Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / target-arm / op_helper.c
blob741968443db4034882a64931146e4c32e62ae369
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "internals.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
26 #define SIGNBIT (uint32_t)0x80000000
27 #define SIGNBIT64 ((uint64_t)1 << 63)
29 static void QEMU_NORETURN
30 raise_exception(CPUARMState *env, uint32_t excp,
31 uint32_t syndrome, uint32_t target_el)
33 CPUState *cs = CPU(arm_env_get_cpu(env));
35 assert(!excp_is_internal(excp));
36 cs->exception_index = excp;
37 env->exception.syndrome = syndrome;
38 env->exception.target_el = target_el;
39 cpu_loop_exit(cs);
42 static int exception_target_el(CPUARMState *env)
44 int target_el = MAX(1, arm_current_el(env));
46 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
47 * to EL3 in this case.
49 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
50 target_el = 3;
53 return target_el;
56 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
57 uint32_t rn, uint32_t maxindex)
59 uint32_t val;
60 uint32_t tmp;
61 int index;
62 int shift;
63 uint64_t *table;
64 table = (uint64_t *)&env->vfp.regs[rn];
65 val = 0;
66 for (shift = 0; shift < 32; shift += 8) {
67 index = (ireg >> shift) & 0xff;
68 if (index < maxindex) {
69 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
70 val |= tmp << shift;
71 } else {
72 val |= def & (0xff << shift);
75 return val;
78 #if !defined(CONFIG_USER_ONLY)
80 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
81 unsigned int target_el,
82 bool same_el,
83 bool s1ptw, bool is_write,
84 int fsc)
86 uint32_t syn;
88 /* ISV is only set for data aborts routed to EL2 and
89 * never for stage-1 page table walks faulting on stage 2.
91 * Furthermore, ISV is only set for certain kinds of load/stores.
92 * If the template syndrome does not have ISV set, we should leave
93 * it cleared.
95 * See ARMv8 specs, D7-1974:
96 * ISS encoding for an exception from a Data Abort, the
97 * ISV field.
99 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
100 syn = syn_data_abort_no_iss(same_el,
101 0, 0, s1ptw, is_write, fsc);
102 } else {
103 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
104 * syndrome created at translation time.
105 * Now we create the runtime syndrome with the remaining fields.
107 syn = syn_data_abort_with_iss(same_el,
108 0, 0, 0, 0, 0,
109 0, 0, s1ptw, is_write, fsc,
110 false);
111 /* Merge the runtime syndrome with the template syndrome. */
112 syn |= template_syn;
114 return syn;
117 /* try to fill the TLB and return an exception if error. If retaddr is
118 * NULL, it means that the function was called in C code (i.e. not
119 * from generated code or from helper.c)
121 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
122 int mmu_idx, uintptr_t retaddr)
124 bool ret;
125 uint32_t fsr = 0;
126 ARMMMUFaultInfo fi = {};
128 ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi);
129 if (unlikely(ret)) {
130 ARMCPU *cpu = ARM_CPU(cs);
131 CPUARMState *env = &cpu->env;
132 uint32_t syn, exc;
133 unsigned int target_el;
134 bool same_el;
136 if (retaddr) {
137 /* now we have a real cpu fault */
138 cpu_restore_state(cs, retaddr);
141 target_el = exception_target_el(env);
142 if (fi.stage2) {
143 target_el = 2;
144 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
146 same_el = arm_current_el(env) == target_el;
147 /* AArch64 syndrome does not have an LPAE bit */
148 syn = fsr & ~(1 << 9);
150 /* For insn and data aborts we assume there is no instruction syndrome
151 * information; this is always true for exceptions reported to EL1.
153 if (access_type == MMU_INST_FETCH) {
154 syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
155 exc = EXCP_PREFETCH_ABORT;
156 } else {
157 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
158 same_el, fi.s1ptw,
159 access_type == MMU_DATA_STORE, syn);
160 if (access_type == MMU_DATA_STORE
161 && arm_feature(env, ARM_FEATURE_V6)) {
162 fsr |= (1 << 11);
164 exc = EXCP_DATA_ABORT;
167 env->exception.vaddress = addr;
168 env->exception.fsr = fsr;
169 raise_exception(env, exc, syn, target_el);
173 /* Raise a data fault alignment exception for the specified virtual address */
174 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
175 MMUAccessType access_type,
176 int mmu_idx, uintptr_t retaddr)
178 ARMCPU *cpu = ARM_CPU(cs);
179 CPUARMState *env = &cpu->env;
180 int target_el;
181 bool same_el;
182 uint32_t syn;
184 if (retaddr) {
185 /* now we have a real cpu fault */
186 cpu_restore_state(cs, retaddr);
189 target_el = exception_target_el(env);
190 same_el = (arm_current_el(env) == target_el);
192 env->exception.vaddress = vaddr;
194 /* the DFSR for an alignment fault depends on whether we're using
195 * the LPAE long descriptor format, or the short descriptor format
197 if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
198 env->exception.fsr = 0x21;
199 } else {
200 env->exception.fsr = 0x1;
203 if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) {
204 env->exception.fsr |= (1 << 11);
207 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
208 same_el, 0, access_type == MMU_DATA_STORE,
209 0x21);
210 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
213 #endif /* !defined(CONFIG_USER_ONLY) */
215 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
217 uint32_t res = a + b;
218 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
219 env->QF = 1;
220 return res;
223 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
225 uint32_t res = a + b;
226 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
227 env->QF = 1;
228 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
230 return res;
233 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
235 uint32_t res = a - b;
236 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
237 env->QF = 1;
238 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
240 return res;
243 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
245 uint32_t res;
246 if (val >= 0x40000000) {
247 res = ~SIGNBIT;
248 env->QF = 1;
249 } else if (val <= (int32_t)0xc0000000) {
250 res = SIGNBIT;
251 env->QF = 1;
252 } else {
253 res = val << 1;
255 return res;
258 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
260 uint32_t res = a + b;
261 if (res < a) {
262 env->QF = 1;
263 res = ~0;
265 return res;
268 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
270 uint32_t res = a - b;
271 if (res > a) {
272 env->QF = 1;
273 res = 0;
275 return res;
278 /* Signed saturation. */
279 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
281 int32_t top;
282 uint32_t mask;
284 top = val >> shift;
285 mask = (1u << shift) - 1;
286 if (top > 0) {
287 env->QF = 1;
288 return mask;
289 } else if (top < -1) {
290 env->QF = 1;
291 return ~mask;
293 return val;
296 /* Unsigned saturation. */
297 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
299 uint32_t max;
301 max = (1u << shift) - 1;
302 if (val < 0) {
303 env->QF = 1;
304 return 0;
305 } else if (val > max) {
306 env->QF = 1;
307 return max;
309 return val;
312 /* Signed saturate. */
313 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
315 return do_ssat(env, x, shift);
318 /* Dual halfword signed saturate. */
319 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
321 uint32_t res;
323 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
324 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
325 return res;
328 /* Unsigned saturate. */
329 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
331 return do_usat(env, x, shift);
334 /* Dual halfword unsigned saturate. */
335 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
337 uint32_t res;
339 res = (uint16_t)do_usat(env, (int16_t)x, shift);
340 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
341 return res;
344 void HELPER(setend)(CPUARMState *env)
346 env->uncached_cpsr ^= CPSR_E;
349 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
350 * The function returns the target EL (1-3) if the instruction is to be trapped;
351 * otherwise it returns 0 indicating it is not trapped.
353 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
355 int cur_el = arm_current_el(env);
356 uint64_t mask;
358 /* If we are currently in EL0 then we need to check if SCTLR is set up for
359 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
361 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
362 int target_el;
364 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
365 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
366 /* Secure EL0 and Secure PL1 is at EL3 */
367 target_el = 3;
368 } else {
369 target_el = 1;
372 if (!(env->cp15.sctlr_el[target_el] & mask)) {
373 return target_el;
377 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
378 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
379 * bits will be zero indicating no trap.
381 if (cur_el < 2 && !arm_is_secure(env)) {
382 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
383 if (env->cp15.hcr_el2 & mask) {
384 return 2;
388 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
389 if (cur_el < 3) {
390 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
391 if (env->cp15.scr_el3 & mask) {
392 return 3;
396 return 0;
399 void HELPER(wfi)(CPUARMState *env)
401 CPUState *cs = CPU(arm_env_get_cpu(env));
402 int target_el = check_wfx_trap(env, false);
404 if (cpu_has_work(cs)) {
405 /* Don't bother to go into our "low power state" if
406 * we would just wake up immediately.
408 return;
411 if (target_el) {
412 env->pc -= 4;
413 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
416 cs->exception_index = EXCP_HLT;
417 cs->halted = 1;
418 cpu_loop_exit(cs);
421 void QEMU_NORETURN HELPER(wfe)(CPUARMState *env)
423 /* This is a hint instruction that is semantically different
424 * from YIELD even though we currently implement it identically.
425 * Don't actually halt the CPU, just yield back to top
426 * level loop. This is not going into a "low power state"
427 * (ie halting until some event occurs), so we never take
428 * a configurable trap to a different exception level.
430 HELPER(yield)(env);
433 void QEMU_NORETURN HELPER(yield)(CPUARMState *env)
435 ARMCPU *cpu = arm_env_get_cpu(env);
436 CPUState *cs = CPU(cpu);
438 /* This is a non-trappable hint instruction that generally indicates
439 * that the guest is currently busy-looping. Yield control back to the
440 * top level loop so that a more deserving VCPU has a chance to run.
442 cs->exception_index = EXCP_YIELD;
443 cpu_loop_exit(cs);
446 /* Raise an internal-to-QEMU exception. This is limited to only
447 * those EXCP values which are special cases for QEMU to interrupt
448 * execution and not to be used for exceptions which are passed to
449 * the guest (those must all have syndrome information and thus should
450 * use exception_with_syndrome).
452 void QEMU_NORETURN HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
454 CPUState *cs = CPU(arm_env_get_cpu(env));
456 assert(excp_is_internal(excp));
457 cs->exception_index = excp;
458 cpu_loop_exit(cs);
461 /* Raise an exception with the specified syndrome register value */
462 void QEMU_NORETURN
463 HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
464 uint32_t syndrome, uint32_t target_el)
466 raise_exception(env, excp, syndrome, target_el);
469 uint32_t HELPER(cpsr_read)(CPUARMState *env)
471 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
474 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
476 cpsr_write(env, val, mask, CPSRWriteByInstr);
479 /* Write the CPSR for a 32-bit exception return */
480 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
482 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
484 arm_call_el_change_hook(arm_env_get_cpu(env));
487 /* Access to user mode registers from privileged modes. */
488 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
490 uint32_t val;
492 if (regno == 13) {
493 val = env->banked_r13[BANK_USRSYS];
494 } else if (regno == 14) {
495 val = env->banked_r14[BANK_USRSYS];
496 } else if (regno >= 8
497 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
498 val = env->usr_regs[regno - 8];
499 } else {
500 val = env->regs[regno];
502 return val;
505 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
507 if (regno == 13) {
508 env->banked_r13[BANK_USRSYS] = val;
509 } else if (regno == 14) {
510 env->banked_r14[BANK_USRSYS] = val;
511 } else if (regno >= 8
512 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
513 env->usr_regs[regno - 8] = val;
514 } else {
515 env->regs[regno] = val;
519 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
521 if ((env->uncached_cpsr & CPSR_M) == mode) {
522 env->regs[13] = val;
523 } else {
524 env->banked_r13[bank_number(mode)] = val;
528 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
530 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
531 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
532 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
534 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
535 exception_target_el(env));
538 if ((env->uncached_cpsr & CPSR_M) == mode) {
539 return env->regs[13];
540 } else {
541 return env->banked_r13[bank_number(mode)];
545 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
546 uint32_t regno)
548 /* Raise an exception if the requested access is one of the UNPREDICTABLE
549 * cases; otherwise return. This broadly corresponds to the pseudocode
550 * BankedRegisterAccessValid() and SPSRAccessValid(),
551 * except that we have already handled some cases at translate time.
553 int curmode = env->uncached_cpsr & CPSR_M;
555 if (curmode == tgtmode) {
556 goto undef;
559 if (tgtmode == ARM_CPU_MODE_USR) {
560 switch (regno) {
561 case 8 ... 12:
562 if (curmode != ARM_CPU_MODE_FIQ) {
563 goto undef;
565 break;
566 case 13:
567 if (curmode == ARM_CPU_MODE_SYS) {
568 goto undef;
570 break;
571 case 14:
572 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
573 goto undef;
575 break;
576 default:
577 break;
581 if (tgtmode == ARM_CPU_MODE_HYP) {
582 switch (regno) {
583 case 17: /* ELR_Hyp */
584 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
585 goto undef;
587 break;
588 default:
589 if (curmode != ARM_CPU_MODE_MON) {
590 goto undef;
592 break;
596 return;
598 undef:
599 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
600 exception_target_el(env));
603 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
604 uint32_t regno)
606 msr_mrs_banked_exc_checks(env, tgtmode, regno);
608 switch (regno) {
609 case 16: /* SPSRs */
610 env->banked_spsr[bank_number(tgtmode)] = value;
611 break;
612 case 17: /* ELR_Hyp */
613 env->elr_el[2] = value;
614 break;
615 case 13:
616 env->banked_r13[bank_number(tgtmode)] = value;
617 break;
618 case 14:
619 env->banked_r14[bank_number(tgtmode)] = value;
620 break;
621 case 8 ... 12:
622 switch (tgtmode) {
623 case ARM_CPU_MODE_USR:
624 env->usr_regs[regno - 8] = value;
625 break;
626 case ARM_CPU_MODE_FIQ:
627 env->fiq_regs[regno - 8] = value;
628 break;
629 default:
630 g_assert_not_reached();
632 break;
633 default:
634 g_assert_not_reached();
638 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
640 msr_mrs_banked_exc_checks(env, tgtmode, regno);
642 switch (regno) {
643 case 16: /* SPSRs */
644 return env->banked_spsr[bank_number(tgtmode)];
645 case 17: /* ELR_Hyp */
646 return env->elr_el[2];
647 case 13:
648 return env->banked_r13[bank_number(tgtmode)];
649 case 14:
650 return env->banked_r14[bank_number(tgtmode)];
651 case 8 ... 12:
652 switch (tgtmode) {
653 case ARM_CPU_MODE_USR:
654 return env->usr_regs[regno - 8];
655 case ARM_CPU_MODE_FIQ:
656 return env->fiq_regs[regno - 8];
657 default:
658 g_assert_not_reached();
660 default:
661 g_assert_not_reached();
665 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
666 uint32_t isread)
668 const ARMCPRegInfo *ri = rip;
669 int target_el;
671 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
672 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
673 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
676 if (!ri->accessfn) {
677 return;
680 switch (ri->accessfn(env, ri, isread)) {
681 case CP_ACCESS_OK:
682 return;
683 case CP_ACCESS_TRAP:
684 target_el = exception_target_el(env);
685 break;
686 case CP_ACCESS_TRAP_EL2:
687 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
688 * a bug in the access function.
690 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
691 target_el = 2;
692 break;
693 case CP_ACCESS_TRAP_EL3:
694 target_el = 3;
695 break;
696 case CP_ACCESS_TRAP_UNCATEGORIZED:
697 target_el = exception_target_el(env);
698 syndrome = syn_uncategorized();
699 break;
700 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
701 target_el = 2;
702 syndrome = syn_uncategorized();
703 break;
704 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
705 target_el = 3;
706 syndrome = syn_uncategorized();
707 break;
708 case CP_ACCESS_TRAP_FP_EL2:
709 target_el = 2;
710 /* Since we are an implementation that takes exceptions on a trapped
711 * conditional insn only if the insn has passed its condition code
712 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
713 * (which is also the required value for AArch64 traps).
715 syndrome = syn_fp_access_trap(1, 0xe, false);
716 break;
717 case CP_ACCESS_TRAP_FP_EL3:
718 target_el = 3;
719 syndrome = syn_fp_access_trap(1, 0xe, false);
720 break;
721 default:
722 g_assert_not_reached();
725 raise_exception(env, EXCP_UDEF, syndrome, target_el);
728 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
730 const ARMCPRegInfo *ri = rip;
732 ri->writefn(env, ri, value);
735 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
737 const ARMCPRegInfo *ri = rip;
739 return ri->readfn(env, ri);
742 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
744 const ARMCPRegInfo *ri = rip;
746 ri->writefn(env, ri, value);
749 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
751 const ARMCPRegInfo *ri = rip;
753 return ri->readfn(env, ri);
756 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
758 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
759 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
760 * to catch that case at translate time.
762 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
763 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
764 extract32(op, 3, 3), 4,
765 imm, 0x1f, 0);
766 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
769 switch (op) {
770 case 0x05: /* SPSel */
771 update_spsel(env, imm);
772 break;
773 case 0x1e: /* DAIFSet */
774 env->daif |= (imm << 6) & PSTATE_DAIF;
775 break;
776 case 0x1f: /* DAIFClear */
777 env->daif &= ~((imm << 6) & PSTATE_DAIF);
778 break;
779 default:
780 g_assert_not_reached();
784 void HELPER(clear_pstate_ss)(CPUARMState *env)
786 env->pstate &= ~PSTATE_SS;
789 void HELPER(pre_hvc)(CPUARMState *env)
791 ARMCPU *cpu = arm_env_get_cpu(env);
792 int cur_el = arm_current_el(env);
793 /* FIXME: Use actual secure state. */
794 bool secure = false;
795 bool undef;
797 if (arm_is_psci_call(cpu, EXCP_HVC)) {
798 /* If PSCI is enabled and this looks like a valid PSCI call then
799 * that overrides the architecturally mandated HVC behaviour.
801 return;
804 if (!arm_feature(env, ARM_FEATURE_EL2)) {
805 /* If EL2 doesn't exist, HVC always UNDEFs */
806 undef = true;
807 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
808 /* EL3.HCE has priority over EL2.HCD. */
809 undef = !(env->cp15.scr_el3 & SCR_HCE);
810 } else {
811 undef = env->cp15.hcr_el2 & HCR_HCD;
814 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
815 * For ARMv8/AArch64, HVC is allowed in EL3.
816 * Note that we've already trapped HVC from EL0 at translation
817 * time.
819 if (secure && (!is_a64(env) || cur_el == 1)) {
820 undef = true;
823 if (undef) {
824 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
825 exception_target_el(env));
829 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
831 ARMCPU *cpu = arm_env_get_cpu(env);
832 int cur_el = arm_current_el(env);
833 bool secure = arm_is_secure(env);
834 bool smd = env->cp15.scr_el3 & SCR_SMD;
835 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
836 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
837 * extensions, SMD only applies to NS state.
838 * On ARMv7 without the Virtualization extensions, the SMD bit
839 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
840 * so we need not special case this here.
842 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
844 if (arm_is_psci_call(cpu, EXCP_SMC)) {
845 /* If PSCI is enabled and this looks like a valid PSCI call then
846 * that overrides the architecturally mandated SMC behaviour.
848 return;
851 if (!arm_feature(env, ARM_FEATURE_EL3)) {
852 /* If we have no EL3 then SMC always UNDEFs */
853 undef = true;
854 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
855 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
856 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
859 if (undef) {
860 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
861 exception_target_el(env));
865 static int el_from_spsr(uint32_t spsr)
867 /* Return the exception level that this SPSR is requesting a return to,
868 * or -1 if it is invalid (an illegal return)
870 if (spsr & PSTATE_nRW) {
871 switch (spsr & CPSR_M) {
872 case ARM_CPU_MODE_USR:
873 return 0;
874 case ARM_CPU_MODE_HYP:
875 return 2;
876 case ARM_CPU_MODE_FIQ:
877 case ARM_CPU_MODE_IRQ:
878 case ARM_CPU_MODE_SVC:
879 case ARM_CPU_MODE_ABT:
880 case ARM_CPU_MODE_UND:
881 case ARM_CPU_MODE_SYS:
882 return 1;
883 case ARM_CPU_MODE_MON:
884 /* Returning to Mon from AArch64 is never possible,
885 * so this is an illegal return.
887 default:
888 return -1;
890 } else {
891 if (extract32(spsr, 1, 1)) {
892 /* Return with reserved M[1] bit set */
893 return -1;
895 if (extract32(spsr, 0, 4) == 1) {
896 /* return to EL0 with M[0] bit set */
897 return -1;
899 return extract32(spsr, 2, 2);
903 void HELPER(exception_return)(CPUARMState *env)
905 int cur_el = arm_current_el(env);
906 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
907 uint32_t spsr = env->banked_spsr[spsr_idx];
908 int new_el;
909 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
911 aarch64_save_sp(env, cur_el);
913 env->exclusive_addr = -1;
915 /* We must squash the PSTATE.SS bit to zero unless both of the
916 * following hold:
917 * 1. debug exceptions are currently disabled
918 * 2. singlestep will be active in the EL we return to
919 * We check 1 here and 2 after we've done the pstate/cpsr write() to
920 * transition to the EL we're going to.
922 if (arm_generate_debug_exceptions(env)) {
923 spsr &= ~PSTATE_SS;
926 new_el = el_from_spsr(spsr);
927 if (new_el == -1) {
928 goto illegal_return;
930 if (new_el > cur_el
931 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
932 /* Disallow return to an EL which is unimplemented or higher
933 * than the current one.
935 goto illegal_return;
938 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
939 /* Return to an EL which is configured for a different register width */
940 goto illegal_return;
943 if (new_el == 2 && arm_is_secure_below_el3(env)) {
944 /* Return to the non-existent secure-EL2 */
945 goto illegal_return;
948 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
949 && !arm_is_secure_below_el3(env)) {
950 goto illegal_return;
953 if (!return_to_aa64) {
954 env->aarch64 = 0;
955 /* We do a raw CPSR write because aarch64_sync_64_to_32()
956 * will sort the register banks out for us, and we've already
957 * caught all the bad-mode cases in el_from_spsr().
959 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
960 if (!arm_singlestep_active(env)) {
961 env->uncached_cpsr &= ~PSTATE_SS;
963 aarch64_sync_64_to_32(env);
965 if (spsr & CPSR_T) {
966 env->regs[15] = env->elr_el[cur_el] & ~0x1;
967 } else {
968 env->regs[15] = env->elr_el[cur_el] & ~0x3;
970 } else {
971 env->aarch64 = 1;
972 pstate_write(env, spsr);
973 if (!arm_singlestep_active(env)) {
974 env->pstate &= ~PSTATE_SS;
976 aarch64_restore_sp(env, new_el);
977 env->pc = env->elr_el[cur_el];
980 arm_call_el_change_hook(arm_env_get_cpu(env));
982 return;
984 illegal_return:
985 /* Illegal return events of various kinds have architecturally
986 * mandated behaviour:
987 * restore NZCV and DAIF from SPSR_ELx
988 * set PSTATE.IL
989 * restore PC from ELR_ELx
990 * no change to exception level, execution state or stack pointer
992 env->pstate |= PSTATE_IL;
993 env->pc = env->elr_el[cur_el];
994 spsr &= PSTATE_NZCV | PSTATE_DAIF;
995 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
996 pstate_write(env, spsr);
997 if (!arm_singlestep_active(env)) {
998 env->pstate &= ~PSTATE_SS;
1002 /* Return true if the linked breakpoint entry lbn passes its checks */
1003 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
1005 CPUARMState *env = &cpu->env;
1006 uint64_t bcr = env->cp15.dbgbcr[lbn];
1007 int brps = extract32(cpu->dbgdidr, 24, 4);
1008 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
1009 int bt;
1010 uint32_t contextidr;
1012 /* Links to unimplemented or non-context aware breakpoints are
1013 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1014 * as if linked to an UNKNOWN context-aware breakpoint (in which
1015 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1016 * We choose the former.
1018 if (lbn > brps || lbn < (brps - ctx_cmps)) {
1019 return false;
1022 bcr = env->cp15.dbgbcr[lbn];
1024 if (extract64(bcr, 0, 1) == 0) {
1025 /* Linked breakpoint disabled : generate no events */
1026 return false;
1029 bt = extract64(bcr, 20, 4);
1031 /* We match the whole register even if this is AArch32 using the
1032 * short descriptor format (in which case it holds both PROCID and ASID),
1033 * since we don't implement the optional v7 context ID masking.
1035 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1037 switch (bt) {
1038 case 3: /* linked context ID match */
1039 if (arm_current_el(env) > 1) {
1040 /* Context matches never fire in EL2 or (AArch64) EL3 */
1041 return false;
1043 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
1044 case 5: /* linked address mismatch (reserved in AArch64) */
1045 case 9: /* linked VMID match (reserved if no EL2) */
1046 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1047 default:
1048 /* Links to Unlinked context breakpoints must generate no
1049 * events; we choose to do the same for reserved values too.
1051 return false;
1054 return false;
1057 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1059 CPUARMState *env = &cpu->env;
1060 uint64_t cr;
1061 int pac, hmc, ssc, wt, lbn;
1062 /* Note that for watchpoints the check is against the CPU security
1063 * state, not the S/NS attribute on the offending data access.
1065 bool is_secure = arm_is_secure(env);
1066 int access_el = arm_current_el(env);
1068 if (is_wp) {
1069 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1071 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1072 return false;
1074 cr = env->cp15.dbgwcr[n];
1075 if (wp->hitattrs.user) {
1076 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1077 * match watchpoints as if they were accesses done at EL0, even if
1078 * the CPU is at EL1 or higher.
1080 access_el = 0;
1082 } else {
1083 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1085 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1086 return false;
1088 cr = env->cp15.dbgbcr[n];
1090 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1091 * enabled and that the address and access type match; for breakpoints
1092 * we know the address matched; check the remaining fields, including
1093 * linked breakpoints. We rely on WCR and BCR having the same layout
1094 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1095 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1096 * must act either like some valid combination or as if the watchpoint
1097 * were disabled. We choose the former, and use this together with
1098 * the fact that EL3 must always be Secure and EL2 must always be
1099 * Non-Secure to simplify the code slightly compared to the full
1100 * table in the ARM ARM.
1102 pac = extract64(cr, 1, 2);
1103 hmc = extract64(cr, 13, 1);
1104 ssc = extract64(cr, 14, 2);
1106 switch (ssc) {
1107 case 0:
1108 break;
1109 case 1:
1110 case 3:
1111 if (is_secure) {
1112 return false;
1114 break;
1115 case 2:
1116 if (!is_secure) {
1117 return false;
1119 break;
1122 switch (access_el) {
1123 case 3:
1124 case 2:
1125 if (!hmc) {
1126 return false;
1128 break;
1129 case 1:
1130 if (extract32(pac, 0, 1) == 0) {
1131 return false;
1133 break;
1134 case 0:
1135 if (extract32(pac, 1, 1) == 0) {
1136 return false;
1138 break;
1139 default:
1140 g_assert_not_reached();
1143 wt = extract64(cr, 20, 1);
1144 lbn = extract64(cr, 16, 4);
1146 if (wt && !linked_bp_matches(cpu, lbn)) {
1147 return false;
1150 return true;
1153 static bool check_watchpoints(ARMCPU *cpu)
1155 CPUARMState *env = &cpu->env;
1156 int n;
1158 /* If watchpoints are disabled globally or we can't take debug
1159 * exceptions here then watchpoint firings are ignored.
1161 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1162 || !arm_generate_debug_exceptions(env)) {
1163 return false;
1166 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1167 if (bp_wp_matches(cpu, n, true)) {
1168 return true;
1171 return false;
1174 static bool check_breakpoints(ARMCPU *cpu)
1176 CPUARMState *env = &cpu->env;
1177 int n;
1179 /* If breakpoints are disabled globally or we can't take debug
1180 * exceptions here then breakpoint firings are ignored.
1182 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1183 || !arm_generate_debug_exceptions(env)) {
1184 return false;
1187 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1188 if (bp_wp_matches(cpu, n, false)) {
1189 return true;
1192 return false;
1195 void HELPER(check_breakpoints)(CPUARMState *env)
1197 ARMCPU *cpu = arm_env_get_cpu(env);
1199 if (check_breakpoints(cpu)) {
1200 HELPER(exception_internal(env, EXCP_DEBUG));
1204 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1206 /* Called by core code when a CPU watchpoint fires; need to check if this
1207 * is also an architectural watchpoint match.
1209 ARMCPU *cpu = ARM_CPU(cs);
1211 return check_watchpoints(cpu);
1214 void arm_debug_excp_handler(CPUState *cs)
1216 /* Called by core code when a watchpoint or breakpoint fires;
1217 * need to check which one and raise the appropriate exception.
1219 ARMCPU *cpu = ARM_CPU(cs);
1220 CPUARMState *env = &cpu->env;
1221 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1223 if (wp_hit) {
1224 if (wp_hit->flags & BP_CPU) {
1225 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1226 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1228 cs->watchpoint_hit = NULL;
1230 if (extended_addresses_enabled(env)) {
1231 env->exception.fsr = (1 << 9) | 0x22;
1232 } else {
1233 env->exception.fsr = 0x2;
1235 env->exception.vaddress = wp_hit->hitaddr;
1236 raise_exception(env, EXCP_DATA_ABORT,
1237 syn_watchpoint(same_el, 0, wnr),
1238 arm_debug_target_el(env));
1240 } else {
1241 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1242 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1244 /* (1) GDB breakpoints should be handled first.
1245 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1246 * since singlestep is also done by generating a debug internal
1247 * exception.
1249 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1250 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1251 return;
1254 if (extended_addresses_enabled(env)) {
1255 env->exception.fsr = (1 << 9) | 0x22;
1256 } else {
1257 env->exception.fsr = 0x2;
1259 /* FAR is UNKNOWN, so doesn't need setting */
1260 raise_exception(env, EXCP_PREFETCH_ABORT,
1261 syn_breakpoint(same_el),
1262 arm_debug_target_el(env));
1266 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1267 The only way to do that in TCG is a conditional branch, which clobbers
1268 all our temporaries. For now implement these as helper functions. */
1270 /* Similarly for variable shift instructions. */
1272 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1274 int shift = i & 0xff;
1275 if (shift >= 32) {
1276 if (shift == 32)
1277 env->CF = x & 1;
1278 else
1279 env->CF = 0;
1280 return 0;
1281 } else if (shift != 0) {
1282 env->CF = (x >> (32 - shift)) & 1;
1283 return x << shift;
1285 return x;
1288 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1290 int shift = i & 0xff;
1291 if (shift >= 32) {
1292 if (shift == 32)
1293 env->CF = (x >> 31) & 1;
1294 else
1295 env->CF = 0;
1296 return 0;
1297 } else if (shift != 0) {
1298 env->CF = (x >> (shift - 1)) & 1;
1299 return x >> shift;
1301 return x;
1304 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1306 int shift = i & 0xff;
1307 if (shift >= 32) {
1308 env->CF = (x >> 31) & 1;
1309 return (int32_t)x >> 31;
1310 } else if (shift != 0) {
1311 env->CF = (x >> (shift - 1)) & 1;
1312 return (int32_t)x >> shift;
1314 return x;
1317 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1319 int shift1, shift;
1320 shift1 = i & 0xff;
1321 shift = shift1 & 0x1f;
1322 if (shift == 0) {
1323 if (shift1 != 0)
1324 env->CF = (x >> 31) & 1;
1325 return x;
1326 } else {
1327 env->CF = (x >> (shift - 1)) & 1;
1328 return ((uint32_t)x >> shift) | (x << (32 - shift));