hw/intc/arm_gicv3: Implement EL2 traps for CPU i/f regs
[qemu/ar7.git] / hw / intc / arm_gicv3_cpuif.c
bloba9ee7fddf9e65de370d030c6676dbbfda28b9bc9
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "trace.h"
18 #include "gicv3_internal.h"
19 #include "cpu.h"
21 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
23 /* Given the CPU, find the right GICv3CPUState struct.
24 * Since we registered the CPU interface with the EL change hook as
25 * the opaque pointer, we can just directly get from the CPU to it.
27 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
30 static bool gicv3_use_ns_bank(CPUARMState *env)
32 /* Return true if we should use the NonSecure bank for a banked GIC
33 * CPU interface register. Note that this differs from the
34 * access_secure_reg() function because GICv3 banked registers are
35 * banked even for AArch64, unlike the other CPU system registers.
37 return !arm_is_secure_below_el3(env);
40 /* The minimum BPR for the virtual interface is a configurable property */
41 static inline int icv_min_vbpr(GICv3CPUState *cs)
43 return 7 - cs->vprebits;
46 /* Simple accessor functions for LR fields */
47 static uint32_t ich_lr_vintid(uint64_t lr)
49 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
52 static uint32_t ich_lr_pintid(uint64_t lr)
54 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
57 static uint32_t ich_lr_prio(uint64_t lr)
59 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
62 static int ich_lr_state(uint64_t lr)
64 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
67 static bool icv_access(CPUARMState *env, int hcr_flags)
69 /* Return true if this ICC_ register access should really be
70 * directed to an ICV_ access. hcr_flags is a mask of
71 * HCR_EL2 bits to check: we treat this as an ICV_ access
72 * if we are in NS EL1 and at least one of the specified
73 * HCR_EL2 bits is set.
75 * ICV registers fall into four categories:
76 * * access if NS EL1 and HCR_EL2.FMO == 1:
77 * all ICV regs with '0' in their name
78 * * access if NS EL1 and HCR_EL2.IMO == 1:
79 * all ICV regs with '1' in their name
80 * * access if NS EL1 and either IMO or FMO == 1:
81 * CTLR, DIR, PMR, RPR
83 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1
84 && !arm_is_secure_below_el3(env);
87 static int read_vbpr(GICv3CPUState *cs, int grp)
89 /* Read VBPR value out of the VMCR field (caller must handle
90 * VCBPR effects if required)
92 if (grp == GICV3_G0) {
93 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
94 ICH_VMCR_EL2_VBPR0_LENGTH);
95 } else {
96 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
97 ICH_VMCR_EL2_VBPR1_LENGTH);
101 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
103 /* Write new VBPR1 value, handling the "writing a value less than
104 * the minimum sets it to the minimum" semantics.
106 int min = icv_min_vbpr(cs);
108 if (grp != GICV3_G0) {
109 min++;
112 value = MAX(value, min);
114 if (grp == GICV3_G0) {
115 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
116 ICH_VMCR_EL2_VBPR0_LENGTH, value);
117 } else {
118 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
119 ICH_VMCR_EL2_VBPR1_LENGTH, value);
123 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
125 /* Return a mask word which clears the unimplemented priority bits
126 * from a priority value for a virtual interrupt. (Not to be confused
127 * with the group priority, whose mask depends on the value of VBPR
128 * for the interrupt group.)
130 return ~0U << (8 - cs->vpribits);
133 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
135 /* Calculate the current running priority based on the set bits
136 * in the ICH Active Priority Registers.
138 int i;
139 int aprmax = 1 << (cs->vprebits - 5);
141 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
143 for (i = 0; i < aprmax; i++) {
144 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
145 cs->ich_apr[GICV3_G1NS][i];
147 if (!apr) {
148 continue;
150 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
152 /* No current active interrupts: return idle priority */
153 return 0xff;
156 static int hppvi_index(GICv3CPUState *cs)
158 /* Return the list register index of the highest priority pending
159 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
160 * pseudocode. If no pending virtual interrupts, return -1.
162 int idx = -1;
163 int i;
164 /* Note that a list register entry with a priority of 0xff will
165 * never be reported by this function; this is the architecturally
166 * correct behaviour.
168 int prio = 0xff;
170 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
171 /* Both groups disabled, definitely nothing to do */
172 return idx;
175 for (i = 0; i < cs->num_list_regs; i++) {
176 uint64_t lr = cs->ich_lr_el2[i];
177 int thisprio;
179 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
180 /* Not Pending */
181 continue;
184 /* Ignore interrupts if relevant group enable not set */
185 if (lr & ICH_LR_EL2_GROUP) {
186 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
187 continue;
189 } else {
190 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
191 continue;
195 thisprio = ich_lr_prio(lr);
197 if (thisprio < prio) {
198 prio = thisprio;
199 idx = i;
203 return idx;
206 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
208 /* Return a mask word which clears the subpriority bits from
209 * a priority value for a virtual interrupt in the specified group.
210 * This depends on the VBPR value:
211 * a BPR of 0 means the group priority bits are [7:1];
212 * a BPR of 1 means they are [7:2], and so on down to
213 * a BPR of 7 meaning no group priority bits at all.
214 * Which BPR to use depends on the group of the interrupt and
215 * the current ICH_VMCR_EL2.VCBPR settings.
217 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
218 group = GICV3_G0;
221 return ~0U << (read_vbpr(cs, group) + 1);
224 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
226 /* Return true if we can signal this virtual interrupt defined by
227 * the given list register value; see the pseudocode functions
228 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
229 * Compare also icc_hppi_can_preempt() which is the non-virtual
230 * equivalent of these checks.
232 int grp;
233 uint32_t mask, prio, rprio, vpmr;
235 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
236 /* Virtual interface disabled */
237 return false;
240 /* We don't need to check that this LR is in Pending state because
241 * that has already been done in hppvi_index().
244 prio = ich_lr_prio(lr);
245 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
246 ICH_VMCR_EL2_VPMR_LENGTH);
248 if (prio >= vpmr) {
249 /* Priority mask masks this interrupt */
250 return false;
253 rprio = ich_highest_active_virt_prio(cs);
254 if (rprio == 0xff) {
255 /* No running interrupt so we can preempt */
256 return true;
259 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
261 mask = icv_gprio_mask(cs, grp);
263 /* We only preempt a running interrupt if the pending interrupt's
264 * group priority is sufficient (the subpriorities are not considered).
266 if ((prio & mask) < (rprio & mask)) {
267 return true;
270 return false;
273 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
274 uint32_t *misr)
276 /* Return a set of bits indicating the EOI maintenance interrupt status
277 * for each list register. The EOI maintenance interrupt status is
278 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
279 * (see the GICv3 spec for the ICH_EISR_EL2 register).
280 * If misr is not NULL then we should also collect the information
281 * about the MISR.EOI, MISR.NP and MISR.U bits.
283 uint32_t value = 0;
284 int validcount = 0;
285 bool seenpending = false;
286 int i;
288 for (i = 0; i < cs->num_list_regs; i++) {
289 uint64_t lr = cs->ich_lr_el2[i];
291 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
292 == ICH_LR_EL2_EOI) {
293 value |= (1 << i);
295 if ((lr & ICH_LR_EL2_STATE_MASK)) {
296 validcount++;
298 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
299 seenpending = true;
303 if (misr) {
304 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
305 *misr |= ICH_MISR_EL2_U;
307 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
308 *misr |= ICH_MISR_EL2_NP;
310 if (value) {
311 *misr |= ICH_MISR_EL2_EOI;
314 return value;
317 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
319 /* Return a set of bits indicating the maintenance interrupt status
320 * (as seen in the ICH_MISR_EL2 register).
322 uint32_t value = 0;
324 /* Scan list registers and fill in the U, NP and EOI bits */
325 eoi_maintenance_interrupt_state(cs, &value);
327 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
328 value |= ICH_MISR_EL2_LRENP;
331 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
332 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
333 value |= ICH_MISR_EL2_VGRP0E;
336 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
337 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
338 value |= ICH_MISR_EL2_VGRP0D;
340 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
341 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
342 value |= ICH_MISR_EL2_VGRP1E;
345 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
346 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
347 value |= ICH_MISR_EL2_VGRP1D;
350 return value;
353 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
355 /* Tell the CPU about any pending virtual interrupts or
356 * maintenance interrupts, following a change to the state
357 * of the CPU interface relevant to virtual interrupts.
359 * CAUTION: this function will call qemu_set_irq() on the
360 * CPU maintenance IRQ line, which is typically wired up
361 * to the GIC as a per-CPU interrupt. This means that it
362 * will recursively call back into the GIC code via
363 * gicv3_redist_set_irq() and thus into the CPU interface code's
364 * gicv3_cpuif_update(). It is therefore important that this
365 * function is only called as the final action of a CPU interface
366 * register write implementation, after all the GIC state
367 * fields have been updated. gicv3_cpuif_update() also must
368 * not cause this function to be called, but that happens
369 * naturally as a result of there being no architectural
370 * linkage between the physical and virtual GIC logic.
372 int idx;
373 int irqlevel = 0;
374 int fiqlevel = 0;
375 int maintlevel = 0;
377 idx = hppvi_index(cs);
378 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
379 if (idx >= 0) {
380 uint64_t lr = cs->ich_lr_el2[idx];
382 if (icv_hppi_can_preempt(cs, lr)) {
383 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
384 if (lr & ICH_LR_EL2_GROUP) {
385 irqlevel = 1;
386 } else {
387 fiqlevel = 1;
392 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
393 maintlevel = maintenance_interrupt_state(cs);
396 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
397 irqlevel, maintlevel);
399 qemu_set_irq(cs->parent_vfiq, fiqlevel);
400 qemu_set_irq(cs->parent_virq, irqlevel);
401 qemu_set_irq(cs->maintenance_irq, maintlevel);
404 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
406 GICv3CPUState *cs = icc_cs_from_env(env);
407 int regno = ri->opc2 & 3;
408 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
409 uint64_t value = cs->ich_apr[grp][regno];
411 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
412 return value;
415 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
416 uint64_t value)
418 GICv3CPUState *cs = icc_cs_from_env(env);
419 int regno = ri->opc2 & 3;
420 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
422 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
424 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
426 gicv3_cpuif_virt_update(cs);
427 return;
430 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
432 GICv3CPUState *cs = icc_cs_from_env(env);
433 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
434 uint64_t bpr;
435 bool satinc = false;
437 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
438 /* reads return bpr0 + 1 saturated to 7, writes ignored */
439 grp = GICV3_G0;
440 satinc = true;
443 bpr = read_vbpr(cs, grp);
445 if (satinc) {
446 bpr++;
447 bpr = MIN(bpr, 7);
450 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
452 return bpr;
455 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
456 uint64_t value)
458 GICv3CPUState *cs = icc_cs_from_env(env);
459 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
461 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
462 gicv3_redist_affid(cs), value);
464 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
465 /* reads return bpr0 + 1 saturated to 7, writes ignored */
466 return;
469 write_vbpr(cs, grp, value);
471 gicv3_cpuif_virt_update(cs);
474 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
476 GICv3CPUState *cs = icc_cs_from_env(env);
477 uint64_t value;
479 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
480 ICH_VMCR_EL2_VPMR_LENGTH);
482 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
483 return value;
486 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
487 uint64_t value)
489 GICv3CPUState *cs = icc_cs_from_env(env);
491 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
493 value &= icv_fullprio_mask(cs);
495 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
496 ICH_VMCR_EL2_VPMR_LENGTH, value);
498 gicv3_cpuif_virt_update(cs);
501 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
503 GICv3CPUState *cs = icc_cs_from_env(env);
504 int enbit;
505 uint64_t value;
507 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
508 value = extract64(cs->ich_vmcr_el2, enbit, 1);
510 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
511 gicv3_redist_affid(cs), value);
512 return value;
515 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
516 uint64_t value)
518 GICv3CPUState *cs = icc_cs_from_env(env);
519 int enbit;
521 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
522 gicv3_redist_affid(cs), value);
524 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
526 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
527 gicv3_cpuif_virt_update(cs);
530 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
532 GICv3CPUState *cs = icc_cs_from_env(env);
533 uint64_t value;
535 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
536 * should match the ones reported in ich_vtr_read().
538 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
539 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
541 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
542 value |= ICC_CTLR_EL1_EOIMODE;
545 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
546 value |= ICC_CTLR_EL1_CBPR;
549 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
550 return value;
553 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
556 GICv3CPUState *cs = icc_cs_from_env(env);
558 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
560 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
561 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
562 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
563 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
565 gicv3_cpuif_virt_update(cs);
568 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
570 GICv3CPUState *cs = icc_cs_from_env(env);
571 int prio = ich_highest_active_virt_prio(cs);
573 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
574 return prio;
577 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
579 GICv3CPUState *cs = icc_cs_from_env(env);
580 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
581 int idx = hppvi_index(cs);
582 uint64_t value = INTID_SPURIOUS;
584 if (idx >= 0) {
585 uint64_t lr = cs->ich_lr_el2[idx];
586 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
588 if (grp == thisgrp) {
589 value = ich_lr_vintid(lr);
593 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
594 return value;
597 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
599 /* Activate the interrupt in the specified list register
600 * by moving it from Pending to Active state, and update the
601 * Active Priority Registers.
603 uint32_t mask = icv_gprio_mask(cs, grp);
604 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
605 int aprbit = prio >> (8 - cs->vprebits);
606 int regno = aprbit / 32;
607 int regbit = aprbit % 32;
609 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
610 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
611 cs->ich_apr[grp][regno] |= (1 << regbit);
614 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
616 GICv3CPUState *cs = icc_cs_from_env(env);
617 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
618 int idx = hppvi_index(cs);
619 uint64_t intid = INTID_SPURIOUS;
621 if (idx >= 0) {
622 uint64_t lr = cs->ich_lr_el2[idx];
623 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
625 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
626 intid = ich_lr_vintid(lr);
627 if (intid < INTID_SECURE) {
628 icv_activate_irq(cs, idx, grp);
629 } else {
630 /* Interrupt goes from Pending to Invalid */
631 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
632 /* We will now return the (bogus) ID from the list register,
633 * as per the pseudocode.
639 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
640 gicv3_redist_affid(cs), intid);
641 return intid;
644 static int icc_highest_active_prio(GICv3CPUState *cs)
646 /* Calculate the current running priority based on the set bits
647 * in the Active Priority Registers.
649 int i;
651 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
652 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
653 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
655 if (!apr) {
656 continue;
658 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
660 /* No current active interrupts: return idle priority */
661 return 0xff;
664 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
666 /* Return a mask word which clears the subpriority bits from
667 * a priority value for an interrupt in the specified group.
668 * This depends on the BPR value:
669 * a BPR of 0 means the group priority bits are [7:1];
670 * a BPR of 1 means they are [7:2], and so on down to
671 * a BPR of 7 meaning no group priority bits at all.
672 * Which BPR to use depends on the group of the interrupt and
673 * the current ICC_CTLR.CBPR settings.
675 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
676 (group == GICV3_G1NS &&
677 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
678 group = GICV3_G0;
681 return ~0U << ((cs->icc_bpr[group] & 7) + 1);
684 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
686 /* Return true if there is no pending interrupt, or the
687 * highest priority pending interrupt is in a group which has been
688 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
690 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
693 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
695 /* Return true if we have a pending interrupt of sufficient
696 * priority to preempt.
698 int rprio;
699 uint32_t mask;
701 if (icc_no_enabled_hppi(cs)) {
702 return false;
705 if (cs->hppi.prio >= cs->icc_pmr_el1) {
706 /* Priority mask masks this interrupt */
707 return false;
710 rprio = icc_highest_active_prio(cs);
711 if (rprio == 0xff) {
712 /* No currently running interrupt so we can preempt */
713 return true;
716 mask = icc_gprio_mask(cs, cs->hppi.grp);
718 /* We only preempt a running interrupt if the pending interrupt's
719 * group priority is sufficient (the subpriorities are not considered).
721 if ((cs->hppi.prio & mask) < (rprio & mask)) {
722 return true;
725 return false;
728 void gicv3_cpuif_update(GICv3CPUState *cs)
730 /* Tell the CPU about its highest priority pending interrupt */
731 int irqlevel = 0;
732 int fiqlevel = 0;
733 ARMCPU *cpu = ARM_CPU(cs->cpu);
734 CPUARMState *env = &cpu->env;
736 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
737 cs->hppi.grp, cs->hppi.prio);
739 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
740 /* If a Security-enabled GIC sends a G1S interrupt to a
741 * Security-disabled CPU, we must treat it as if it were G0.
743 cs->hppi.grp = GICV3_G0;
746 if (icc_hppi_can_preempt(cs)) {
747 /* We have an interrupt: should we signal it as IRQ or FIQ?
748 * This is described in the GICv3 spec section 4.6.2.
750 bool isfiq;
752 switch (cs->hppi.grp) {
753 case GICV3_G0:
754 isfiq = true;
755 break;
756 case GICV3_G1:
757 isfiq = (!arm_is_secure(env) ||
758 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
759 break;
760 case GICV3_G1NS:
761 isfiq = arm_is_secure(env);
762 break;
763 default:
764 g_assert_not_reached();
767 if (isfiq) {
768 fiqlevel = 1;
769 } else {
770 irqlevel = 1;
774 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
776 qemu_set_irq(cs->parent_fiq, fiqlevel);
777 qemu_set_irq(cs->parent_irq, irqlevel);
780 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
782 GICv3CPUState *cs = icc_cs_from_env(env);
783 uint32_t value = cs->icc_pmr_el1;
785 if (icv_access(env, HCR_FMO | HCR_IMO)) {
786 return icv_pmr_read(env, ri);
789 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
790 (env->cp15.scr_el3 & SCR_FIQ)) {
791 /* NS access and Group 0 is inaccessible to NS: return the
792 * NS view of the current priority
794 if (value & 0x80) {
795 /* Secure priorities not visible to NS */
796 value = 0;
797 } else if (value != 0xff) {
798 value = (value << 1) & 0xff;
802 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
804 return value;
807 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
808 uint64_t value)
810 GICv3CPUState *cs = icc_cs_from_env(env);
812 if (icv_access(env, HCR_FMO | HCR_IMO)) {
813 return icv_pmr_write(env, ri, value);
816 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
818 value &= 0xff;
820 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
821 (env->cp15.scr_el3 & SCR_FIQ)) {
822 /* NS access and Group 0 is inaccessible to NS: return the
823 * NS view of the current priority
825 if (!(cs->icc_pmr_el1 & 0x80)) {
826 /* Current PMR in the secure range, don't allow NS to change it */
827 return;
829 value = (value >> 1) & 0x80;
831 cs->icc_pmr_el1 = value;
832 gicv3_cpuif_update(cs);
835 static void icc_activate_irq(GICv3CPUState *cs, int irq)
837 /* Move the interrupt from the Pending state to Active, and update
838 * the Active Priority Registers
840 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
841 int prio = cs->hppi.prio & mask;
842 int aprbit = prio >> 1;
843 int regno = aprbit / 32;
844 int regbit = aprbit % 32;
846 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
848 if (irq < GIC_INTERNAL) {
849 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
850 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
851 gicv3_redist_update(cs);
852 } else {
853 gicv3_gicd_active_set(cs->gic, irq);
854 gicv3_gicd_pending_clear(cs->gic, irq);
855 gicv3_update(cs->gic, irq, 1);
859 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
861 /* Return the highest priority pending interrupt register value
862 * for group 0.
864 bool irq_is_secure;
866 if (cs->hppi.prio == 0xff) {
867 return INTID_SPURIOUS;
870 /* Check whether we can return the interrupt or if we should return
871 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
872 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
873 * is always zero.)
875 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
876 (cs->hppi.grp != GICV3_G1NS));
878 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
879 return INTID_SPURIOUS;
881 if (irq_is_secure && !arm_is_secure(env)) {
882 /* Secure interrupts not visible to Nonsecure */
883 return INTID_SPURIOUS;
886 if (cs->hppi.grp != GICV3_G0) {
887 /* Indicate to EL3 that there's a Group 1 interrupt for the other
888 * state pending.
890 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
893 return cs->hppi.irq;
896 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
898 /* Return the highest priority pending interrupt register value
899 * for group 1.
901 bool irq_is_secure;
903 if (cs->hppi.prio == 0xff) {
904 return INTID_SPURIOUS;
907 /* Check whether we can return the interrupt or if we should return
908 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
909 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
910 * is always zero.)
912 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
913 (cs->hppi.grp != GICV3_G1NS));
915 if (cs->hppi.grp == GICV3_G0) {
916 /* Group 0 interrupts not visible via HPPIR1 */
917 return INTID_SPURIOUS;
919 if (irq_is_secure) {
920 if (!arm_is_secure(env)) {
921 /* Secure interrupts not visible in Non-secure */
922 return INTID_SPURIOUS;
924 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
925 /* Group 1 non-secure interrupts not visible in Secure EL1 */
926 return INTID_SPURIOUS;
929 return cs->hppi.irq;
932 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
934 GICv3CPUState *cs = icc_cs_from_env(env);
935 uint64_t intid;
937 if (icv_access(env, HCR_FMO)) {
938 return icv_iar_read(env, ri);
941 if (!icc_hppi_can_preempt(cs)) {
942 intid = INTID_SPURIOUS;
943 } else {
944 intid = icc_hppir0_value(cs, env);
947 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
948 icc_activate_irq(cs, intid);
951 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
952 return intid;
955 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
957 GICv3CPUState *cs = icc_cs_from_env(env);
958 uint64_t intid;
960 if (icv_access(env, HCR_IMO)) {
961 return icv_iar_read(env, ri);
964 if (!icc_hppi_can_preempt(cs)) {
965 intid = INTID_SPURIOUS;
966 } else {
967 intid = icc_hppir1_value(cs, env);
970 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
971 icc_activate_irq(cs, intid);
974 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
975 return intid;
978 static void icc_drop_prio(GICv3CPUState *cs, int grp)
980 /* Drop the priority of the currently active interrupt in
981 * the specified group.
983 * Note that we can guarantee (because of the requirement to nest
984 * ICC_IAR reads [which activate an interrupt and raise priority]
985 * with ICC_EOIR writes [which drop the priority for the interrupt])
986 * that the interrupt we're being called for is the highest priority
987 * active interrupt, meaning that it has the lowest set bit in the
988 * APR registers.
990 * If the guest does not honour the ordering constraints then the
991 * behaviour of the GIC is UNPREDICTABLE, which for us means that
992 * the values of the APR registers might become incorrect and the
993 * running priority will be wrong, so interrupts that should preempt
994 * might not do so, and interrupts that should not preempt might do so.
996 int i;
998 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
999 uint64_t *papr = &cs->icc_apr[grp][i];
1001 if (!*papr) {
1002 continue;
1004 /* Clear the lowest set bit */
1005 *papr &= *papr - 1;
1006 break;
1009 /* running priority change means we need an update for this cpu i/f */
1010 gicv3_cpuif_update(cs);
1013 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1015 /* Return true if we should split priority drop and interrupt
1016 * deactivation, ie whether the relevant EOIMode bit is set.
1018 if (arm_is_el3_or_mon(env)) {
1019 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1021 if (arm_is_secure_below_el3(env)) {
1022 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1023 } else {
1024 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1028 static int icc_highest_active_group(GICv3CPUState *cs)
1030 /* Return the group with the highest priority active interrupt.
1031 * We can do this by just comparing the APRs to see which one
1032 * has the lowest set bit.
1033 * (If more than one group is active at the same priority then
1034 * we're in UNPREDICTABLE territory.)
1036 int i;
1038 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1039 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1040 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1041 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1043 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1044 return GICV3_G1NS;
1046 if (g1ctz < g0ctz) {
1047 return GICV3_G1;
1049 if (g0ctz < 32) {
1050 return GICV3_G0;
1053 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1054 * ignores the spurious EOI attempt.
1056 return -1;
1059 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1061 if (irq < GIC_INTERNAL) {
1062 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1063 gicv3_redist_update(cs);
1064 } else {
1065 gicv3_gicd_active_clear(cs->gic, irq);
1066 gicv3_update(cs->gic, irq, 1);
1070 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1072 /* Return true if we should split priority drop and interrupt
1073 * deactivation, ie whether the virtual EOIMode bit is set.
1075 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1078 static int icv_find_active(GICv3CPUState *cs, int irq)
1080 /* Given an interrupt number for an active interrupt, return the index
1081 * of the corresponding list register, or -1 if there is no match.
1082 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1084 int i;
1086 for (i = 0; i < cs->num_list_regs; i++) {
1087 uint64_t lr = cs->ich_lr_el2[i];
1089 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1090 return i;
1094 return -1;
1097 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1099 /* Deactivate the interrupt in the specified list register index */
1100 uint64_t lr = cs->ich_lr_el2[idx];
1102 if (lr & ICH_LR_EL2_HW) {
1103 /* Deactivate the associated physical interrupt */
1104 int pirq = ich_lr_pintid(lr);
1106 if (pirq < INTID_SECURE) {
1107 icc_deactivate_irq(cs, pirq);
1111 /* Clear the 'active' part of the state, so ActivePending->Pending
1112 * and Active->Invalid.
1114 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1115 cs->ich_lr_el2[idx] = lr;
1118 static void icv_increment_eoicount(GICv3CPUState *cs)
1120 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1121 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1122 ICH_HCR_EL2_EOICOUNT_LENGTH);
1124 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1125 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1128 static int icv_drop_prio(GICv3CPUState *cs)
1130 /* Drop the priority of the currently active virtual interrupt
1131 * (favouring group 0 if there is a set active bit at
1132 * the same priority for both group 0 and group 1).
1133 * Return the priority value for the bit we just cleared,
1134 * or 0xff if no bits were set in the AP registers at all.
1135 * Note that though the ich_apr[] are uint64_t only the low
1136 * 32 bits are actually relevant.
1138 int i;
1139 int aprmax = 1 << (cs->vprebits - 5);
1141 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1143 for (i = 0; i < aprmax; i++) {
1144 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1145 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1146 int apr0count, apr1count;
1148 if (!*papr0 && !*papr1) {
1149 continue;
1152 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1153 * because we need to return the bit number we cleared so
1154 * it can be compared against the list register's priority field.
1156 apr0count = ctz32(*papr0);
1157 apr1count = ctz32(*papr1);
1159 if (apr0count <= apr1count) {
1160 *papr0 &= *papr0 - 1;
1161 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1162 } else {
1163 *papr1 &= *papr1 - 1;
1164 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1167 return 0xff;
1170 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1171 uint64_t value)
1173 /* Deactivate interrupt */
1174 GICv3CPUState *cs = icc_cs_from_env(env);
1175 int idx;
1176 int irq = value & 0xffffff;
1178 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1180 if (irq >= cs->gic->num_irq) {
1181 /* Also catches special interrupt numbers and LPIs */
1182 return;
1185 if (!icv_eoi_split(env, cs)) {
1186 return;
1189 idx = icv_find_active(cs, irq);
1191 if (idx < 0) {
1192 /* No list register matching this, so increment the EOI count
1193 * (might trigger a maintenance interrupt)
1195 icv_increment_eoicount(cs);
1196 } else {
1197 icv_deactivate_irq(cs, idx);
1200 gicv3_cpuif_virt_update(cs);
1203 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1204 uint64_t value)
1206 /* End of Interrupt */
1207 GICv3CPUState *cs = icc_cs_from_env(env);
1208 int irq = value & 0xffffff;
1209 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1210 int idx, dropprio;
1212 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1213 gicv3_redist_affid(cs), value);
1215 if (irq >= cs->gic->num_irq) {
1216 /* Also catches special interrupt numbers and LPIs */
1217 return;
1220 /* We implement the IMPDEF choice of "drop priority before doing
1221 * error checks" (because that lets us avoid scanning the AP
1222 * registers twice).
1224 dropprio = icv_drop_prio(cs);
1225 if (dropprio == 0xff) {
1226 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1227 * whether the list registers are checked in this
1228 * situation; we choose not to.
1230 return;
1233 idx = icv_find_active(cs, irq);
1235 if (idx < 0) {
1236 /* No valid list register corresponding to EOI ID */
1237 icv_increment_eoicount(cs);
1238 } else {
1239 uint64_t lr = cs->ich_lr_el2[idx];
1240 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1241 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1243 if (thisgrp == grp && lr_gprio == dropprio) {
1244 if (!icv_eoi_split(env, cs)) {
1245 /* Priority drop and deactivate not split: deactivate irq now */
1246 icv_deactivate_irq(cs, idx);
1251 gicv3_cpuif_virt_update(cs);
1254 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1255 uint64_t value)
1257 /* End of Interrupt */
1258 GICv3CPUState *cs = icc_cs_from_env(env);
1259 int irq = value & 0xffffff;
1260 int grp;
1262 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1263 icv_eoir_write(env, ri, value);
1264 return;
1267 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1268 gicv3_redist_affid(cs), value);
1270 if (ri->crm == 8) {
1271 /* EOIR0 */
1272 grp = GICV3_G0;
1273 } else {
1274 /* EOIR1 */
1275 if (arm_is_secure(env)) {
1276 grp = GICV3_G1;
1277 } else {
1278 grp = GICV3_G1NS;
1282 if (irq >= cs->gic->num_irq) {
1283 /* This handles two cases:
1284 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1285 * to the GICC_EOIR, the GIC ignores that write.
1286 * 2. If software writes the number of a non-existent interrupt
1287 * this must be a subcase of "value written does not match the last
1288 * valid interrupt value read from the Interrupt Acknowledge
1289 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1291 return;
1294 if (icc_highest_active_group(cs) != grp) {
1295 return;
1298 icc_drop_prio(cs, grp);
1300 if (!icc_eoi_split(env, cs)) {
1301 /* Priority drop and deactivate not split: deactivate irq now */
1302 icc_deactivate_irq(cs, irq);
1306 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1308 GICv3CPUState *cs = icc_cs_from_env(env);
1309 uint64_t value;
1311 if (icv_access(env, HCR_FMO)) {
1312 return icv_hppir_read(env, ri);
1315 value = icc_hppir0_value(cs, env);
1316 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1317 return value;
1320 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1322 GICv3CPUState *cs = icc_cs_from_env(env);
1323 uint64_t value;
1325 if (icv_access(env, HCR_IMO)) {
1326 return icv_hppir_read(env, ri);
1329 value = icc_hppir1_value(cs, env);
1330 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1331 return value;
1334 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1336 GICv3CPUState *cs = icc_cs_from_env(env);
1337 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1338 bool satinc = false;
1339 uint64_t bpr;
1341 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1342 return icv_bpr_read(env, ri);
1345 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1346 grp = GICV3_G1NS;
1349 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1350 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1351 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1352 * modify BPR0
1354 grp = GICV3_G0;
1357 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1358 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1359 /* reads return bpr0 + 1 sat to 7, writes ignored */
1360 grp = GICV3_G0;
1361 satinc = true;
1364 bpr = cs->icc_bpr[grp];
1365 if (satinc) {
1366 bpr++;
1367 bpr = MIN(bpr, 7);
1370 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1372 return bpr;
1375 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1376 uint64_t value)
1378 GICv3CPUState *cs = icc_cs_from_env(env);
1379 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1381 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1382 icv_bpr_write(env, ri, value);
1383 return;
1386 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1387 gicv3_redist_affid(cs), value);
1389 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1390 grp = GICV3_G1NS;
1393 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1394 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1395 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1396 * modify BPR0
1398 grp = GICV3_G0;
1401 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1402 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1403 /* reads return bpr0 + 1 sat to 7, writes ignored */
1404 return;
1407 cs->icc_bpr[grp] = value & 7;
1408 gicv3_cpuif_update(cs);
1411 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1413 GICv3CPUState *cs = icc_cs_from_env(env);
1414 uint64_t value;
1416 int regno = ri->opc2 & 3;
1417 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1419 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1420 return icv_ap_read(env, ri);
1423 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1424 grp = GICV3_G1NS;
1427 value = cs->icc_apr[grp][regno];
1429 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1430 return value;
1433 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1434 uint64_t value)
1436 GICv3CPUState *cs = icc_cs_from_env(env);
1438 int regno = ri->opc2 & 3;
1439 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1441 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1442 icv_ap_write(env, ri, value);
1443 return;
1446 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1448 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1449 grp = GICV3_G1NS;
1452 /* It's not possible to claim that a Non-secure interrupt is active
1453 * at a priority outside the Non-secure range (128..255), since this
1454 * would otherwise allow malicious NS code to block delivery of S interrupts
1455 * by writing a bad value to these registers.
1457 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1458 return;
1461 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1462 gicv3_cpuif_update(cs);
1465 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1466 uint64_t value)
1468 /* Deactivate interrupt */
1469 GICv3CPUState *cs = icc_cs_from_env(env);
1470 int irq = value & 0xffffff;
1471 bool irq_is_secure, single_sec_state, irq_is_grp0;
1472 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1474 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1475 icv_dir_write(env, ri, value);
1476 return;
1479 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1481 if (irq >= cs->gic->num_irq) {
1482 /* Also catches special interrupt numbers and LPIs */
1483 return;
1486 if (!icc_eoi_split(env, cs)) {
1487 return;
1490 int grp = gicv3_irq_group(cs->gic, cs, irq);
1492 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1493 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1494 irq_is_grp0 = grp == GICV3_G0;
1496 /* Check whether we're allowed to deactivate this interrupt based
1497 * on its group and the current CPU state.
1498 * These checks are laid out to correspond to the spec's pseudocode.
1500 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1501 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1502 /* No need to include !IsSecure in route_*_to_el2 as it's only
1503 * tested in cases where we know !IsSecure is true.
1505 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1506 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1508 switch (arm_current_el(env)) {
1509 case 3:
1510 break;
1511 case 2:
1512 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1513 break;
1515 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1516 break;
1518 return;
1519 case 1:
1520 if (!arm_is_secure_below_el3(env)) {
1521 if (single_sec_state && irq_is_grp0 &&
1522 !route_fiq_to_el3 && !route_fiq_to_el2) {
1523 break;
1525 if (!irq_is_secure && !irq_is_grp0 &&
1526 !route_irq_to_el3 && !route_irq_to_el2) {
1527 break;
1529 } else {
1530 if (irq_is_grp0 && !route_fiq_to_el3) {
1531 break;
1533 if (!irq_is_grp0 &&
1534 (!irq_is_secure || !single_sec_state) &&
1535 !route_irq_to_el3) {
1536 break;
1539 return;
1540 default:
1541 g_assert_not_reached();
1544 icc_deactivate_irq(cs, irq);
1547 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1549 GICv3CPUState *cs = icc_cs_from_env(env);
1550 int prio;
1552 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1553 return icv_rpr_read(env, ri);
1556 prio = icc_highest_active_prio(cs);
1558 if (arm_feature(env, ARM_FEATURE_EL3) &&
1559 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1560 /* NS GIC access and Group 0 is inaccessible to NS */
1561 if (prio & 0x80) {
1562 /* NS mustn't see priorities in the Secure half of the range */
1563 prio = 0;
1564 } else if (prio != 0xff) {
1565 /* Non-idle priority: show the Non-secure view of it */
1566 prio = (prio << 1) & 0xff;
1570 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1571 return prio;
1574 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1575 uint64_t value, int grp, bool ns)
1577 GICv3State *s = cs->gic;
1579 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1580 uint64_t aff = extract64(value, 48, 8) << 16 |
1581 extract64(value, 32, 8) << 8 |
1582 extract64(value, 16, 8);
1583 uint32_t targetlist = extract64(value, 0, 16);
1584 uint32_t irq = extract64(value, 24, 4);
1585 bool irm = extract64(value, 40, 1);
1586 int i;
1588 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1589 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1590 * interrupts as Group 0 interrupts and must send Secure Group 0
1591 * interrupts to the target CPUs.
1593 grp = GICV3_G0;
1596 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1597 aff, targetlist);
1599 for (i = 0; i < s->num_cpu; i++) {
1600 GICv3CPUState *ocs = &s->cpu[i];
1602 if (irm) {
1603 /* IRM == 1 : route to all CPUs except self */
1604 if (cs == ocs) {
1605 continue;
1607 } else {
1608 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1609 * where the corresponding bit is set in targetlist
1611 int aff0;
1613 if (ocs->gicr_typer >> 40 != aff) {
1614 continue;
1616 aff0 = extract64(ocs->gicr_typer, 32, 8);
1617 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1618 continue;
1622 /* The redistributor will check against its own GICR_NSACR as needed */
1623 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1627 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1628 uint64_t value)
1630 /* Generate Secure Group 0 SGI. */
1631 GICv3CPUState *cs = icc_cs_from_env(env);
1632 bool ns = !arm_is_secure(env);
1634 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1637 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1638 uint64_t value)
1640 /* Generate Group 1 SGI for the current Security state */
1641 GICv3CPUState *cs = icc_cs_from_env(env);
1642 int grp;
1643 bool ns = !arm_is_secure(env);
1645 grp = ns ? GICV3_G1NS : GICV3_G1;
1646 icc_generate_sgi(env, cs, value, grp, ns);
1649 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1650 uint64_t value)
1652 /* Generate Group 1 SGI for the Security state that is not
1653 * the current state
1655 GICv3CPUState *cs = icc_cs_from_env(env);
1656 int grp;
1657 bool ns = !arm_is_secure(env);
1659 grp = ns ? GICV3_G1 : GICV3_G1NS;
1660 icc_generate_sgi(env, cs, value, grp, ns);
1663 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1665 GICv3CPUState *cs = icc_cs_from_env(env);
1666 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1667 uint64_t value;
1669 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1670 return icv_igrpen_read(env, ri);
1673 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1674 grp = GICV3_G1NS;
1677 value = cs->icc_igrpen[grp];
1678 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1679 gicv3_redist_affid(cs), value);
1680 return value;
1683 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1684 uint64_t value)
1686 GICv3CPUState *cs = icc_cs_from_env(env);
1687 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1689 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1690 icv_igrpen_write(env, ri, value);
1691 return;
1694 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1695 gicv3_redist_affid(cs), value);
1697 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1698 grp = GICV3_G1NS;
1701 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1702 gicv3_cpuif_update(cs);
1705 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1707 GICv3CPUState *cs = icc_cs_from_env(env);
1708 uint64_t value;
1710 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1711 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1712 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1713 return value;
1716 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1717 uint64_t value)
1719 GICv3CPUState *cs = icc_cs_from_env(env);
1721 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1723 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1724 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1725 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1726 gicv3_cpuif_update(cs);
1729 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1731 GICv3CPUState *cs = icc_cs_from_env(env);
1732 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1733 uint64_t value;
1735 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1736 return icv_ctlr_read(env, ri);
1739 value = cs->icc_ctlr_el1[bank];
1740 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1741 return value;
1744 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745 uint64_t value)
1747 GICv3CPUState *cs = icc_cs_from_env(env);
1748 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1749 uint64_t mask;
1751 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1752 icv_ctlr_write(env, ri, value);
1753 return;
1756 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1758 /* Only CBPR and EOIMODE can be RW;
1759 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1760 * the asseciated priority-based routing of them);
1761 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1763 if (arm_feature(env, ARM_FEATURE_EL3) &&
1764 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1765 mask = ICC_CTLR_EL1_EOIMODE;
1766 } else {
1767 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1770 cs->icc_ctlr_el1[bank] &= ~mask;
1771 cs->icc_ctlr_el1[bank] |= (value & mask);
1772 gicv3_cpuif_update(cs);
1776 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1778 GICv3CPUState *cs = icc_cs_from_env(env);
1779 uint64_t value;
1781 value = cs->icc_ctlr_el3;
1782 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1783 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1785 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1786 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1788 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1789 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1791 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1792 value |= ICC_CTLR_EL3_CBPR_EL1S;
1795 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1796 return value;
1799 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1800 uint64_t value)
1802 GICv3CPUState *cs = icc_cs_from_env(env);
1803 uint64_t mask;
1805 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1807 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1808 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1809 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1810 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1812 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1813 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1816 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1817 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1818 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1820 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1821 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1824 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1825 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1827 cs->icc_ctlr_el3 &= ~mask;
1828 cs->icc_ctlr_el3 |= (value & mask);
1829 gicv3_cpuif_update(cs);
1832 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1833 const ARMCPRegInfo *ri, bool isread)
1835 CPAccessResult r = CP_ACCESS_OK;
1836 GICv3CPUState *cs = icc_cs_from_env(env);
1837 int el = arm_current_el(env);
1839 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1840 el == 1 && !arm_is_secure_below_el3(env)) {
1841 /* Takes priority over a possible EL3 trap */
1842 return CP_ACCESS_TRAP_EL2;
1845 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1846 switch (el) {
1847 case 1:
1848 if (arm_is_secure_below_el3(env) ||
1849 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
1850 r = CP_ACCESS_TRAP_EL3;
1852 break;
1853 case 2:
1854 r = CP_ACCESS_TRAP_EL3;
1855 break;
1856 case 3:
1857 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1858 r = CP_ACCESS_TRAP_EL3;
1860 break;
1861 default:
1862 g_assert_not_reached();
1866 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1867 r = CP_ACCESS_TRAP;
1869 return r;
1872 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1873 const ARMCPRegInfo *ri, bool isread)
1875 GICv3CPUState *cs = icc_cs_from_env(env);
1877 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1878 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1879 /* Takes priority over a possible EL3 trap */
1880 return CP_ACCESS_TRAP_EL2;
1883 return gicv3_irqfiq_access(env, ri, isread);
1886 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1887 const ARMCPRegInfo *ri, bool isread)
1889 if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) &&
1890 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1891 /* Takes priority over a possible EL3 trap */
1892 return CP_ACCESS_TRAP_EL2;
1895 return gicv3_irqfiq_access(env, ri, isread);
1898 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1899 const ARMCPRegInfo *ri, bool isread)
1901 CPAccessResult r = CP_ACCESS_OK;
1902 GICv3CPUState *cs = icc_cs_from_env(env);
1903 int el = arm_current_el(env);
1905 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1906 el == 1 && !arm_is_secure_below_el3(env)) {
1907 /* Takes priority over a possible EL3 trap */
1908 return CP_ACCESS_TRAP_EL2;
1911 if (env->cp15.scr_el3 & SCR_FIQ) {
1912 switch (el) {
1913 case 1:
1914 if (arm_is_secure_below_el3(env) ||
1915 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1916 r = CP_ACCESS_TRAP_EL3;
1918 break;
1919 case 2:
1920 r = CP_ACCESS_TRAP_EL3;
1921 break;
1922 case 3:
1923 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1924 r = CP_ACCESS_TRAP_EL3;
1926 break;
1927 default:
1928 g_assert_not_reached();
1932 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1933 r = CP_ACCESS_TRAP;
1935 return r;
1938 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1939 const ARMCPRegInfo *ri, bool isread)
1941 CPAccessResult r = CP_ACCESS_OK;
1942 GICv3CPUState *cs = icc_cs_from_env(env);
1943 int el = arm_current_el(env);
1945 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1946 el == 1 && !arm_is_secure_below_el3(env)) {
1947 /* Takes priority over a possible EL3 trap */
1948 return CP_ACCESS_TRAP_EL2;
1951 if (env->cp15.scr_el3 & SCR_IRQ) {
1952 switch (el) {
1953 case 1:
1954 if (arm_is_secure_below_el3(env) ||
1955 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
1956 r = CP_ACCESS_TRAP_EL3;
1958 break;
1959 case 2:
1960 r = CP_ACCESS_TRAP_EL3;
1961 break;
1962 case 3:
1963 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1964 r = CP_ACCESS_TRAP_EL3;
1966 break;
1967 default:
1968 g_assert_not_reached();
1972 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1973 r = CP_ACCESS_TRAP;
1975 return r;
1978 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1980 GICv3CPUState *cs = icc_cs_from_env(env);
1982 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
1983 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1984 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1985 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
1986 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1987 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1988 cs->icc_pmr_el1 = 0;
1989 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
1990 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
1991 if (arm_feature(env, ARM_FEATURE_EL3)) {
1992 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
1993 } else {
1994 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
1996 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
1997 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
1998 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
1999 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2000 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2002 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2003 cs->ich_hcr_el2 = 0;
2004 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2005 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2006 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2007 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2010 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2011 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2012 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2013 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2014 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2015 .readfn = icc_pmr_read,
2016 .writefn = icc_pmr_write,
2017 /* We hang the whole cpu interface reset routine off here
2018 * rather than parcelling it out into one little function
2019 * per register
2021 .resetfn = icc_reset,
2023 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2024 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2025 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2026 .access = PL1_R, .accessfn = gicv3_fiq_access,
2027 .readfn = icc_iar0_read,
2029 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2030 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2031 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2032 .access = PL1_W, .accessfn = gicv3_fiq_access,
2033 .writefn = icc_eoir_write,
2035 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2036 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2037 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2038 .access = PL1_R, .accessfn = gicv3_fiq_access,
2039 .readfn = icc_hppir0_read,
2041 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2042 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2043 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2044 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2045 .readfn = icc_bpr_read,
2046 .writefn = icc_bpr_write,
2048 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2049 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2050 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2051 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2052 .readfn = icc_ap_read,
2053 .writefn = icc_ap_write,
2055 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2056 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2057 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2058 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2059 .readfn = icc_ap_read,
2060 .writefn = icc_ap_write,
2062 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2063 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2064 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2065 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2066 .readfn = icc_ap_read,
2067 .writefn = icc_ap_write,
2069 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2070 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2071 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2072 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2073 .readfn = icc_ap_read,
2074 .writefn = icc_ap_write,
2076 /* All the ICC_AP1R*_EL1 registers are banked */
2077 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2078 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2079 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2080 .access = PL1_RW, .accessfn = gicv3_irq_access,
2081 .readfn = icc_ap_read,
2082 .writefn = icc_ap_write,
2084 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2085 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2086 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2087 .access = PL1_RW, .accessfn = gicv3_irq_access,
2088 .readfn = icc_ap_read,
2089 .writefn = icc_ap_write,
2091 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2092 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2093 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2094 .access = PL1_RW, .accessfn = gicv3_irq_access,
2095 .readfn = icc_ap_read,
2096 .writefn = icc_ap_write,
2098 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2099 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2100 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2101 .access = PL1_RW, .accessfn = gicv3_irq_access,
2102 .readfn = icc_ap_read,
2103 .writefn = icc_ap_write,
2105 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2106 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2107 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2108 .access = PL1_W, .accessfn = gicv3_dir_access,
2109 .writefn = icc_dir_write,
2111 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2112 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2113 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2114 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2115 .readfn = icc_rpr_read,
2117 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2118 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2119 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2120 .access = PL1_W, .accessfn = gicv3_sgi_access,
2121 .writefn = icc_sgi1r_write,
2123 { .name = "ICC_SGI1R",
2124 .cp = 15, .opc1 = 0, .crm = 12,
2125 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2126 .access = PL1_W, .accessfn = gicv3_sgi_access,
2127 .writefn = icc_sgi1r_write,
2129 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2130 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2131 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2132 .access = PL1_W, .accessfn = gicv3_sgi_access,
2133 .writefn = icc_asgi1r_write,
2135 { .name = "ICC_ASGI1R",
2136 .cp = 15, .opc1 = 1, .crm = 12,
2137 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2138 .access = PL1_W, .accessfn = gicv3_sgi_access,
2139 .writefn = icc_asgi1r_write,
2141 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2142 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2143 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2144 .access = PL1_W, .accessfn = gicv3_sgi_access,
2145 .writefn = icc_sgi0r_write,
2147 { .name = "ICC_SGI0R",
2148 .cp = 15, .opc1 = 2, .crm = 12,
2149 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2150 .access = PL1_W, .accessfn = gicv3_sgi_access,
2151 .writefn = icc_sgi0r_write,
2153 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2154 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2155 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2156 .access = PL1_R, .accessfn = gicv3_irq_access,
2157 .readfn = icc_iar1_read,
2159 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2160 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2161 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2162 .access = PL1_W, .accessfn = gicv3_irq_access,
2163 .writefn = icc_eoir_write,
2165 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2166 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2167 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2168 .access = PL1_R, .accessfn = gicv3_irq_access,
2169 .readfn = icc_hppir1_read,
2171 /* This register is banked */
2172 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2173 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2174 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2175 .access = PL1_RW, .accessfn = gicv3_irq_access,
2176 .readfn = icc_bpr_read,
2177 .writefn = icc_bpr_write,
2179 /* This register is banked */
2180 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2181 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2182 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2183 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2184 .readfn = icc_ctlr_el1_read,
2185 .writefn = icc_ctlr_el1_write,
2187 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2188 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2189 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2190 .access = PL1_RW,
2191 /* We don't support IRQ/FIQ bypass and system registers are
2192 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2193 * This register is banked but since it's constant we don't
2194 * need to do anything special.
2196 .resetvalue = 0x7,
2198 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2199 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2200 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2201 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2202 .readfn = icc_igrpen_read,
2203 .writefn = icc_igrpen_write,
2205 /* This register is banked */
2206 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2207 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2208 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2209 .access = PL1_RW, .accessfn = gicv3_irq_access,
2210 .readfn = icc_igrpen_read,
2211 .writefn = icc_igrpen_write,
2213 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2214 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2215 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2216 .access = PL2_RW,
2217 /* We don't support IRQ/FIQ bypass and system registers are
2218 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2220 .resetvalue = 0xf,
2222 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2223 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2224 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2225 .access = PL3_RW,
2226 .readfn = icc_ctlr_el3_read,
2227 .writefn = icc_ctlr_el3_write,
2229 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2230 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2231 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2232 .access = PL3_RW,
2233 /* We don't support IRQ/FIQ bypass and system registers are
2234 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2236 .resetvalue = 0xf,
2238 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2239 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2240 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2241 .access = PL3_RW,
2242 .readfn = icc_igrpen1_el3_read,
2243 .writefn = icc_igrpen1_el3_write,
2245 REGINFO_SENTINEL
2248 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2250 GICv3CPUState *cs = icc_cs_from_env(env);
2251 int regno = ri->opc2 & 3;
2252 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2253 uint64_t value;
2255 value = cs->ich_apr[grp][regno];
2256 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2257 return value;
2260 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2261 uint64_t value)
2263 GICv3CPUState *cs = icc_cs_from_env(env);
2264 int regno = ri->opc2 & 3;
2265 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2267 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2269 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2270 gicv3_cpuif_virt_update(cs);
2273 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2275 GICv3CPUState *cs = icc_cs_from_env(env);
2276 uint64_t value = cs->ich_hcr_el2;
2278 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2279 return value;
2282 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2283 uint64_t value)
2285 GICv3CPUState *cs = icc_cs_from_env(env);
2287 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2289 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2290 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2291 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2292 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2293 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2295 cs->ich_hcr_el2 = value;
2296 gicv3_cpuif_virt_update(cs);
2299 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2301 GICv3CPUState *cs = icc_cs_from_env(env);
2302 uint64_t value = cs->ich_vmcr_el2;
2304 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2305 return value;
2308 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2309 uint64_t value)
2311 GICv3CPUState *cs = icc_cs_from_env(env);
2313 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2315 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2316 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2317 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2318 value |= ICH_VMCR_EL2_VFIQEN;
2320 cs->ich_vmcr_el2 = value;
2321 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2322 * by reading and writing back the fields.
2324 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
2325 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2327 gicv3_cpuif_virt_update(cs);
2330 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2332 GICv3CPUState *cs = icc_cs_from_env(env);
2333 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2334 uint64_t value;
2336 /* This read function handles all of:
2337 * 64-bit reads of the whole LR
2338 * 32-bit reads of the low half of the LR
2339 * 32-bit reads of the high half of the LR
2341 if (ri->state == ARM_CP_STATE_AA32) {
2342 if (ri->crm >= 14) {
2343 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2344 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2345 } else {
2346 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2347 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2349 } else {
2350 value = cs->ich_lr_el2[regno];
2351 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2354 return value;
2357 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2358 uint64_t value)
2360 GICv3CPUState *cs = icc_cs_from_env(env);
2361 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2363 /* This write function handles all of:
2364 * 64-bit writes to the whole LR
2365 * 32-bit writes to the low half of the LR
2366 * 32-bit writes to the high half of the LR
2368 if (ri->state == ARM_CP_STATE_AA32) {
2369 if (ri->crm >= 14) {
2370 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2371 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2372 } else {
2373 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2374 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2376 } else {
2377 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2380 /* Enforce RES0 bits in priority field */
2381 if (cs->vpribits < 8) {
2382 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2383 8 - cs->vpribits, 0);
2386 cs->ich_lr_el2[regno] = value;
2387 gicv3_cpuif_virt_update(cs);
2390 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2392 GICv3CPUState *cs = icc_cs_from_env(env);
2393 uint64_t value;
2395 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2396 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2397 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2398 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2399 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2401 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2402 return value;
2405 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2407 GICv3CPUState *cs = icc_cs_from_env(env);
2408 uint64_t value = maintenance_interrupt_state(cs);
2410 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2411 return value;
2414 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2416 GICv3CPUState *cs = icc_cs_from_env(env);
2417 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2419 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2420 return value;
2423 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2425 GICv3CPUState *cs = icc_cs_from_env(env);
2426 uint64_t value = 0;
2427 int i;
2429 for (i = 0; i < cs->num_list_regs; i++) {
2430 uint64_t lr = cs->ich_lr_el2[i];
2432 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2433 ((lr & ICH_LR_EL2_HW) == 1 || (lr & ICH_LR_EL2_EOI) == 0)) {
2434 value |= (1 << i);
2438 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2439 return value;
2442 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2443 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2444 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2445 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2446 .access = PL2_RW,
2447 .readfn = ich_ap_read,
2448 .writefn = ich_ap_write,
2450 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2451 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2452 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2453 .access = PL2_RW,
2454 .readfn = ich_ap_read,
2455 .writefn = ich_ap_write,
2457 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2458 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2459 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2460 .access = PL2_RW,
2461 .readfn = ich_hcr_read,
2462 .writefn = ich_hcr_write,
2464 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2465 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2466 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2467 .access = PL2_R,
2468 .readfn = ich_vtr_read,
2470 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2471 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2472 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2473 .access = PL2_R,
2474 .readfn = ich_misr_read,
2476 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2477 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2478 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2479 .access = PL2_R,
2480 .readfn = ich_eisr_read,
2482 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2483 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2484 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2485 .access = PL2_R,
2486 .readfn = ich_elrsr_read,
2488 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2489 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2490 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2491 .access = PL2_RW,
2492 .readfn = ich_vmcr_read,
2493 .writefn = ich_vmcr_write,
2495 REGINFO_SENTINEL
2498 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2499 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2500 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2501 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2502 .access = PL2_RW,
2503 .readfn = ich_ap_read,
2504 .writefn = ich_ap_write,
2506 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2507 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2508 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2509 .access = PL2_RW,
2510 .readfn = ich_ap_read,
2511 .writefn = ich_ap_write,
2513 REGINFO_SENTINEL
2516 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2517 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2518 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2519 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2520 .access = PL2_RW,
2521 .readfn = ich_ap_read,
2522 .writefn = ich_ap_write,
2524 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2525 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2526 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2527 .access = PL2_RW,
2528 .readfn = ich_ap_read,
2529 .writefn = ich_ap_write,
2531 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2532 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2533 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2534 .access = PL2_RW,
2535 .readfn = ich_ap_read,
2536 .writefn = ich_ap_write,
2538 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2539 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2540 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2541 .access = PL2_RW,
2542 .readfn = ich_ap_read,
2543 .writefn = ich_ap_write,
2545 REGINFO_SENTINEL
2548 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2550 GICv3CPUState *cs = opaque;
2552 gicv3_cpuif_update(cs);
2555 void gicv3_init_cpuif(GICv3State *s)
2557 /* Called from the GICv3 realize function; register our system
2558 * registers with the CPU
2560 int i;
2562 for (i = 0; i < s->num_cpu; i++) {
2563 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2564 GICv3CPUState *cs = &s->cpu[i];
2566 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2567 * in define_arm_cp_regs_with_opaque(), because when we're called back
2568 * it might be with code translated by CPU 0 but run by CPU 1, in
2569 * which case we'd get the wrong value.
2570 * So instead we define the regs with no ri->opaque info, and
2571 * get back to the GICv3CPUState from the ARMCPU by reading back
2572 * the opaque pointer from the el_change_hook, which we're going
2573 * to need to register anyway.
2575 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2576 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2577 && cpu->gic_num_lrs) {
2578 int j;
2580 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2582 cs->num_list_regs = cpu->gic_num_lrs;
2583 cs->vpribits = cpu->gic_vpribits;
2584 cs->vprebits = cpu->gic_vprebits;
2586 /* Check against architectural constraints: getting these
2587 * wrong would be a bug in the CPU code defining these,
2588 * and the implementation relies on them holding.
2590 g_assert(cs->vprebits <= cs->vpribits);
2591 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2592 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2594 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2596 for (j = 0; j < cs->num_list_regs; j++) {
2597 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2598 * are split into two cp15 regs, LR (the low part, with the
2599 * same encoding as the AArch64 LR) and LRC (the high part).
2601 ARMCPRegInfo lr_regset[] = {
2602 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2603 .opc0 = 3, .opc1 = 4, .crn = 12,
2604 .crm = 12 + (j >> 3), .opc2 = j & 7,
2605 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2606 .access = PL2_RW,
2607 .readfn = ich_lr_read,
2608 .writefn = ich_lr_write,
2610 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2611 .cp = 15, .opc1 = 4, .crn = 12,
2612 .crm = 14 + (j >> 3), .opc2 = j & 7,
2613 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2614 .access = PL2_RW,
2615 .readfn = ich_lr_read,
2616 .writefn = ich_lr_write,
2618 REGINFO_SENTINEL
2620 define_arm_cp_regs(cpu, lr_regset);
2622 if (cs->vprebits >= 6) {
2623 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2625 if (cs->vprebits == 7) {
2626 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2629 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);