreg(env->regs[i - 8]);
1012 for (i = 16; i < 24; i++) /* r16-r23 */
1013 (*regs)[i] = tswapreg(env->regs[i + 7]);
1014 (*regs)[24] = -1; /* R_ET */
1015 (*regs)[25] = -1; /* R_BT */
1016 (*regs)[26] = tswapreg(env->regs[R_GP]);
1017 (*regs)[27] = tswapreg(env->regs[R_SP]);
1018 (*regs)[28] = tswapreg(env->regs[R_FP]);
1019 (*regs)[29] = tswapreg(env->regs[R_EA]);
1020 (*regs)[30] = -1; /* R_SSTATUS */
1021 (*regs)[31] = tswapreg(env->regs[R_RA]);
1023 (*regs)[32] = tswapreg(env->regs[R_PC]);
1025 (*regs)[33] = -1; /* R_STATUS */
1026 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1028 for (i = 35; i < 49; i++) /* ... */
1029 (*regs)[i] = -1;
1032 #endif /* TARGET_NIOS2 */
1034 #ifdef TARGET_OPENRISC
1036 #define ELF_START_MMAP 0x08000000
1038 #define ELF_ARCH EM_OPENRISC
1039 #define ELF_CLASS ELFCLASS32
1040 #define ELF_DATA ELFDATA2MSB
1042 static inline void init_thread(struct target_pt_regs *regs,
1043 struct image_info *infop)
1045 regs->pc = infop->entry;
1046 regs->gpr[1] = infop->start_stack;
1049 #define USE_ELF_CORE_DUMP
1050 #define ELF_EXEC_PAGESIZE 8192
1052 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1053 #define ELF_NREG 34 /* gprs and pc, sr */
1054 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1056 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1057 const CPUOpenRISCState *env)
1059 int i;
1061 for (i = 0; i < 32; i++) {
1062 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1064 (*regs)[32] = tswapreg(env->pc);
1065 (*regs)[33] = tswapreg(cpu_get_sr(env));
1067 #define ELF_HWCAP 0
1068 #define ELF_PLATFORM NULL
1070 #endif /* TARGET_OPENRISC */
1072 #ifdef TARGET_SH4
1074 #define ELF_START_MMAP 0x80000000
1076 #define ELF_CLASS ELFCLASS32
1077 #define ELF_ARCH EM_SH
1079 static inline void init_thread(struct target_pt_regs *regs,
1080 struct image_info *infop)
1082 /* Check other registers XXXXX */
1083 regs->pc = infop->entry;
1084 regs->regs[15] = infop->start_stack;
1087 /* See linux kernel: arch/sh/include/asm/elf.h. */
1088 #define ELF_NREG 23
1089 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1091 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1092 enum {
1093 TARGET_REG_PC = 16,
1094 TARGET_REG_PR = 17,
1095 TARGET_REG_SR = 18,
1096 TARGET_REG_GBR = 19,
1097 TARGET_REG_MACH = 20,
1098 TARGET_REG_MACL = 21,
1099 TARGET_REG_SYSCALL = 22
1102 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1103 const CPUSH4State *env)
1105 int i;
1107 for (i = 0; i < 16; i++) {
1108 (*regs)[i] = tswapreg(env->gregs[i]);
1111 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1112 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1113 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1114 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1115 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1116 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1117 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1120 #define USE_ELF_CORE_DUMP
1121 #define ELF_EXEC_PAGESIZE 4096
1123 enum {
1124 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1125 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1126 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1127 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1128 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1129 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1130 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1131 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1132 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1133 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1136 #define ELF_HWCAP get_elf_hwcap()
1138 static uint32_t get_elf_hwcap(void)
1140 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1141 uint32_t hwcap = 0;
1143 hwcap |= SH_CPU_HAS_FPU;
1145 if (cpu->env.features & SH_FEATURE_SH4A) {
1146 hwcap |= SH_CPU_HAS_LLSC;
1149 return hwcap;
1152 #endif
1154 #ifdef TARGET_CRIS
1156 #define ELF_START_MMAP 0x80000000
1158 #define ELF_CLASS ELFCLASS32
1159 #define ELF_ARCH EM_CRIS
1161 static inline void init_thread(struct target_pt_regs *regs,
1162 struct image_info *infop)
1164 regs->erp = infop->entry;
1167 #define ELF_EXEC_PAGESIZE 8192
1169 #endif
1171 #ifdef TARGET_M68K
1173 #define ELF_START_MMAP 0x80000000
1175 #define ELF_CLASS ELFCLASS32
1176 #define ELF_ARCH EM_68K
1178 /* ??? Does this need to do anything?
1179 #define ELF_PLAT_INIT(_r) */
1181 static inline void init_thread(struct target_pt_regs *regs,
1182 struct image_info *infop)
1184 regs->usp = infop->start_stack;
1185 regs->sr = 0;
1186 regs->pc = infop->entry;
1189 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1190 #define ELF_NREG 20
1191 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1193 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1195 (*regs)[0] = tswapreg(env->dregs[1]);
1196 (*regs)[1] = tswapreg(env->dregs[2]);
1197 (*regs)[2] = tswapreg(env->dregs[3]);
1198 (*regs)[3] = tswapreg(env->dregs[4]);
1199 (*regs)[4] = tswapreg(env->dregs[5]);
1200 (*regs)[5] = tswapreg(env->dregs[6]);
1201 (*regs)[6] = tswapreg(env->dregs[7]);
1202 (*regs)[7] = tswapreg(env->aregs[0]);
1203 (*regs)[8] = tswapreg(env->aregs[1]);
1204 (*regs)[9] = tswapreg(env->aregs[2]);
1205 (*regs)[10] = tswapreg(env->aregs[3]);
1206 (*regs)[11] = tswapreg(env->aregs[4]);
1207 (*regs)[12] = tswapreg(env->aregs[5]);
1208 (*regs)[13] = tswapreg(env->aregs[6]);
1209 (*regs)[14] = tswapreg(env->dregs[0]);
1210 (*regs)[15] = tswapreg(env->aregs[7]);
1211 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1212 (*regs)[17] = tswapreg(env->sr);
1213 (*regs)[18] = tswapreg(env->pc);
1214 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1217 #define USE_ELF_CORE_DUMP
1218 #define ELF_EXEC_PAGESIZE 8192
1220 #endif
1222 #ifdef TARGET_ALPHA
1224 #define ELF_START_MMAP (0x30000000000ULL)
1226 #define ELF_CLASS ELFCLASS64
1227 #define ELF_ARCH EM_ALPHA
1229 static inline void init_thread(struct target_pt_regs *regs,
1230 struct image_info *infop)
1232 regs->pc = infop->entry;
1233 regs->ps = 8;
1234 regs->usp = infop->start_stack;
1237 #define ELF_EXEC_PAGESIZE 8192
1239 #endif /* TARGET_ALPHA */
1241 #ifdef TARGET_S390X
1243 #define ELF_START_MMAP (0x20000000000ULL)
1245 #define ELF_CLASS ELFCLASS64
1246 #define ELF_DATA ELFDATA2MSB
1247 #define ELF_ARCH EM_S390
1249 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1251 regs->psw.addr = infop->entry;
1252 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1253 regs->gprs[15] = infop->start_stack;
1256 #endif /* TARGET_S390X */
1258 #ifdef TARGET_TILEGX
1260 /* 42 bits real used address, a half for user mode */
1261 #define ELF_START_MMAP (0x00000020000000000ULL)
1263 #define elf_check_arch(x) ((x) == EM_TILEGX)
1265 #define ELF_CLASS ELFCLASS64
1266 #define ELF_DATA ELFDATA2LSB
1267 #define ELF_ARCH EM_TILEGX
1269 static inline void init_thread(struct target_pt_regs *regs,
1270 struct image_info *infop)
1272 regs->pc = infop->entry;
1273 regs->sp = infop->start_stack;
1277 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1279 #endif /* TARGET_TILEGX */
1281 #ifdef TARGET_RISCV
1283 #define ELF_START_MMAP 0x80000000
1284 #define ELF_ARCH EM_RISCV
1286 #ifdef TARGET_RISCV32
1287 #define ELF_CLASS ELFCLASS32
1288 #else
1289 #define ELF_CLASS ELFCLASS64
1290 #endif
1292 static inline void init_thread(struct target_pt_regs *regs,
1293 struct image_info *infop)
1295 regs->sepc = infop->entry;
1296 regs->sp = infop->start_stack;
1299 #define ELF_EXEC_PAGESIZE 4096
1301 #endif /* TARGET_RISCV */
1303 #ifdef TARGET_HPPA
1305 #define ELF_START_MMAP 0x80000000
1306 #define ELF_CLASS ELFCLASS32
1307 #define ELF_ARCH EM_PARISC
1308 #define ELF_PLATFORM "PARISC"
1309 #define STACK_GROWS_DOWN 0
1310 #define STACK_ALIGNMENT 64
1312 static inline void init_thread(struct target_pt_regs *regs,
1313 struct image_info *infop)
1315 regs->iaoq[0] = infop->entry;
1316 regs->iaoq[1] = infop->entry + 4;
1317 regs->gr[23] = 0;
1318 regs->gr[24] = infop->arg_start;
1319 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1320 /* The top-of-stack contains a linkage buffer. */
1321 regs->gr[30] = infop->start_stack + 64;
1322 regs->gr[31] = infop->entry;
1325 #endif /* TARGET_HPPA */
1327 #ifdef TARGET_XTENSA
1329 #define ELF_START_MMAP 0x20000000
1331 #define ELF_CLASS ELFCLASS32
1332 #define ELF_ARCH EM_XTENSA
1334 static inline void init_thread(struct target_pt_regs *regs,
1335 struct image_info *infop)
1337 regs->windowbase = 0;
1338 regs->windowstart = 1;
1339 regs->areg[1] = infop->start_stack;
1340 regs->pc = infop->entry;
1343 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1344 #define ELF_NREG 128
1345 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1347 enum {
1348 TARGET_REG_PC,
1349 TARGET_REG_PS,
1350 TARGET_REG_LBEG,
1351 TARGET_REG_LEND,
1352 TARGET_REG_LCOUNT,
1353 TARGET_REG_SAR,
1354 TARGET_REG_WINDOWSTART,
1355 TARGET_REG_WINDOWBASE,
1356 TARGET_REG_THREADPTR,
1357 TARGET_REG_AR0 = 64,
1360 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1361 const CPUXtensaState *env)
1363 unsigned i;
1365 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1366 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1367 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1368 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1369 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1370 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1371 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1372 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1373 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1374 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1375 for (i = 0; i < env->config->nareg; ++i) {
1376 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1380 #define USE_ELF_CORE_DUMP
1381 #define ELF_EXEC_PAGESIZE 4096
1383 #endif /* TARGET_XTENSA */
1385 #ifndef ELF_PLATFORM
1386 #define ELF_PLATFORM (NULL)
1387 #endif
1389 #ifndef ELF_MACHINE
1390 #define ELF_MACHINE ELF_ARCH
1391 #endif
1393 #ifndef elf_check_arch
1394 #define elf_check_arch(x) ((x) == ELF_ARCH)
1395 #endif
1397 #ifndef ELF_HWCAP
1398 #define ELF_HWCAP 0
1399 #endif
1401 #ifndef STACK_GROWS_DOWN
1402 #define STACK_GROWS_DOWN 1
1403 #endif
1405 #ifndef STACK_ALIGNMENT
1406 #define STACK_ALIGNMENT 16
1407 #endif
1409 #ifdef TARGET_ABI32
1410 #undef ELF_CLASS
1411 #define ELF_CLASS ELFCLASS32
1412 #undef bswaptls
1413 #define bswaptls(ptr) bswap32s(ptr)
1414 #endif
1416 #include "elf.h"
1418 struct exec
1420 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1421 unsigned int a_text; /* length of text, in bytes */
1422 unsigned int a_data; /* length of data, in bytes */
1423 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1424 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1425 unsigned int a_entry; /* start address */
1426 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1427 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1431 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1432 #define OMAGIC 0407
1433 #define NMAGIC 0410
1434 #define ZMAGIC 0413
1435 #define QMAGIC 0314
1437 /* Necessary parameters */
1438 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1439 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1440 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1441 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1443 #define DLINFO_ITEMS 15
1445 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1447 memcpy(to, from, n);
1450 #ifdef BSWAP_NEEDED
1451 static void bswap_ehdr(struct elfhdr *ehdr)
1453 bswap16s(&ehdr->e_type); /* Object file type */
1454 bswap16s(&ehdr->e_machine); /* Architecture */
1455 bswap32s(&ehdr->e_version); /* Object file version */
1456 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1457 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1458 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1459 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1460 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1461 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1462 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1463 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1464 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1465 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1468 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1470 int i;
1471 for (i = 0; i < phnum; ++i, ++phdr) {
1472 bswap32s(&phdr->p_type); /* Segment type */
1473 bswap32s(&phdr->p_flags); /* Segment flags */
1474 bswaptls(&phdr->p_offset); /* Segment file offset */
1475 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1476 bswaptls(&phdr->p_paddr); /* Segment physical address */
1477 bswaptls(&phdr->p_filesz); /* Segment size in file */
1478 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1479 bswaptls(&phdr->p_align); /* Segment alignment */
1483 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1485 int i;
1486 for (i = 0; i < shnum; ++i, ++shdr) {
1487 bswap32s(&shdr->sh_name);
1488 bswap32s(&shdr->sh_type);
1489 bswaptls(&shdr->sh_flags);
1490 bswaptls(&shdr->sh_addr);
1491 bswaptls(&shdr->sh_offset);
1492 bswaptls(&shdr->sh_size);
1493 bswap32s(&shdr->sh_link);
1494 bswap32s(&shdr->sh_info);
1495 bswaptls(&shdr->sh_addralign);
1496 bswaptls(&shdr->sh_entsize);
1500 static void bswap_sym(struct elf_sym *sym)
1502 bswap32s(&sym->st_name);
1503 bswaptls(&sym->st_value);
1504 bswaptls(&sym->st_size);
1505 bswap16s(&sym->st_shndx);
1507 #else
1508 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1509 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1510 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1511 static inline void bswap_sym(struct elf_sym *sym) { }
1512 #endif
1514 #ifdef USE_ELF_CORE_DUMP
1515 static int elf_core_dump(int, const CPUArchState *);
1516 #endif /* USE_ELF_CORE_DUMP */
1517 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1519 /* Verify the portions of EHDR within E_IDENT for the target.
1520 This can be performed before bswapping the entire header. */
1521 static bool elf_check_ident(struct elfhdr *ehdr)
1523 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1524 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1525 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1526 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1527 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1528 && ehdr->e_ident[EI_DATA] == ELF_DATA
1529 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1532 /* Verify the portions of EHDR outside of E_IDENT for the target.
1533 This has to wait until after bswapping the header. */
1534 static bool elf_check_ehdr(struct elfhdr *ehdr)
1536 return (elf_check_arch(ehdr->e_machine)
1537 && ehdr->e_ehsize == sizeof(struct elfhdr)
1538 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1539 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1543 * 'copy_elf_strings()' copies argument/envelope strings from user
1544 * memory to free pages in kernel mem. These are in a format ready
1545 * to be put directly into the top of new user memory.
1548 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1549 abi_ulong p, abi_ulong stack_limit)
1551 char *tmp;
1552 int len, i;
1553 abi_ulong top = p;
1555 if (!p) {
1556 return 0; /* bullet-proofing */
1559 if (STACK_GROWS_DOWN) {
1560 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1561 for (i = argc - 1; i >= 0; --i) {
1562 tmp = argv[i];
1563 if (!tmp) {
1564 fprintf(stderr, "VFS: argc is wrong");
1565 exit(-1);
1567 len = strlen(tmp) + 1;
1568 tmp += len;
1570 if (len > (p - stack_limit)) {
1571 return 0;
1573 while (len) {
1574 int bytes_to_copy = (len > offset) ? offset : len;
1575 tmp -= bytes_to_copy;
1576 p -= bytes_to_copy;
1577 offset -= bytes_to_copy;
1578 len -= bytes_to_copy;
1580 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1582 if (offset == 0) {
1583 memcpy_to_target(p, scratch, top - p);
1584 top = p;
1585 offset = TARGET_PAGE_SIZE;
1589 if (p != top) {
1590 memcpy_to_target(p, scratch + offset, top - p);
1592 } else {
1593 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1594 for (i = 0; i < argc; ++i) {
1595 tmp = argv[i];
1596 if (!tmp) {
1597 fprintf(stderr, "VFS: argc is wrong");
1598 exit(-1);
1600 len = strlen(tmp) + 1;
1601 if (len > (stack_limit - p)) {
1602 return 0;
1604 while (len) {
1605 int bytes_to_copy = (len > remaining) ? remaining : len;
1607 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1609 tmp += bytes_to_copy;
1610 remaining -= bytes_to_copy;
1611 p += bytes_to_copy;
1612 len -= bytes_to_copy;
1614 if (remaining == 0) {
1615 memcpy_to_target(top, scratch, p - top);
1616 top = p;
1617 remaining = TARGET_PAGE_SIZE;
1621 if (p != top) {
1622 memcpy_to_target(top, scratch, p - top);
1626 return p;
1629 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1630 * argument/environment space. Newer kernels (>2.6.33) allow more,
1631 * dependent on stack size, but guarantee at least 32 pages for
1632 * backwards compatibility.
1634 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1636 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1637 struct image_info *info)
1639 abi_ulong size, error, guard;
1641 size = guest_stack_size;
1642 if (size < STACK_LOWER_LIMIT) {
1643 size = STACK_LOWER_LIMIT;
1645 guard = TARGET_PAGE_SIZE;
1646 if (guard < qemu_real_host_page_size) {
1647 guard = qemu_real_host_page_size;
1650 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1651 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1652 if (error == -1) {
1653 perror("mmap stack");
1654 exit(-1);
1657 /* We reserve one extra page at the top of the stack as guard. */
1658 if (STACK_GROWS_DOWN) {
1659 target_mprotect(error, guard, PROT_NONE);
1660 info->stack_limit = error + guard;
1661 return info->stack_limit + size - sizeof(void *);
1662 } else {
1663 target_mprotect(error + size, guard, PROT_NONE);
1664 info->stack_limit = error + size;
1665 return error;
1669 /* Map and zero the bss. We need to explicitly zero any fractional pages
1670 after the data section (i.e. bss). */
1671 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1673 uintptr_t host_start, host_map_start, host_end;
1675 last_bss = TARGET_PAGE_ALIGN(last_bss);
1677 /* ??? There is confusion between qemu_real_host_page_size and
1678 qemu_host_page_size here and elsewhere in target_mmap, which
1679 may lead to the end of the data section mapping from the file
1680 not being mapped. At least there was an explicit test and
1681 comment for that here, suggesting that "the file size must
1682 be known". The comment probably pre-dates the introduction
1683 of the fstat system call in target_mmap which does in fact
1684 find out the size. What isn't clear is if the workaround
1685 here is still actually needed. For now, continue with it,
1686 but merge it with the "normal" mmap that would allocate the bss. */
1688 host_start = (uintptr_t) g2h(elf_bss);
1689 host_end = (uintptr_t) g2h(last_bss);
1690 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1692 if (host_map_start < host_end) {
1693 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1694 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1695 if (p == MAP_FAILED) {
1696 perror("cannot mmap brk");
1697 exit(-1);
1701 /* Ensure that the bss page(s) are valid */
1702 if ((page_get_flags(last_bss-1) & prot) != prot) {
1703 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1706 if (host_start < host_map_start) {
1707 memset((void *)host_start, 0, host_map_start - host_start);
1711 #ifdef TARGET_ARM
1712 static int elf_is_fdpic(struct elfhdr *exec)
1714 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1716 #else
1717 /* Default implementation, always false. */
1718 static int elf_is_fdpic(struct elfhdr *exec)
1720 return 0;
1722 #endif
1724 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1726 uint16_t n;
1727 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1729 /* elf32_fdpic_loadseg */
1730 n = info->nsegs;
1731 while (n--) {
1732 sp -= 12;
1733 put_user_u32(loadsegs[n].addr, sp+0);
1734 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1735 put_user_u32(loadsegs[n].p_memsz, sp+8);
1738 /* elf32_fdpic_loadmap */
1739 sp -= 4;
1740 put_user_u16(0, sp+0); /* version */
1741 put_user_u16(info->nsegs, sp+2); /* nsegs */
1743 info->personality = PER_LINUX_FDPIC;
1744 info->loadmap_addr = sp;
1746 return sp;
1749 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1750 struct elfhdr *exec,
1751 struct image_info *info,
1752 struct image_info *interp_info)
1754 abi_ulong sp;
1755 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1756 int size;
1757 int i;
1758 abi_ulong u_rand_bytes;
1759 uint8_t k_rand_bytes[16];
1760 abi_ulong u_platform;
1761 const char *k_platform;
1762 const int n = sizeof(elf_addr_t);
1764 sp = p;
1766 /* Needs to be before we load the env/argc/... */
1767 if (elf_is_fdpic(exec)) {
1768 /* Need 4 byte alignment for these structs */
1769 sp &= ~3;
1770 sp = loader_build_fdpic_loadmap(info, sp);
1771 info->other_info = interp_info;
1772 if (interp_info) {
1773 interp_info->other_info = info;
1774 sp = loader_build_fdpic_loadmap(interp_info, sp);
1775 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1776 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1777 } else {
1778 info->interpreter_loadmap_addr = 0;
1779 info->interpreter_pt_dynamic_addr = 0;
1783 u_platform = 0;
1784 k_platform = ELF_PLATFORM;
1785 if (k_platform) {
1786 size_t len = strlen(k_platform) + 1;
1787 if (STACK_GROWS_DOWN) {
1788 sp -= (len + n - 1) & ~(n - 1);
1789 u_platform = sp;
1790 /* FIXME - check return value of memcpy_to_target() for failure */
1791 memcpy_to_target(sp, k_platform, len);
1792 } else {
1793 memcpy_to_target(sp, k_platform, len);
1794 u_platform = sp;
1795 sp += len + 1;
1799 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1800 * the argv and envp pointers.
1802 if (STACK_GROWS_DOWN) {
1803 sp = QEMU_ALIGN_DOWN(sp, 16);
1804 } else {
1805 sp = QEMU_ALIGN_UP(sp, 16);
1809 * Generate 16 random bytes for userspace PRNG seeding (not
1810 * cryptically secure but it's not the aim of QEMU).
1812 for (i = 0; i < 16; i++) {
1813 k_rand_bytes[i] = rand();
1815 if (STACK_GROWS_DOWN) {
1816 sp -= 16;
1817 u_rand_bytes = sp;
1818 /* FIXME - check return value of memcpy_to_target() for failure */
1819 memcpy_to_target(sp, k_rand_bytes, 16);
1820 } else {
1821 memcpy_to_target(sp, k_rand_bytes, 16);
1822 u_rand_bytes = sp;
1823 sp += 16;
1826 size = (DLINFO_ITEMS + 1) * 2;
1827 if (k_platform)
1828 size += 2;
1829 #ifdef DLINFO_ARCH_ITEMS
1830 size += DLINFO_ARCH_ITEMS * 2;
1831 #endif
1832 #ifdef ELF_HWCAP2
1833 size += 2;
1834 #endif
1835 info->auxv_len = size * n;
1837 size += envc + argc + 2;
1838 size += 1; /* argc itself */
1839 size *= n;
1841 /* Allocate space and finalize stack alignment for entry now. */
1842 if (STACK_GROWS_DOWN) {
1843 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1844 sp = u_argc;
1845 } else {
1846 u_argc = sp;
1847 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1850 u_argv = u_argc + n;
1851 u_envp = u_argv + (argc + 1) * n;
1852 u_auxv = u_envp + (envc + 1) * n;
1853 info->saved_auxv = u_auxv;
1854 info->arg_start = u_argv;
1855 info->arg_end = u_argv + argc * n;
1857 /* This is correct because Linux defines
1858 * elf_addr_t as Elf32_Off / Elf64_Off
1860 #define NEW_AUX_ENT(id, val) do { \
1861 put_user_ual(id, u_auxv); u_auxv += n; \
1862 put_user_ual(val, u_auxv); u_auxv += n; \
1863 } while(0)
1865 #ifdef ARCH_DLINFO
1867 * ARCH_DLINFO must come first so platform specific code can enforce
1868 * special alignment requirements on the AUXV if necessary (eg. PPC).
1870 ARCH_DLINFO;
1871 #endif
1872 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1873 * on info->auxv_len will trigger.
1875 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1876 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1877 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1878 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1879 /* Target doesn't support host page size alignment */
1880 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1881 } else {
1882 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1883 qemu_host_page_size)));
1885 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1886 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1887 NEW_AUX_ENT(AT_ENTRY, info->entry);
1888 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1889 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1890 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1891 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1892 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1893 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1894 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1895 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1897 #ifdef ELF_HWCAP2
1898 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1899 #endif
1901 if (u_platform) {
1902 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1904 NEW_AUX_ENT (AT_NULL, 0);
1905 #undef NEW_AUX_ENT
1907 /* Check that our initial calculation of the auxv length matches how much
1908 * we actually put into it.
1910 assert(info->auxv_len == u_auxv - info->saved_auxv);
1912 put_user_ual(argc, u_argc);
1914 p = info->arg_strings;
1915 for (i = 0; i < argc; ++i) {
1916 put_user_ual(p, u_argv);
1917 u_argv += n;
1918 p += target_strlen(p) + 1;
1920 put_user_ual(0, u_argv);
1922 p = info->env_strings;
1923 for (i = 0; i < envc; ++i) {
1924 put_user_ual(p, u_envp);
1925 u_envp += n;
1926 p += target_strlen(p) + 1;
1928 put_user_ual(0, u_envp);
1930 return sp;
1933 unsigned long init_guest_space(unsigned long host_start,
1934 unsigned long host_size,
1935 unsigned long guest_start,
1936 bool fixed)
1938 unsigned long current_start, aligned_start;
1939 int flags;
1941 assert(host_start || host_size);
1943 /* If just a starting address is given, then just verify that
1944 * address. */
1945 if (host_start && !host_size) {
1946 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1947 if (init_guest_commpage(host_start, host_size) != 1) {
1948 return (unsigned long)-1;
1950 #endif
1951 return host_start;
1954 /* Setup the initial flags and start address. */
1955 current_start = host_start & qemu_host_page_mask;
1956 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1957 if (fixed) {
1958 flags |= MAP_FIXED;
1961 /* Otherwise, a non-zero size region of memory needs to be mapped
1962 * and validated. */
1964 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1965 /* On 32-bit ARM, we need to map not just the usable memory, but
1966 * also the commpage. Try to find a suitable place by allocating
1967 * a big chunk for all of it. If host_start, then the naive
1968 * strategy probably does good enough.
1970 if (!host_start) {
1971 unsigned long guest_full_size, host_full_size, real_start;
1973 guest_full_size =
1974 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1975 host_full_size = guest_full_size - guest_start;
1976 real_start = (unsigned long)
1977 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1978 if (real_start == (unsigned long)-1) {
1979 if (host_size < host_full_size - qemu_host_page_size) {
1980 /* We failed to map a continous segment, but we're
1981 * allowed to have a gap between the usable memory and
1982 * the commpage where other things can be mapped.
1983 * This sparseness gives us more flexibility to find
1984 * an address range.
1986 goto naive;
1988 return (unsigned long)-1;
1990 munmap((void *)real_start, host_full_size);
1991 if (real_start & ~qemu_host_page_mask) {
1992 /* The same thing again, but with an extra qemu_host_page_size
1993 * so that we can shift around alignment.
1995 unsigned long real_size = host_full_size + qemu_host_page_size;
1996 real_start = (unsigned long)
1997 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
1998 if (real_start == (unsigned long)-1) {
1999 if (host_size < host_full_size - qemu_host_page_size) {
2000 goto naive;
2002 return (unsigned long)-1;
2004 munmap((void *)real_start, real_size);
2005 real_start = HOST_PAGE_ALIGN(real_start);
2007 current_start = real_start;
2009 naive:
2010 #endif
2012 while (1) {
2013 unsigned long real_start, real_size, aligned_size;
2014 aligned_size = real_size = host_size;
2016 /* Do not use mmap_find_vma here because that is limited to the
2017 * guest address space. We are going to make the
2018 * guest address space fit whatever we're given.
2020 real_start = (unsigned long)
2021 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2022 if (real_start == (unsigned long)-1) {
2023 return (unsigned long)-1;
2026 /* Check to see if the address is valid. */
2027 if (host_start && real_start != current_start) {
2028 goto try_again;
2031 /* Ensure the address is properly aligned. */
2032 if (real_start & ~qemu_host_page_mask) {
2033 /* Ideally, we adjust like
2035 * pages: [ ][ ][ ][ ][ ]
2036 * old: [ real ]
2037 * [ aligned ]
2038 * new: [ real ]
2039 * [ aligned ]
2041 * But if there is something else mapped right after it,
2042 * then obviously it won't have room to grow, and the
2043 * kernel will put the new larger real someplace else with
2044 * unknown alignment (if we made it to here, then
2045 * fixed=false). Which is why we grow real by a full page
2046 * size, instead of by part of one; so that even if we get
2047 * moved, we can still guarantee alignment. But this does
2048 * mean that there is a padding of < 1 page both before
2049 * and after the aligned range; the "after" could could
2050 * cause problems for ARM emulation where it could butt in
2051 * to where we need to put the commpage.
2053 munmap((void *)real_start, host_size);
2054 real_size = aligned_size + qemu_host_page_size;
2055 real_start = (unsigned long)
2056 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2057 if (real_start == (unsigned long)-1) {
2058 return (unsigned long)-1;
2060 aligned_start = HOST_PAGE_ALIGN(real_start);
2061 } else {
2062 aligned_start = real_start;
2065 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2066 /* On 32-bit ARM, we need to also be able to map the commpage. */
2067 int valid = init_guest_commpage(aligned_start - guest_start,
2068 aligned_size + guest_start);
2069 if (valid == -1) {
2070 munmap((void *)real_start, real_size);
2071 return (unsigned long)-1;
2072 } else if (valid == 0) {
2073 goto try_again;
2075 #endif
2077 /* If nothing has said `return -1` or `goto try_again` yet,
2078 * then the address we have is good.
2080 break;
2082 try_again:
2083 /* That address didn't work. Unmap and try a different one.
2084 * The address the host picked because is typically right at
2085 * the top of the host address space and leaves the guest with
2086 * no usable address space. Resort to a linear search. We
2087 * already compensated for mmap_min_addr, so this should not
2088 * happen often. Probably means we got unlucky and host
2089 * address space randomization put a shared library somewhere
2090 * inconvenient.
2092 * This is probably a good strategy if host_start, but is
2093 * probably a bad strategy if not, which means we got here
2094 * because of trouble with ARM commpage setup.
2096 munmap((void *)real_start, real_size);
2097 current_start += qemu_host_page_size;
2098 if (host_start == current_start) {
2099 /* Theoretically possible if host doesn't have any suitably
2100 * aligned areas. Normally the first mmap will fail.
2102 return (unsigned long)-1;
2106 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2108 return aligned_start;
2111 static void probe_guest_base(const char *image_name,
2112 abi_ulong loaddr, abi_ulong hiaddr)
2114 /* Probe for a suitable guest base address, if the user has not set
2115 * it explicitly, and set guest_base appropriately.
2116 * In case of error we will print a suitable message and exit.
2118 const char *errmsg;
2119 if (!have_guest_base && !reserved_va) {
2120 unsigned long host_start, real_start, host_size;
2122 /* Round addresses to page boundaries. */
2123 loaddr &= qemu_host_page_mask;
2124 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2126 if (loaddr < mmap_min_addr) {
2127 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2128 } else {
2129 host_start = loaddr;
2130 if (host_start != loaddr) {
2131 errmsg = "Address overflow loading ELF binary";
2132 goto exit_errmsg;
2135 host_size = hiaddr - loaddr;
2137 /* Setup the initial guest memory space with ranges gleaned from
2138 * the ELF image that is being loaded.
2140 real_start = init_guest_space(host_start, host_size, loaddr, false);
2141 if (real_start == (unsigned long)-1) {
2142 errmsg = "Unable to find space for application";
2143 goto exit_errmsg;
2145 guest_base = real_start - loaddr;
2147 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2148 TARGET_ABI_FMT_lx " to 0x%lx\n",
2149 loaddr, real_start);
2151 return;
2153 exit_errmsg:
2154 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2155 exit(-1);
2159 /* Load an ELF image into the address space.
2161 IMAGE_NAME is the filename of the image, to use in error messages.
2162 IMAGE_FD is the open file descriptor for the image.
2164 BPRM_BUF is a copy of the beginning of the file; this of course
2165 contains the elf file header at offset 0. It is assumed that this
2166 buffer is sufficiently aligned to present no problems to the host
2167 in accessing data at aligned offsets within the buffer.
2169 On return: INFO values will be filled in, as necessary or available. */
2171 static void load_elf_image(const char *image_name, int image_fd,
2172 struct image_info *info, char **pinterp_name,
2173 char bprm_buf[BPRM_BUF_SIZE])
2175 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2176 struct elf_phdr *phdr;
2177 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2178 int i, retval;
2179 const char *errmsg;
2181 /* First of all, some simple consistency checks */
2182 errmsg = "Invalid ELF image for this architecture";
2183 if (!elf_check_ident(ehdr)) {
2184 goto exit_errmsg;
2186 bswap_ehdr(ehdr);
2187 if (!elf_check_ehdr(ehdr)) {
2188 goto exit_errmsg;
2191 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2192 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2193 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2194 } else {
2195 phdr = (struct elf_phdr *) alloca(i);
2196 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2197 if (retval != i) {
2198 goto exit_read;
2201 bswap_phdr(phdr, ehdr->e_phnum);
2203 info->nsegs = 0;
2204 info->pt_dynamic_addr = 0;
2206 mmap_lock();
2208 /* Find the maximum size of the image and allocate an appropriate
2209 amount of memory to handle that. */
2210 loaddr = -1, hiaddr = 0;
2211 info->alignment = 0;
2212 for (i = 0; i < ehdr->e_phnum; ++i) {
2213 if (phdr[i].p_type == PT_LOAD) {
2214 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2215 if (a < loaddr) {
2216 loaddr = a;
2218 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2219 if (a > hiaddr) {
2220 hiaddr = a;
2222 ++info->nsegs;
2223 info->alignment |= phdr[i].p_align;
2227 load_addr = loaddr;
2228 if (ehdr->e_type == ET_DYN) {
2229 /* The image indicates that it can be loaded anywhere. Find a
2230 location that can hold the memory space required. If the
2231 image is pre-linked, LOADDR will be non-zero. Since we do
2232 not supply MAP_FIXED here we'll use that address if and
2233 only if it remains available. */
2234 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2235 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2236 -1, 0);
2237 if (load_addr == -1) {
2238 goto exit_perror;
2240 } else if (pinterp_name != NULL) {
2241 /* This is the main executable. Make sure that the low
2242 address does not conflict with MMAP_MIN_ADDR or the
2243 QEMU application itself. */
2244 probe_guest_base(image_name, loaddr, hiaddr);
2246 load_bias = load_addr - loaddr;
2248 if (elf_is_fdpic(ehdr)) {
2249 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2250 g_malloc(sizeof(*loadsegs) * info->nsegs);
2252 for (i = 0; i < ehdr->e_phnum; ++i) {
2253 switch (phdr[i].p_type) {
2254 case PT_DYNAMIC:
2255 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2256 break;
2257 case PT_LOAD:
2258 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2259 loadsegs->p_vaddr = phdr[i].p_vaddr;
2260 loadsegs->p_memsz = phdr[i].p_memsz;
2261 ++loadsegs;
2262 break;
2267 info->load_bias = load_bias;
2268 info->load_addr = load_addr;
2269 info->entry = ehdr->e_entry + load_bias;
2270 info->start_code = -1;
2271 info->end_code = 0;
2272 info->start_data = -1;
2273 info->end_data = 0;
2274 info->brk = 0;
2275 info->elf_flags = ehdr->e_flags;
2277 for (i = 0; i < ehdr->e_phnum; i++) {
2278 struct elf_phdr *eppnt = phdr + i;
2279 if (eppnt->p_type == PT_LOAD) {
2280 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2281 int elf_prot = 0;
2283 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2284 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2285 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2287 vaddr = load_bias + eppnt->p_vaddr;
2288 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2289 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2291 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2292 elf_prot, MAP_PRIVATE | MAP_FIXED,
2293 image_fd, eppnt->p_offset - vaddr_po);
2294 if (error == -1) {
2295 goto exit_perror;
2298 vaddr_ef = vaddr + eppnt->p_filesz;
2299 vaddr_em = vaddr + eppnt->p_memsz;
2301 /* If the load segment requests extra zeros (e.g. bss), map it. */
2302 if (vaddr_ef < vaddr_em) {
2303 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2306 /* Find the full program boundaries. */
2307 if (elf_prot & PROT_EXEC) {
2308 if (vaddr < info->start_code) {
2309 info->start_code = vaddr;
2311 if (vaddr_ef > info->end_code) {
2312 info->end_code = vaddr_ef;
2315 if (elf_prot & PROT_WRITE) {
2316 if (vaddr < info->start_data) {
2317 info->start_data = vaddr;
2319 if (vaddr_ef > info->end_data) {
2320 info->end_data = vaddr_ef;
2322 if (vaddr_em > info->brk) {
2323 info->brk = vaddr_em;
2326 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2327 char *interp_name;
2329 if (*pinterp_name) {
2330 errmsg = "Multiple PT_INTERP entries";
2331 goto exit_errmsg;
2333 interp_name = malloc(eppnt->p_filesz);
2334 if (!interp_name) {
2335 goto exit_perror;
2338 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2339 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2340 eppnt->p_filesz);
2341 } else {
2342 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2343 eppnt->p_offset);
2344 if (retval != eppnt->p_filesz) {
2345 goto exit_perror;
2348 if (interp_name[eppnt->p_filesz - 1] != 0) {
2349 errmsg = "Invalid PT_INTERP entry";
2350 goto exit_errmsg;
2352 *pinterp_name = interp_name;
2356 if (info->end_data == 0) {
2357 info->start_data = info->end_code;
2358 info->end_data = info->end_code;
2359 info->brk = info->end_code;
2362 if (qemu_log_enabled()) {
2363 load_symbols(ehdr, image_fd, load_bias);
2366 mmap_unlock();
2368 close(image_fd);
2369 return;
2371 exit_read:
2372 if (retval >= 0) {
2373 errmsg = "Incomplete read of file header";
2374 goto exit_errmsg;
2376 exit_perror:
2377 errmsg = strerror(errno);
2378 exit_errmsg:
2379 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2380 exit(-1);
2383 static void load_elf_interp(const char *filename, struct image_info *info,
2384 char bprm_buf[BPRM_BUF_SIZE])
2386 int fd, retval;
2388 fd = open(path(filename), O_RDONLY);
2389 if (fd < 0) {
2390 goto exit_perror;
2393 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2394 if (retval < 0) {
2395 goto exit_perror;
2397 if (retval < BPRM_BUF_SIZE) {
2398 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2401 load_elf_image(filename, fd, info, NULL, bprm_buf);
2402 return;
2404 exit_perror:
2405 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2406 exit(-1);
2409 static int symfind(const void *s0, const void *s1)
2411 target_ulong addr = *(target_ulong *)s0;
2412 struct elf_sym *sym = (struct elf_sym *)s1;
2413 int result = 0;
2414 if (addr < sym->st_value) {
2415 result = -1;
2416 } else if (addr >= sym->st_value + sym->st_size) {
2417 result = 1;
2419 return result;
2422 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2424 #if ELF_CLASS == ELFCLASS32
2425 struct elf_sym *syms = s->disas_symtab.elf32;
2426 #else
2427 struct elf_sym *syms = s->disas_symtab.elf64;
2428 #endif
2430 // binary search
2431 struct elf_sym *sym;
2433 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2434 if (sym != NULL) {
2435 return s->disas_strtab + sym->st_name;
2438 return "";
2441 /* FIXME: This should use elf_ops.h */
2442 static int symcmp(const void *s0, const void *s1)
2444 struct elf_sym *sym0 = (struct elf_sym *)s0;
2445 struct elf_sym *sym1 = (struct elf_sym *)s1;
2446 return (sym0->st_value < sym1->st_value)
2447 ? -1
2448 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2451 /* Best attempt to load symbols from this ELF object. */
2452 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2454 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2455 uint64_t segsz;
2456 struct elf_shdr *shdr;
2457 char *strings = NULL;
2458 struct syminfo *s = NULL;
2459 struct elf_sym *new_syms, *syms = NULL;
2461 shnum = hdr->e_shnum;
2462 i = shnum * sizeof(struct elf_shdr);
2463 shdr = (struct elf_shdr *)alloca(i);
2464 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2465 return;
2468 bswap_shdr(shdr, shnum);
2469 for (i = 0; i < shnum; ++i) {
2470 if (shdr[i].sh_type == SHT_SYMTAB) {
2471 sym_idx = i;
2472 str_idx = shdr[i].sh_link;
2473 goto found;
2477 /* There will be no symbol table if the file was stripped. */
2478 return;
2480 found:
2481 /* Now know where the strtab and symtab are. Snarf them. */
2482 s = g_try_new(struct syminfo, 1);
2483 if (!s) {
2484 goto give_up;
2487 segsz = shdr[str_idx].sh_size;
2488 s->disas_strtab = strings = g_try_malloc(segsz);
2489 if (!strings ||
2490 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2491 goto give_up;
2494 segsz = shdr[sym_idx].sh_size;
2495 syms = g_try_malloc(segsz);
2496 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2497 goto give_up;
2500 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2501 /* Implausibly large symbol table: give up rather than ploughing
2502 * on with the number of symbols calculation overflowing
2504 goto give_up;
2506 nsyms = segsz / sizeof(struct elf_sym);
2507 for (i = 0; i < nsyms; ) {
2508 bswap_sym(syms + i);
2509 /* Throw away entries which we do not need. */
2510 if (syms[i].st_shndx == SHN_UNDEF
2511 || syms[i].st_shndx >= SHN_LORESERVE
2512 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2513 if (i < --nsyms) {
2514 syms[i] = syms[nsyms];
2516 } else {
2517 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2518 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2519 syms[i].st_value &= ~(target_ulong)1;
2520 #endif
2521 syms[i].st_value += load_bias;
2522 i++;
2526 /* No "useful" symbol. */
2527 if (nsyms == 0) {
2528 goto give_up;
2531 /* Attempt to free the storage associated with the local symbols
2532 that we threw away. Whether or not this has any effect on the
2533 memory allocation depends on the malloc implementation and how
2534 many symbols we managed to discard. */
2535 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2536 if (new_syms == NULL) {
2537 goto give_up;
2539 syms = new_syms;
2541 qsort(syms, nsyms, sizeof(*syms), symcmp);
2543 s->disas_num_syms = nsyms;
2544 #if ELF_CLASS == ELFCLASS32
2545 s->disas_symtab.elf32 = syms;
2546 #else
2547 s->disas_symtab.elf64 = syms;
2548 #endif
2549 s->lookup_symbol = lookup_symbolxx;
2550 s->next = syminfos;
2551 syminfos = s;
2553 return;
2555 give_up:
2556 g_free(s);
2557 g_free(strings);
2558 g_free(syms);
2561 uint32_t get_elf_eflags(int fd)
2563 struct elfhdr ehdr;
2564 off_t offset;
2565 int ret;
2567 /* Read ELF header */
2568 offset = lseek(fd, 0, SEEK_SET);
2569 if (offset == (off_t) -1) {
2570 return 0;
2572 ret = read(fd, &ehdr, sizeof(ehdr));
2573 if (ret < sizeof(ehdr)) {
2574 return 0;
2576 offset = lseek(fd, offset, SEEK_SET);
2577 if (offset == (off_t) -1) {
2578 return 0;
2581 /* Check ELF signature */
2582 if (!elf_check_ident(&ehdr)) {
2583 return 0;
2586 /* check header */
2587 bswap_ehdr(&ehdr);
2588 if (!elf_check_ehdr(&ehdr)) {
2589 return 0;
2592 /* return architecture id */
2593 return ehdr.e_flags;
2596 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2598 struct image_info interp_info;
2599 struct elfhdr elf_ex;
2600 char *elf_interpreter = NULL;
2601 char *scratch;
2603 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2605 load_elf_image(bprm->filename, bprm->fd, info,
2606 &elf_interpreter, bprm->buf);
2608 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2609 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2610 when we load the interpreter. */
2611 elf_ex = *(struct elfhdr *)bprm->buf;
2613 /* Do this so that we can load the interpreter, if need be. We will
2614 change some of these later */
2615 bprm->p = setup_arg_pages(bprm, info);
2617 scratch = g_new0(char, TARGET_PAGE_SIZE);
2618 if (STACK_GROWS_DOWN) {
2619 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2620 bprm->p, info->stack_limit);
2621 info->file_string = bprm->p;
2622 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2623 bprm->p, info->stack_limit);
2624 info->env_strings = bprm->p;
2625 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2626 bprm->p, info->stack_limit);
2627 info->arg_strings = bprm->p;
2628 } else {
2629 info->arg_strings = bprm->p;
2630 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2631 bprm->p, info->stack_limit);
2632 info->env_strings = bprm->p;
2633 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2634 bprm->p, info->stack_limit);
2635 info->file_string = bprm->p;
2636 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2637 bprm->p, info->stack_limit);
2640 g_free(scratch);
2642 if (!bprm->p) {
2643 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2644 exit(-1);
2647 if (elf_interpreter) {
2648 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2650 /* If the program interpreter is one of these two, then assume
2651 an iBCS2 image. Otherwise assume a native linux image. */
2653 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2654 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2655 info->personality = PER_SVR4;
2657 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2658 and some applications "depend" upon this behavior. Since
2659 we do not have the power to recompile these, we emulate
2660 the SVr4 behavior. Sigh. */
2661 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2662 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2666 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2667 info, (elf_interpreter ? &interp_info : NULL));
2668 info->start_stack = bprm->p;
2670 /* If we have an interpreter, set that as the program's entry point.
2671 Copy the load_bias as well, to help PPC64 interpret the entry
2672 point as a function descriptor. Do this after creating elf tables
2673 so that we copy the original program entry point into the AUXV. */
2674 if (elf_interpreter) {
2675 info->load_bias = interp_info.load_bias;
2676 info->entry = interp_info.entry;
2677 free(elf_interpreter);
2680 #ifdef USE_ELF_CORE_DUMP
2681 bprm->core_dump = &elf_core_dump;
2682 #endif
2684 return 0;
2687 #ifdef USE_ELF_CORE_DUMP
2689 * Definitions to generate Intel SVR4-like core files.
2690 * These mostly have the same names as the SVR4 types with "target_elf_"
2691 * tacked on the front to prevent clashes with linux definitions,
2692 * and the typedef forms have been avoided. This is mostly like
2693 * the SVR4 structure, but more Linuxy, with things that Linux does
2694 * not support and which gdb doesn't really use excluded.
2696 * Fields we don't dump (their contents is zero) in linux-user qemu
2697 * are marked with XXX.
2699 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2701 * Porting ELF coredump for target is (quite) simple process. First you
2702 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2703 * the target resides):
2705 * #define USE_ELF_CORE_DUMP
2707 * Next you define type of register set used for dumping. ELF specification
2708 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2710 * typedef <target_regtype> target_elf_greg_t;
2711 * #define ELF_NREG <number of registers>
2712 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2714 * Last step is to implement target specific function that copies registers
2715 * from given cpu into just specified register set. Prototype is:
2717 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2718 * const CPUArchState *env);
2720 * Parameters:
2721 * regs - copy register values into here (allocated and zeroed by caller)
2722 * env - copy registers from here
2724 * Example for ARM target is provided in this file.
2727 /* An ELF note in memory */
2728 struct memelfnote {
2729 const char *name;
2730 size_t namesz;
2731 size_t namesz_rounded;
2732 int type;
2733 size_t datasz;
2734 size_t datasz_rounded;
2735 void *data;
2736 size_t notesz;
2739 struct target_elf_siginfo {
2740 abi_int si_signo; /* signal number */
2741 abi_int si_code; /* extra code */
2742 abi_int si_errno; /* errno */
2745 struct target_elf_prstatus {
2746 struct target_elf_siginfo pr_info; /* Info associated with signal */
2747 abi_short pr_cursig; /* Current signal */
2748 abi_ulong pr_sigpend; /* XXX */
2749 abi_ulong pr_sighold; /* XXX */
2750 target_pid_t pr_pid;
2751 target_pid_t pr_ppid;
2752 target_pid_t pr_pgrp;
2753 target_pid_t pr_sid;
2754 struct target_timeval pr_utime; /* XXX User time */
2755 struct target_timeval pr_stime; /* XXX System time */
2756 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2757 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2758 target_elf_gregset_t pr_reg; /* GP registers */
2759 abi_int pr_fpvalid; /* XXX */
2762 #define ELF_PRARGSZ (80) /* Number of chars for args */
2764 struct target_elf_prpsinfo {
2765 char pr_state; /* numeric process state */
2766 char pr_sname; /* char for pr_state */
2767 char pr_zomb; /* zombie */
2768 char pr_nice; /* nice val */
2769 abi_ulong pr_flag; /* flags */
2770 target_uid_t pr_uid;
2771 target_gid_t pr_gid;
2772 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2773 /* Lots missing */
2774 char pr_fname[16]; /* filename of executable */
2775 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2778 /* Here is the structure in which status of each thread is captured. */
2779 struct elf_thread_status {
2780 QTAILQ_ENTRY(elf_thread_status) ets_link;
2781 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2782 #if 0
2783 elf_fpregset_t fpu; /* NT_PRFPREG */
2784 struct task_struct *thread;
2785 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2786 #endif
2787 struct memelfnote notes[1];
2788 int num_notes;
2791 struct elf_note_info {
2792 struct memelfnote *notes;
2793 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2794 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2796 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2797 #if 0
2799 * Current version of ELF coredump doesn't support
2800 * dumping fp regs etc.
2802 elf_fpregset_t *fpu;
2803 elf_fpxregset_t *xfpu;
2804 int thread_status_size;
2805 #endif
2806 int notes_size;
2807 int numnote;
2810 struct vm_area_struct {
2811 target_ulong vma_start; /* start vaddr of memory region */
2812 target_ulong vma_end; /* end vaddr of memory region */
2813 abi_ulong vma_flags; /* protection etc. flags for the region */
2814 QTAILQ_ENTRY(vm_area_struct) vma_link;
2817 struct mm_struct {
2818 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2819 int mm_count; /* number of mappings */
2822 static struct mm_struct *vma_init(void);
2823 static void vma_delete(struct mm_struct *);
2824 static int vma_add_mapping(struct mm_struct *, target_ulong,
2825 target_ulong, abi_ulong);
2826 static int vma_get_mapping_count(const struct mm_struct *);
2827 static struct vm_area_struct *vma_first(const struct mm_struct *);
2828 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2829 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2830 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2831 unsigned long flags);
2833 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2834 static void fill_note(struct memelfnote *, const char *, int,
2835 unsigned int, void *);
2836 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2837 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2838 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2839 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2840 static size_t note_size(const struct memelfnote *);
2841 static void free_note_info(struct elf_note_info *);
2842 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2843 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2844 static int core_dump_filename(const TaskState *, char *, size_t);
2846 static int dump_write(int, const void *, size_t);
2847 static int write_note(struct memelfnote *, int);
2848 static int write_note_info(struct elf_note_info *, int);
2850 #ifdef BSWAP_NEEDED
2851 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2853 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2854 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2855 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2856 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2857 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2858 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2859 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2860 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2861 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2862 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2863 /* cpu times are not filled, so we skip them */
2864 /* regs should be in correct format already */
2865 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2868 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2870 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2871 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2872 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2873 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2874 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2875 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2876 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2879 static void bswap_note(struct elf_note *en)
2881 bswap32s(&en->n_namesz);
2882 bswap32s(&en->n_descsz);
2883 bswap32s(&en->n_type);
2885 #else
2886 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2887 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2888 static inline void bswap_note(struct elf_note *en) { }
2889 #endif /* BSWAP_NEEDED */
2892 * Minimal support for linux memory regions. These are needed
2893 * when we are finding out what memory exactly belongs to
2894 * emulated process. No locks needed here, as long as
2895 * thread that received the signal is stopped.
2898 static struct mm_struct *vma_init(void)
2900 struct mm_struct *mm;
2902 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2903 return (NULL);
2905 mm->mm_count = 0;
2906 QTAILQ_INIT(&mm->mm_mmap);
2908 return (mm);
2911 static void vma_delete(struct mm_struct *mm)
2913 struct vm_area_struct *vma;
2915 while ((vma = vma_first(mm)) != NULL) {
2916 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2917 g_free(vma);
2919 g_free(mm);
2922 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2923 target_ulong end, abi_ulong flags)
2925 struct vm_area_struct *vma;
2927 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2928 return (-1);
2930 vma->vma_start = start;
2931 vma->vma_end = end;
2932 vma->vma_flags = flags;
2934 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2935 mm->mm_count++;
2937 return (0);
2940 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2942 return (QTAILQ_FIRST(&mm->mm_mmap));
2945 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2947 return (QTAILQ_NEXT(vma, vma_link));
2950 static int vma_get_mapping_count(const struct mm_struct *mm)
2952 return (mm->mm_count);
2956 * Calculate file (dump) size of given memory region.
2958 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2960 /* if we cannot even read the first page, skip it */
2961 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2962 return (0);
2965 * Usually we don't dump executable pages as they contain
2966 * non-writable code that debugger can read directly from
2967 * target library etc. However, thread stacks are marked
2968 * also executable so we read in first page of given region
2969 * and check whether it contains elf header. If there is
2970 * no elf header, we dump it.
2972 if (vma->vma_flags & PROT_EXEC) {
2973 char page[TARGET_PAGE_SIZE];
2975 copy_from_user(page, vma->vma_start, sizeof (page));
2976 if ((page[EI_MAG0] == ELFMAG0) &&
2977 (page[EI_MAG1] == ELFMAG1) &&
2978 (page[EI_MAG2] == ELFMAG2) &&
2979 (page[EI_MAG3] == ELFMAG3)) {
2981 * Mappings are possibly from ELF binary. Don't dump
2982 * them.
2984 return (0);
2988 return (vma->vma_end - vma->vma_start);
2991 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2992 unsigned long flags)
2994 struct mm_struct *mm = (struct mm_struct *)priv;
2996 vma_add_mapping(mm, start, end, flags);
2997 return (0);
3000 static void fill_note(struct memelfnote *note, const char *name, int type,
3001 unsigned int sz, void *data)
3003 unsigned int namesz;
3005 namesz = strlen(name) + 1;
3006 note->name = name;
3007 note->namesz = namesz;
3008 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3009 note->type = type;
3010 note->datasz = sz;
3011 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3013 note->data = data;
3016 * We calculate rounded up note size here as specified by
3017 * ELF document.
3019 note->notesz = sizeof (struct elf_note) +
3020 note->namesz_rounded + note->datasz_rounded;
3023 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3024 uint32_t flags)
3026 (void) memset(elf, 0, sizeof(*elf));
3028 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3029 elf->e_ident[EI_CLASS] = ELF_CLASS;
3030 elf->e_ident[EI_DATA] = ELF_DATA;
3031 elf->e_ident[EI_VERSION] = EV_CURRENT;
3032 elf->e_ident[EI_OSABI] = ELF_OSABI;
3034 elf->e_type = ET_CORE;
3035 elf->e_machine = machine;
3036 elf->e_version = EV_CURRENT;
3037 elf->e_phoff = sizeof(struct elfhdr);
3038 elf->e_flags = flags;
3039 elf->e_ehsize = sizeof(struct elfhdr);
3040 elf->e_phentsize = sizeof(struct elf_phdr);
3041 elf->e_phnum = segs;
3043 bswap_ehdr(elf);
3046 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3048 phdr->p_type = PT_NOTE;
3049 phdr->p_offset = offset;
3050 phdr->p_vaddr = 0;
3051 phdr->p_paddr = 0;
3052 phdr->p_filesz = sz;
3053 phdr->p_memsz = 0;
3054 phdr->p_flags = 0;
3055 phdr->p_align = 0;
3057 bswap_phdr(phdr, 1);
3060 static size_t note_size(const struct memelfnote *note)
3062 return (note->notesz);
3065 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3066 const TaskState *ts, int signr)
3068 (void) memset(prstatus, 0, sizeof (*prstatus));
3069 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3070 prstatus->pr_pid = ts->ts_tid;
3071 prstatus->pr_ppid = getppid();
3072 prstatus->pr_pgrp = getpgrp();
3073 prstatus->pr_sid = getsid(0);
3075 bswap_prstatus(prstatus);
3078 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3080 char *base_filename;
3081 unsigned int i, len;
3083 (void) memset(psinfo, 0, sizeof (*psinfo));
3085 len = ts->info->arg_end - ts->info->arg_start;
3086 if (len >= ELF_PRARGSZ)
3087 len = ELF_PRARGSZ - 1;
3088 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3089 return -EFAULT;
3090 for (i = 0; i < len; i++)
3091 if (psinfo->pr_psargs[i] == 0)
3092 psinfo->pr_psargs[i] = ' ';
3093 psinfo->pr_psargs[len] = 0;
3095 psinfo->pr_pid = getpid();
3096 psinfo->pr_ppid = getppid();
3097 psinfo->pr_pgrp = getpgrp();
3098 psinfo->pr_sid = getsid(0);
3099 psinfo->pr_uid = getuid();
3100 psinfo->pr_gid = getgid();
3102 base_filename = g_path_get_basename(ts->bprm->filename);
3104 * Using strncpy here is fine: at max-length,
3105 * this field is not NUL-terminated.
3107 (void) strncpy(psinfo->pr_fname, base_filename,
3108 sizeof(psinfo->pr_fname));
3110 g_free(base_filename);
3111 bswap_psinfo(psinfo);
3112 return (0);
3115 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3117 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3118 elf_addr_t orig_auxv = auxv;
3119 void *ptr;
3120 int len = ts->info->auxv_len;
3123 * Auxiliary vector is stored in target process stack. It contains
3124 * {type, value} pairs that we need to dump into note. This is not
3125 * strictly necessary but we do it here for sake of completeness.
3128 /* read in whole auxv vector and copy it to memelfnote */
3129 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3130 if (ptr != NULL) {
3131 fill_note(note, "CORE", NT_AUXV, len, ptr);
3132 unlock_user(ptr, auxv, len);
3137 * Constructs name of coredump file. We have following convention
3138 * for the name:
3139 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3141 * Returns 0 in case of success, -1 otherwise (errno is set).
3143 static int core_dump_filename(const TaskState *ts, char *buf,
3144 size_t bufsize)
3146 char timestamp[64];
3147 char *base_filename = NULL;
3148 struct timeval tv;
3149 struct tm tm;
3151 assert(bufsize >= PATH_MAX);
3153 if (gettimeofday(&tv, NULL) < 0) {
3154 (void) fprintf(stderr, "unable to get current timestamp: %s",
3155 strerror(errno));
3156 return (-1);
3159 base_filename = g_path_get_basename(ts->bprm->filename);
3160 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3161 localtime_r(&tv.tv_sec, &tm));
3162 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3163 base_filename, timestamp, (int)getpid());
3164 g_free(base_filename);
3166 return (0);
3169 static int dump_write(int fd, const void *ptr, size_t size)
3171 const char *bufp = (const char *)ptr;
3172 ssize_t bytes_written, bytes_left;
3173 struct rlimit dumpsize;
3174 off_t pos;
3176 bytes_written = 0;
3177 getrlimit(RLIMIT_CORE, &dumpsize);
3178 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3179 if (errno == ESPIPE) { /* not a seekable stream */
3180 bytes_left = size;
3181 } else {
3182 return pos;
3184 } else {
3185 if (dumpsize.rlim_cur <= pos) {
3186 return -1;
3187 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3188 bytes_left = size;
3189 } else {
3190 size_t limit_left=dumpsize.rlim_cur - pos;
3191 bytes_left = limit_left >= size ? size : limit_left ;
3196 * In normal conditions, single write(2) should do but
3197 * in case of socket etc. this mechanism is more portable.
3199 do {
3200 bytes_written = write(fd, bufp, bytes_left);
3201 if (bytes_written < 0) {
3202 if (errno == EINTR)
3203 continue;
3204 return (-1);
3205 } else if (bytes_written == 0) { /* eof */
3206 return (-1);
3208 bufp += bytes_written;
3209 bytes_left -= bytes_written;
3210 } while (bytes_left > 0);
3212 return (0);
3215 static int write_note(struct memelfnote *men, int fd)
3217 struct elf_note en;
3219 en.n_namesz = men->namesz;
3220 en.n_type = men->type;
3221 en.n_descsz = men->datasz;
3223 bswap_note(&en);
3225 if (dump_write(fd, &en, sizeof(en)) != 0)
3226 return (-1);
3227 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3228 return (-1);
3229 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3230 return (-1);
3232 return (0);
3235 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3237 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3238 TaskState *ts = (TaskState *)cpu->opaque;
3239 struct elf_thread_status *ets;
3241 ets = g_malloc0(sizeof (*ets));
3242 ets->num_notes = 1; /* only prstatus is dumped */
3243 fill_prstatus(&ets->prstatus, ts, 0);
3244 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3245 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3246 &ets->prstatus);
3248 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3250 info->notes_size += note_size(&ets->notes[0]);
3253 static void init_note_info(struct elf_note_info *info)
3255 /* Initialize the elf_note_info structure so that it is at
3256 * least safe to call free_note_info() on it. Must be
3257 * called before calling fill_note_info().
3259 memset(info, 0, sizeof (*info));
3260 QTAILQ_INIT(&info->thread_list);
3263 static int fill_note_info(struct elf_note_info *info,
3264 long signr, const CPUArchState *env)
3266 #define NUMNOTES 3
3267 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3268 TaskState *ts = (TaskState *)cpu->opaque;
3269 int i;
3271 info->notes = g_new0(struct memelfnote, NUMNOTES);
3272 if (info->notes == NULL)
3273 return (-ENOMEM);
3274 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3275 if (info->prstatus == NULL)
3276 return (-ENOMEM);
3277 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3278 if (info->prstatus == NULL)
3279 return (-ENOMEM);
3282 * First fill in status (and registers) of current thread
3283 * including process info & aux vector.
3285 fill_prstatus(info->prstatus, ts, signr);
3286 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3287 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3288 sizeof (*info->prstatus), info->prstatus);
3289 fill_psinfo(info->psinfo, ts);
3290 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3291 sizeof (*info->psinfo), info->psinfo);
3292 fill_auxv_note(&info->notes[2], ts);
3293 info->numnote = 3;
3295 info->notes_size = 0;
3296 for (i = 0; i < info->numnote; i++)
3297 info->notes_size += note_size(&info->notes[i]);
3299 /* read and fill status of all threads */
3300 cpu_list_lock();
3301 CPU_FOREACH(cpu) {
3302 if (cpu == thread_cpu) {
3303 continue;
3305 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3307 cpu_list_unlock();
3309 return (0);
3312 static void free_note_info(struct elf_note_info *info)
3314 struct elf_thread_status *ets;
3316 while (!QTAILQ_EMPTY(&info->thread_list)) {
3317 ets = QTAILQ_FIRST(&info->thread_list);
3318 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3319 g_free(ets);
3322 g_free(info->prstatus);
3323 g_free(info->psinfo);
3324 g_free(info->notes);
3327 static int write_note_info(struct elf_note_info *info, int fd)
3329 struct elf_thread_status *ets;
3330 int i, error = 0;
3332 /* write prstatus, psinfo and auxv for current thread */
3333 for (i = 0; i < info->numnote; i++)
3334 if ((error = write_note(&info->notes[i], fd)) != 0)
3335 return (error);
3337 /* write prstatus for each thread */
3338 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3339 if ((error = write_note(&ets->notes[0], fd)) != 0)
3340 return (error);
3343 return (0);
3347 * Write out ELF coredump.
3349 * See documentation of ELF object file format in:
3350 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3352 * Coredump format in linux is following:
3354 * 0 +----------------------+ \
3355 * | ELF header | ET_CORE |
3356 * +----------------------+ |
3357 * | ELF program headers | |--- headers
3358 * | - NOTE section | |
3359 * | - PT_LOAD sections | |
3360 * +----------------------+ /
3361 * | NOTEs: |
3362 * | - NT_PRSTATUS |
3363 * | - NT_PRSINFO |
3364 * | - NT_AUXV |
3365 * +----------------------+ <-- aligned to target page
3366 * | Process memory dump |
3367 * : :
3368 * . .
3369 * : :
3370 * | |
3371 * +----------------------+
3373 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3374 * NT_PRSINFO -> struct elf_prpsinfo
3375 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3377 * Format follows System V format as close as possible. Current
3378 * version limitations are as follows:
3379 * - no floating point registers are dumped
3381 * Function returns 0 in case of success, negative errno otherwise.
3383 * TODO: make this work also during runtime: it should be
3384 * possible to force coredump from running process and then
3385 * continue processing. For example qemu could set up SIGUSR2
3386 * handler (provided that target process haven't registered
3387 * handler for that) that does the dump when signal is received.
3389 static int elf_core_dump(int signr, const CPUArchState *env)
3391 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3392 const TaskState *ts = (const TaskState *)cpu->opaque;
3393 struct vm_area_struct *vma = NULL;
3394 char corefile[PATH_MAX];
3395 struct elf_note_info info;
3396 struct elfhdr elf;
3397 struct elf_phdr phdr;
3398 struct rlimit dumpsize;
3399 struct mm_struct *mm = NULL;
3400 off_t offset = 0, data_offset = 0;
3401 int segs = 0;
3402 int fd = -1;
3404 init_note_info(&info);
3406 errno = 0;
3407 getrlimit(RLIMIT_CORE, &dumpsize);
3408 if (dumpsize.rlim_cur == 0)
3409 return 0;
3411 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3412 return (-errno);
3414 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3415 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3416 return (-errno);
3419 * Walk through target process memory mappings and
3420 * set up structure containing this information. After
3421 * this point vma_xxx functions can be used.
3423 if ((mm = vma_init()) == NULL)
3424 goto out;
3426 walk_memory_regions(mm, vma_walker);
3427 segs = vma_get_mapping_count(mm);
3430 * Construct valid coredump ELF header. We also
3431 * add one more segment for notes.
3433 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3434 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3435 goto out;
3437 /* fill in the in-memory version of notes */
3438 if (fill_note_info(&info, signr, env) < 0)
3439 goto out;
3441 offset += sizeof (elf); /* elf header */
3442 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3444 /* write out notes program header */
3445 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3447 offset += info.notes_size;
3448 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3449 goto out;
3452 * ELF specification wants data to start at page boundary so
3453 * we align it here.
3455 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3458 * Write program headers for memory regions mapped in
3459 * the target process.
3461 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3462 (void) memset(&phdr, 0, sizeof (phdr));
3464 phdr.p_type = PT_LOAD;
3465 phdr.p_offset = offset;
3466 phdr.p_vaddr = vma->vma_start;
3467 phdr.p_paddr = 0;
3468 phdr.p_filesz = vma_dump_size(vma);
3469 offset += phdr.p_filesz;
3470 phdr.p_memsz = vma->vma_end - vma->vma_start;
3471 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3472 if (vma->vma_flags & PROT_WRITE)
3473 phdr.p_flags |= PF_W;
3474 if (vma->vma_flags & PROT_EXEC)
3475 phdr.p_flags |= PF_X;
3476 phdr.p_align = ELF_EXEC_PAGESIZE;
3478 bswap_phdr(&phdr, 1);
3479 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3480 goto out;
3485 * Next we write notes just after program headers. No
3486 * alignment needed here.
3488 if (write_note_info(&info, fd) < 0)
3489 goto out;
3491 /* align data to page boundary */
3492 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3493 goto out;
3496 * Finally we can dump process memory into corefile as well.
3498 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3499 abi_ulong addr;
3500 abi_ulong end;
3502 end = vma->vma_start + vma_dump_size(vma);
3504 for (addr = vma->vma_start; addr < end;
3505 addr += TARGET_PAGE_SIZE) {
3506 char page[TARGET_PAGE_SIZE];
3507 int error;
3510 * Read in page from target process memory and
3511 * write it to coredump file.
3513 error = copy_from_user(page, addr, sizeof (page));
3514 if (error != 0) {
3515 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3516 addr);
3517 errno = -error;
3518 goto out;
3520 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3521 goto out;
3525 out:
3526 free_note_info(&info);
3527 if (mm != NULL)
3528 vma_delete(mm);
3529 (void) close(fd);
3531 if (errno != 0)
3532 return (-errno);
3533 return (0);
3535 #endif /* USE_ELF_CORE_DUMP */
3537 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3539 init_thread(regs, infop);