hw/arm/virt: separate versioned type-init code
[qemu/ar7.git] / hw / arm / virt.c
blob84c7c367e286c904f46f51f9b8307ed3b0427abf
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/virt-acpi-build.h"
51 #include "hw/arm/sysbus-fdt.h"
52 #include "hw/platform-bus.h"
53 #include "hw/arm/fdt.h"
54 #include "hw/intc/arm_gic_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 /* Number of external interrupt lines to configure the GIC with */
61 #define NUM_IRQS 256
63 #define PLATFORM_BUS_NUM_IRQS 64
65 static ARMPlatformBusSystemParams platform_bus_params;
67 typedef struct VirtBoardInfo {
68 struct arm_boot_info bootinfo;
69 const char *cpu_model;
70 const MemMapEntry *memmap;
71 const int *irqmap;
72 int smp_cpus;
73 void *fdt;
74 int fdt_size;
75 uint32_t clock_phandle;
76 uint32_t gic_phandle;
77 uint32_t v2m_phandle;
78 bool using_psci;
79 } VirtBoardInfo;
81 typedef struct {
82 MachineClass parent;
83 VirtBoardInfo *daughterboard;
84 } VirtMachineClass;
86 typedef struct {
87 MachineState parent;
88 bool secure;
89 bool highmem;
90 int32_t gic_version;
91 } VirtMachineState;
93 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
94 #define VIRT_MACHINE(obj) \
95 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
96 #define VIRT_MACHINE_GET_CLASS(obj) \
97 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
98 #define VIRT_MACHINE_CLASS(klass) \
99 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
101 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
102 * RAM can go up to the 256GB mark, leaving 256GB of the physical
103 * address space unallocated and free for future use between 256G and 512G.
104 * If we need to provide more RAM to VMs in the future then we need to:
105 * * allocate a second bank of RAM starting at 2TB and working up
106 * * fix the DT and ACPI table generation code in QEMU to correctly
107 * report two split lumps of RAM to the guest
108 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
109 * (We don't want to fill all the way up to 512GB with RAM because
110 * we might want it for non-RAM purposes later. Conversely it seems
111 * reasonable to assume that anybody configuring a VM with a quarter
112 * of a terabyte of RAM will be doing it on a host with more than a
113 * terabyte of physical address space.)
115 #define RAMLIMIT_GB 255
116 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
118 /* Addresses and sizes of our components.
119 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
120 * 128MB..256MB is used for miscellaneous device I/O.
121 * 256MB..1GB is reserved for possible future PCI support (ie where the
122 * PCI memory window will go if we add a PCI host controller).
123 * 1GB and up is RAM (which may happily spill over into the
124 * high memory region beyond 4GB).
125 * This represents a compromise between how much RAM can be given to
126 * a 32 bit VM and leaving space for expansion and in particular for PCI.
127 * Note that devices should generally be placed at multiples of 0x10000,
128 * to accommodate guests using 64K pages.
130 static const MemMapEntry a15memmap[] = {
131 /* Space up to 0x8000000 is reserved for a boot ROM */
132 [VIRT_FLASH] = { 0, 0x08000000 },
133 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
134 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
135 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
136 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
137 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
138 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
139 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
140 /* This redistributor space allows up to 2*64kB*123 CPUs */
141 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
142 [VIRT_UART] = { 0x09000000, 0x00001000 },
143 [VIRT_RTC] = { 0x09010000, 0x00001000 },
144 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
145 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
146 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
147 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
148 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
149 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
150 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
151 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
152 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
153 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
154 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
155 /* Second PCIe window, 512GB wide at the 512GB boundary */
156 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
159 static const int a15irqmap[] = {
160 [VIRT_UART] = 1,
161 [VIRT_RTC] = 2,
162 [VIRT_PCIE] = 3, /* ... to 6 */
163 [VIRT_GPIO] = 7,
164 [VIRT_SECURE_UART] = 8,
165 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
166 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
167 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
170 static VirtBoardInfo machines[] = {
172 .cpu_model = "cortex-a15",
173 .memmap = a15memmap,
174 .irqmap = a15irqmap,
177 .cpu_model = "cortex-a53",
178 .memmap = a15memmap,
179 .irqmap = a15irqmap,
182 .cpu_model = "cortex-a57",
183 .memmap = a15memmap,
184 .irqmap = a15irqmap,
187 .cpu_model = "host",
188 .memmap = a15memmap,
189 .irqmap = a15irqmap,
193 static VirtBoardInfo *find_machine_info(const char *cpu)
195 int i;
197 for (i = 0; i < ARRAY_SIZE(machines); i++) {
198 if (strcmp(cpu, machines[i].cpu_model) == 0) {
199 return &machines[i];
202 return NULL;
205 static void create_fdt(VirtBoardInfo *vbi)
207 void *fdt = create_device_tree(&vbi->fdt_size);
209 if (!fdt) {
210 error_report("create_device_tree() failed");
211 exit(1);
214 vbi->fdt = fdt;
216 /* Header */
217 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
218 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
219 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
222 * /chosen and /memory nodes must exist for load_dtb
223 * to fill in necessary properties later
225 qemu_fdt_add_subnode(fdt, "/chosen");
226 qemu_fdt_add_subnode(fdt, "/memory");
227 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
229 /* Clock node, for the benefit of the UART. The kernel device tree
230 * binding documentation claims the PL011 node clock properties are
231 * optional but in practice if you omit them the kernel refuses to
232 * probe for the device.
234 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
235 qemu_fdt_add_subnode(fdt, "/apb-pclk");
236 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
237 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
238 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
239 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
240 "clk24mhz");
241 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
245 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
247 uint32_t cpu_suspend_fn;
248 uint32_t cpu_off_fn;
249 uint32_t cpu_on_fn;
250 uint32_t migrate_fn;
251 void *fdt = vbi->fdt;
252 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
254 if (!vbi->using_psci) {
255 return;
258 qemu_fdt_add_subnode(fdt, "/psci");
259 if (armcpu->psci_version == 2) {
260 const char comp[] = "arm,psci-0.2\0arm,psci";
261 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
263 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
264 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
265 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
266 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
267 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
268 } else {
269 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
270 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
271 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
273 } else {
274 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
276 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
277 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
278 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
279 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
282 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
283 * to the instruction that should be used to invoke PSCI functions.
284 * However, the device tree binding uses 'method' instead, so that is
285 * what we should use here.
287 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
289 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
290 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
291 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
292 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
295 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
297 /* Note that on A15 h/w these interrupts are level-triggered,
298 * but for the GIC implementation provided by both QEMU and KVM
299 * they are edge-triggered.
301 ARMCPU *armcpu;
302 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
304 if (gictype == 2) {
305 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
306 GIC_FDT_IRQ_PPI_CPU_WIDTH,
307 (1 << vbi->smp_cpus) - 1);
310 qemu_fdt_add_subnode(vbi->fdt, "/timer");
312 armcpu = ARM_CPU(qemu_get_cpu(0));
313 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
314 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
315 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
316 compat, sizeof(compat));
317 } else {
318 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
319 "arm,armv7-timer");
321 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
322 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
323 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
324 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
325 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
326 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
329 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
331 int cpu;
332 int addr_cells = 1;
333 unsigned int i;
336 * From Documentation/devicetree/bindings/arm/cpus.txt
337 * On ARM v8 64-bit systems value should be set to 2,
338 * that corresponds to the MPIDR_EL1 register size.
339 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
340 * in the system, #address-cells can be set to 1, since
341 * MPIDR_EL1[63:32] bits are not used for CPUs
342 * identification.
344 * Here we actually don't know whether our system is 32- or 64-bit one.
345 * The simplest way to go is to examine affinity IDs of all our CPUs. If
346 * at least one of them has Aff3 populated, we set #address-cells to 2.
348 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
349 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
351 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
352 addr_cells = 2;
353 break;
357 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
358 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
359 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
361 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
362 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
363 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
365 qemu_fdt_add_subnode(vbi->fdt, nodename);
366 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
367 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
368 armcpu->dtb_compatible);
370 if (vbi->using_psci && vbi->smp_cpus > 1) {
371 qemu_fdt_setprop_string(vbi->fdt, nodename,
372 "enable-method", "psci");
375 if (addr_cells == 2) {
376 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
377 armcpu->mp_affinity);
378 } else {
379 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
380 armcpu->mp_affinity);
383 for (i = 0; i < nb_numa_nodes; i++) {
384 if (test_bit(cpu, numa_info[i].node_cpu)) {
385 qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
389 g_free(nodename);
393 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
395 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
396 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
397 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
398 "arm,gic-v2m-frame");
399 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
400 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
401 2, vbi->memmap[VIRT_GIC_V2M].base,
402 2, vbi->memmap[VIRT_GIC_V2M].size);
403 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
406 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
408 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
409 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
411 qemu_fdt_add_subnode(vbi->fdt, "/intc");
412 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
413 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
414 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
415 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
416 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
417 if (type == 3) {
418 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
419 "arm,gic-v3");
420 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
421 2, vbi->memmap[VIRT_GIC_DIST].base,
422 2, vbi->memmap[VIRT_GIC_DIST].size,
423 2, vbi->memmap[VIRT_GIC_REDIST].base,
424 2, vbi->memmap[VIRT_GIC_REDIST].size);
425 } else {
426 /* 'cortex-a15-gic' means 'GIC v2' */
427 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
428 "arm,cortex-a15-gic");
429 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
430 2, vbi->memmap[VIRT_GIC_DIST].base,
431 2, vbi->memmap[VIRT_GIC_DIST].size,
432 2, vbi->memmap[VIRT_GIC_CPU].base,
433 2, vbi->memmap[VIRT_GIC_CPU].size);
436 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
439 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
441 CPUState *cpu;
442 ARMCPU *armcpu;
443 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
445 CPU_FOREACH(cpu) {
446 armcpu = ARM_CPU(cpu);
447 if (!armcpu->has_pmu ||
448 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
449 return;
453 if (gictype == 2) {
454 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
455 GIC_FDT_IRQ_PPI_CPU_WIDTH,
456 (1 << vbi->smp_cpus) - 1);
459 armcpu = ARM_CPU(qemu_get_cpu(0));
460 qemu_fdt_add_subnode(vbi->fdt, "/pmu");
461 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
462 const char compat[] = "arm,armv8-pmuv3";
463 qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
464 compat, sizeof(compat));
465 qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
466 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
470 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
472 int i;
473 int irq = vbi->irqmap[VIRT_GIC_V2M];
474 DeviceState *dev;
476 dev = qdev_create(NULL, "arm-gicv2m");
477 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
478 qdev_prop_set_uint32(dev, "base-spi", irq);
479 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
480 qdev_init_nofail(dev);
482 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
483 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
486 fdt_add_v2m_gic_node(vbi);
489 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
491 /* We create a standalone GIC */
492 DeviceState *gicdev;
493 SysBusDevice *gicbusdev;
494 const char *gictype;
495 int i;
497 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
499 gicdev = qdev_create(NULL, gictype);
500 qdev_prop_set_uint32(gicdev, "revision", type);
501 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
502 /* Note that the num-irq property counts both internal and external
503 * interrupts; there are always 32 of the former (mandated by GIC spec).
505 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
506 if (!kvm_irqchip_in_kernel()) {
507 qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
509 qdev_init_nofail(gicdev);
510 gicbusdev = SYS_BUS_DEVICE(gicdev);
511 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
512 if (type == 3) {
513 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
514 } else {
515 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
518 /* Wire the outputs from each CPU's generic timer to the
519 * appropriate GIC PPI inputs, and the GIC's IRQ output to
520 * the CPU's IRQ input.
522 for (i = 0; i < smp_cpus; i++) {
523 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
524 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
525 int irq;
526 /* Mapping from the output timer irq lines from the CPU to the
527 * GIC PPI inputs we use for the virt board.
529 const int timer_irq[] = {
530 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
531 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
532 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
533 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
536 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
537 qdev_connect_gpio_out(cpudev, irq,
538 qdev_get_gpio_in(gicdev,
539 ppibase + timer_irq[irq]));
542 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
543 sysbus_connect_irq(gicbusdev, i + smp_cpus,
544 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
547 for (i = 0; i < NUM_IRQS; i++) {
548 pic[i] = qdev_get_gpio_in(gicdev, i);
551 fdt_add_gic_node(vbi, type);
553 if (type == 2) {
554 create_v2m(vbi, pic);
558 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
559 MemoryRegion *mem, CharDriverState *chr)
561 char *nodename;
562 hwaddr base = vbi->memmap[uart].base;
563 hwaddr size = vbi->memmap[uart].size;
564 int irq = vbi->irqmap[uart];
565 const char compat[] = "arm,pl011\0arm,primecell";
566 const char clocknames[] = "uartclk\0apb_pclk";
567 DeviceState *dev = qdev_create(NULL, "pl011");
568 SysBusDevice *s = SYS_BUS_DEVICE(dev);
570 qdev_prop_set_chr(dev, "chardev", chr);
571 qdev_init_nofail(dev);
572 memory_region_add_subregion(mem, base,
573 sysbus_mmio_get_region(s, 0));
574 sysbus_connect_irq(s, 0, pic[irq]);
576 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
577 qemu_fdt_add_subnode(vbi->fdt, nodename);
578 /* Note that we can't use setprop_string because of the embedded NUL */
579 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
580 compat, sizeof(compat));
581 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
582 2, base, 2, size);
583 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
584 GIC_FDT_IRQ_TYPE_SPI, irq,
585 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
586 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
587 vbi->clock_phandle, vbi->clock_phandle);
588 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
589 clocknames, sizeof(clocknames));
591 if (uart == VIRT_UART) {
592 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
593 } else {
594 /* Mark as not usable by the normal world */
595 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
596 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
599 g_free(nodename);
602 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
604 char *nodename;
605 hwaddr base = vbi->memmap[VIRT_RTC].base;
606 hwaddr size = vbi->memmap[VIRT_RTC].size;
607 int irq = vbi->irqmap[VIRT_RTC];
608 const char compat[] = "arm,pl031\0arm,primecell";
610 sysbus_create_simple("pl031", base, pic[irq]);
612 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
613 qemu_fdt_add_subnode(vbi->fdt, nodename);
614 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
615 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
616 2, base, 2, size);
617 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
618 GIC_FDT_IRQ_TYPE_SPI, irq,
619 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
620 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
621 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
622 g_free(nodename);
625 static DeviceState *gpio_key_dev;
626 static void virt_powerdown_req(Notifier *n, void *opaque)
628 /* use gpio Pin 3 for power button event */
629 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
632 static Notifier virt_system_powerdown_notifier = {
633 .notify = virt_powerdown_req
636 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
638 char *nodename;
639 DeviceState *pl061_dev;
640 hwaddr base = vbi->memmap[VIRT_GPIO].base;
641 hwaddr size = vbi->memmap[VIRT_GPIO].size;
642 int irq = vbi->irqmap[VIRT_GPIO];
643 const char compat[] = "arm,pl061\0arm,primecell";
645 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
647 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
648 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
649 qemu_fdt_add_subnode(vbi->fdt, nodename);
650 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
651 2, base, 2, size);
652 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
653 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
654 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
655 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
656 GIC_FDT_IRQ_TYPE_SPI, irq,
657 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
658 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
659 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
660 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
662 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
663 qdev_get_gpio_in(pl061_dev, 3));
664 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
665 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
666 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
667 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
669 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
670 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
671 "label", "GPIO Key Poweroff");
672 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
673 KEY_POWER);
674 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
675 "gpios", phandle, 3, 0);
677 /* connect powerdown request */
678 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
680 g_free(nodename);
683 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
685 int i;
686 hwaddr size = vbi->memmap[VIRT_MMIO].size;
688 /* We create the transports in forwards order. Since qbus_realize()
689 * prepends (not appends) new child buses, the incrementing loop below will
690 * create a list of virtio-mmio buses with decreasing base addresses.
692 * When a -device option is processed from the command line,
693 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
694 * order. The upshot is that -device options in increasing command line
695 * order are mapped to virtio-mmio buses with decreasing base addresses.
697 * When this code was originally written, that arrangement ensured that the
698 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
699 * the first -device on the command line. (The end-to-end order is a
700 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
701 * guest kernel's name-to-address assignment strategy.)
703 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
704 * the message, if not necessarily the code, of commit 70161ff336.
705 * Therefore the loop now establishes the inverse of the original intent.
707 * Unfortunately, we can't counteract the kernel change by reversing the
708 * loop; it would break existing command lines.
710 * In any case, the kernel makes no guarantee about the stability of
711 * enumeration order of virtio devices (as demonstrated by it changing
712 * between kernel versions). For reliable and stable identification
713 * of disks users must use UUIDs or similar mechanisms.
715 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
716 int irq = vbi->irqmap[VIRT_MMIO] + i;
717 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
719 sysbus_create_simple("virtio-mmio", base, pic[irq]);
722 /* We add dtb nodes in reverse order so that they appear in the finished
723 * device tree lowest address first.
725 * Note that this mapping is independent of the loop above. The previous
726 * loop influences virtio device to virtio transport assignment, whereas
727 * this loop controls how virtio transports are laid out in the dtb.
729 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
730 char *nodename;
731 int irq = vbi->irqmap[VIRT_MMIO] + i;
732 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
734 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
735 qemu_fdt_add_subnode(vbi->fdt, nodename);
736 qemu_fdt_setprop_string(vbi->fdt, nodename,
737 "compatible", "virtio,mmio");
738 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
739 2, base, 2, size);
740 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
741 GIC_FDT_IRQ_TYPE_SPI, irq,
742 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
743 g_free(nodename);
747 static void create_one_flash(const char *name, hwaddr flashbase,
748 hwaddr flashsize, const char *file,
749 MemoryRegion *sysmem)
751 /* Create and map a single flash device. We use the same
752 * parameters as the flash devices on the Versatile Express board.
754 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
755 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
756 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
757 const uint64_t sectorlength = 256 * 1024;
759 if (dinfo) {
760 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
761 &error_abort);
764 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
765 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
766 qdev_prop_set_uint8(dev, "width", 4);
767 qdev_prop_set_uint8(dev, "device-width", 2);
768 qdev_prop_set_bit(dev, "big-endian", false);
769 qdev_prop_set_uint16(dev, "id0", 0x89);
770 qdev_prop_set_uint16(dev, "id1", 0x18);
771 qdev_prop_set_uint16(dev, "id2", 0x00);
772 qdev_prop_set_uint16(dev, "id3", 0x00);
773 qdev_prop_set_string(dev, "name", name);
774 qdev_init_nofail(dev);
776 memory_region_add_subregion(sysmem, flashbase,
777 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
779 if (file) {
780 char *fn;
781 int image_size;
783 if (drive_get(IF_PFLASH, 0, 0)) {
784 error_report("The contents of the first flash device may be "
785 "specified with -bios or with -drive if=pflash... "
786 "but you cannot use both options at once");
787 exit(1);
789 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
790 if (!fn) {
791 error_report("Could not find ROM image '%s'", file);
792 exit(1);
794 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
795 g_free(fn);
796 if (image_size < 0) {
797 error_report("Could not load ROM image '%s'", file);
798 exit(1);
803 static void create_flash(const VirtBoardInfo *vbi,
804 MemoryRegion *sysmem,
805 MemoryRegion *secure_sysmem)
807 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
808 * Any file passed via -bios goes in the first of these.
809 * sysmem is the system memory space. secure_sysmem is the secure view
810 * of the system, and the first flash device should be made visible only
811 * there. The second flash device is visible to both secure and nonsecure.
812 * If sysmem == secure_sysmem this means there is no separate Secure
813 * address space and both flash devices are generally visible.
815 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
816 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
817 char *nodename;
819 create_one_flash("virt.flash0", flashbase, flashsize,
820 bios_name, secure_sysmem);
821 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
822 NULL, sysmem);
824 if (sysmem == secure_sysmem) {
825 /* Report both flash devices as a single node in the DT */
826 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
827 qemu_fdt_add_subnode(vbi->fdt, nodename);
828 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
829 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
830 2, flashbase, 2, flashsize,
831 2, flashbase + flashsize, 2, flashsize);
832 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
833 g_free(nodename);
834 } else {
835 /* Report the devices as separate nodes so we can mark one as
836 * only visible to the secure world.
838 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
839 qemu_fdt_add_subnode(vbi->fdt, nodename);
840 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
841 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
842 2, flashbase, 2, flashsize);
843 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
844 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
845 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
846 g_free(nodename);
848 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
849 qemu_fdt_add_subnode(vbi->fdt, nodename);
850 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
851 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
852 2, flashbase + flashsize, 2, flashsize);
853 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
854 g_free(nodename);
858 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
860 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
861 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
862 char *nodename;
864 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
866 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
867 qemu_fdt_add_subnode(vbi->fdt, nodename);
868 qemu_fdt_setprop_string(vbi->fdt, nodename,
869 "compatible", "qemu,fw-cfg-mmio");
870 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
871 2, base, 2, size);
872 g_free(nodename);
875 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
876 int first_irq, const char *nodename)
878 int devfn, pin;
879 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
880 uint32_t *irq_map = full_irq_map;
882 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
883 for (pin = 0; pin < 4; pin++) {
884 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
885 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
886 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
887 int i;
889 uint32_t map[] = {
890 devfn << 8, 0, 0, /* devfn */
891 pin + 1, /* PCI pin */
892 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
894 /* Convert map to big endian */
895 for (i = 0; i < 10; i++) {
896 irq_map[i] = cpu_to_be32(map[i]);
898 irq_map += 10;
902 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
903 full_irq_map, sizeof(full_irq_map));
905 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
906 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
907 0x7 /* PCI irq */);
910 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
911 bool use_highmem)
913 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
914 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
915 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
916 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
917 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
918 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
919 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
920 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
921 hwaddr base = base_mmio;
922 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
923 int irq = vbi->irqmap[VIRT_PCIE];
924 MemoryRegion *mmio_alias;
925 MemoryRegion *mmio_reg;
926 MemoryRegion *ecam_alias;
927 MemoryRegion *ecam_reg;
928 DeviceState *dev;
929 char *nodename;
930 int i;
931 PCIHostState *pci;
933 dev = qdev_create(NULL, TYPE_GPEX_HOST);
934 qdev_init_nofail(dev);
936 /* Map only the first size_ecam bytes of ECAM space */
937 ecam_alias = g_new0(MemoryRegion, 1);
938 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
939 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
940 ecam_reg, 0, size_ecam);
941 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
943 /* Map the MMIO window into system address space so as to expose
944 * the section of PCI MMIO space which starts at the same base address
945 * (ie 1:1 mapping for that part of PCI MMIO space visible through
946 * the window).
948 mmio_alias = g_new0(MemoryRegion, 1);
949 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
950 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
951 mmio_reg, base_mmio, size_mmio);
952 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
954 if (use_highmem) {
955 /* Map high MMIO space */
956 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
958 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
959 mmio_reg, base_mmio_high, size_mmio_high);
960 memory_region_add_subregion(get_system_memory(), base_mmio_high,
961 high_mmio_alias);
964 /* Map IO port space */
965 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
967 for (i = 0; i < GPEX_NUM_IRQS; i++) {
968 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
971 pci = PCI_HOST_BRIDGE(dev);
972 if (pci->bus) {
973 for (i = 0; i < nb_nics; i++) {
974 NICInfo *nd = &nd_table[i];
976 if (!nd->model) {
977 nd->model = g_strdup("virtio");
980 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
984 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
985 qemu_fdt_add_subnode(vbi->fdt, nodename);
986 qemu_fdt_setprop_string(vbi->fdt, nodename,
987 "compatible", "pci-host-ecam-generic");
988 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
989 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
990 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
991 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
992 nr_pcie_buses - 1);
994 if (vbi->v2m_phandle) {
995 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
996 vbi->v2m_phandle);
999 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1000 2, base_ecam, 2, size_ecam);
1002 if (use_highmem) {
1003 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1004 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1005 2, base_pio, 2, size_pio,
1006 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1007 2, base_mmio, 2, size_mmio,
1008 1, FDT_PCI_RANGE_MMIO_64BIT,
1009 2, base_mmio_high,
1010 2, base_mmio_high, 2, size_mmio_high);
1011 } else {
1012 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1013 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1014 2, base_pio, 2, size_pio,
1015 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1016 2, base_mmio, 2, size_mmio);
1019 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1020 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1022 g_free(nodename);
1025 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1027 DeviceState *dev;
1028 SysBusDevice *s;
1029 int i;
1030 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1031 MemoryRegion *sysmem = get_system_memory();
1033 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1034 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1035 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1036 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1038 fdt_params->system_params = &platform_bus_params;
1039 fdt_params->binfo = &vbi->bootinfo;
1040 fdt_params->intc = "/intc";
1042 * register a machine init done notifier that creates the device tree
1043 * nodes of the platform bus and its children dynamic sysbus devices
1045 arm_register_platform_bus_fdt_creator(fdt_params);
1047 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1048 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1049 qdev_prop_set_uint32(dev, "num_irqs",
1050 platform_bus_params.platform_bus_num_irqs);
1051 qdev_prop_set_uint32(dev, "mmio_size",
1052 platform_bus_params.platform_bus_size);
1053 qdev_init_nofail(dev);
1054 s = SYS_BUS_DEVICE(dev);
1056 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1057 int irqn = platform_bus_params.platform_bus_first_irq + i;
1058 sysbus_connect_irq(s, i, pic[irqn]);
1061 memory_region_add_subregion(sysmem,
1062 platform_bus_params.platform_bus_base,
1063 sysbus_mmio_get_region(s, 0));
1066 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1068 MemoryRegion *secram = g_new(MemoryRegion, 1);
1069 char *nodename;
1070 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1071 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1073 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1074 vmstate_register_ram_global(secram);
1075 memory_region_add_subregion(secure_sysmem, base, secram);
1077 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1078 qemu_fdt_add_subnode(vbi->fdt, nodename);
1079 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1080 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1081 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1082 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1084 g_free(nodename);
1087 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1089 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1091 *fdt_size = board->fdt_size;
1092 return board->fdt;
1095 static void virt_build_smbios(VirtGuestInfo *guest_info)
1097 FWCfgState *fw_cfg = guest_info->fw_cfg;
1098 uint8_t *smbios_tables, *smbios_anchor;
1099 size_t smbios_tables_len, smbios_anchor_len;
1100 const char *product = "QEMU Virtual Machine";
1102 if (!fw_cfg) {
1103 return;
1106 if (kvm_enabled()) {
1107 product = "KVM Virtual Machine";
1110 smbios_set_defaults("QEMU", product,
1111 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1113 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1114 &smbios_anchor, &smbios_anchor_len);
1116 if (smbios_anchor) {
1117 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1118 smbios_tables, smbios_tables_len);
1119 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1120 smbios_anchor, smbios_anchor_len);
1124 static
1125 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1127 VirtGuestInfoState *guest_info_state = container_of(notifier,
1128 VirtGuestInfoState, machine_done);
1129 virt_acpi_setup(&guest_info_state->info);
1130 virt_build_smbios(&guest_info_state->info);
1133 static void machvirt_init(MachineState *machine)
1135 VirtMachineState *vms = VIRT_MACHINE(machine);
1136 qemu_irq pic[NUM_IRQS];
1137 MemoryRegion *sysmem = get_system_memory();
1138 MemoryRegion *secure_sysmem = NULL;
1139 int gic_version = vms->gic_version;
1140 int n, virt_max_cpus;
1141 MemoryRegion *ram = g_new(MemoryRegion, 1);
1142 const char *cpu_model = machine->cpu_model;
1143 VirtBoardInfo *vbi;
1144 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1145 VirtGuestInfo *guest_info = &guest_info_state->info;
1146 char **cpustr;
1147 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1149 if (!cpu_model) {
1150 cpu_model = "cortex-a15";
1153 /* We can probe only here because during property set
1154 * KVM is not available yet
1156 if (!gic_version) {
1157 if (!kvm_enabled()) {
1158 error_report("gic-version=host requires KVM");
1159 exit(1);
1162 gic_version = kvm_arm_vgic_probe();
1163 if (!gic_version) {
1164 error_report("Unable to determine GIC version supported by host");
1165 exit(1);
1169 /* Separate the actual CPU model name from any appended features */
1170 cpustr = g_strsplit(cpu_model, ",", 2);
1172 vbi = find_machine_info(cpustr[0]);
1174 if (!vbi) {
1175 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1176 exit(1);
1179 /* If we have an EL3 boot ROM then the assumption is that it will
1180 * implement PSCI itself, so disable QEMU's internal implementation
1181 * so it doesn't get in the way. Instead of starting secondary
1182 * CPUs in PSCI powerdown state we will start them all running and
1183 * let the boot ROM sort them out.
1184 * The usual case is that we do use QEMU's PSCI implementation.
1186 vbi->using_psci = !(vms->secure && firmware_loaded);
1188 /* The maximum number of CPUs depends on the GIC version, or on how
1189 * many redistributors we can fit into the memory map.
1191 if (gic_version == 3) {
1192 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1193 } else {
1194 virt_max_cpus = GIC_NCPU;
1197 if (max_cpus > virt_max_cpus) {
1198 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1199 "supported by machine 'mach-virt' (%d)",
1200 max_cpus, virt_max_cpus);
1201 exit(1);
1204 vbi->smp_cpus = smp_cpus;
1206 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1207 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1208 exit(1);
1211 if (vms->secure) {
1212 if (kvm_enabled()) {
1213 error_report("mach-virt: KVM does not support Security extensions");
1214 exit(1);
1217 /* The Secure view of the world is the same as the NonSecure,
1218 * but with a few extra devices. Create it as a container region
1219 * containing the system memory at low priority; any secure-only
1220 * devices go in at higher priority and take precedence.
1222 secure_sysmem = g_new(MemoryRegion, 1);
1223 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1224 UINT64_MAX);
1225 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1228 create_fdt(vbi);
1230 for (n = 0; n < smp_cpus; n++) {
1231 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1232 CPUClass *cc = CPU_CLASS(oc);
1233 Object *cpuobj;
1234 Error *err = NULL;
1235 char *cpuopts = g_strdup(cpustr[1]);
1237 if (!oc) {
1238 error_report("Unable to find CPU definition");
1239 exit(1);
1241 cpuobj = object_new(object_class_get_name(oc));
1243 /* Handle any CPU options specified by the user */
1244 cc->parse_features(CPU(cpuobj), cpuopts, &err);
1245 g_free(cpuopts);
1246 if (err) {
1247 error_report_err(err);
1248 exit(1);
1251 if (!vms->secure) {
1252 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1255 if (vbi->using_psci) {
1256 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1257 "psci-conduit", NULL);
1259 /* Secondary CPUs start in PSCI powered-down state */
1260 if (n > 0) {
1261 object_property_set_bool(cpuobj, true,
1262 "start-powered-off", NULL);
1266 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1267 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1268 "reset-cbar", &error_abort);
1271 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1272 &error_abort);
1273 if (vms->secure) {
1274 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1275 "secure-memory", &error_abort);
1278 object_property_set_bool(cpuobj, true, "realized", NULL);
1280 g_strfreev(cpustr);
1281 fdt_add_timer_nodes(vbi, gic_version);
1282 fdt_add_cpu_nodes(vbi);
1283 fdt_add_psci_node(vbi);
1285 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1286 machine->ram_size);
1287 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1289 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1291 create_gic(vbi, pic, gic_version, vms->secure);
1293 fdt_add_pmu_nodes(vbi, gic_version);
1295 create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1297 if (vms->secure) {
1298 create_secure_ram(vbi, secure_sysmem);
1299 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1302 create_rtc(vbi, pic);
1304 create_pcie(vbi, pic, vms->highmem);
1306 create_gpio(vbi, pic);
1308 /* Create mmio transports, so the user can create virtio backends
1309 * (which will be automatically plugged in to the transports). If
1310 * no backend is created the transport will just sit harmlessly idle.
1312 create_virtio_devices(vbi, pic);
1314 create_fw_cfg(vbi, &address_space_memory);
1315 rom_set_fw(fw_cfg_find());
1317 guest_info->smp_cpus = smp_cpus;
1318 guest_info->fw_cfg = fw_cfg_find();
1319 guest_info->memmap = vbi->memmap;
1320 guest_info->irqmap = vbi->irqmap;
1321 guest_info->use_highmem = vms->highmem;
1322 guest_info->gic_version = gic_version;
1323 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1324 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1326 vbi->bootinfo.ram_size = machine->ram_size;
1327 vbi->bootinfo.kernel_filename = machine->kernel_filename;
1328 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1329 vbi->bootinfo.initrd_filename = machine->initrd_filename;
1330 vbi->bootinfo.nb_cpus = smp_cpus;
1331 vbi->bootinfo.board_id = -1;
1332 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1333 vbi->bootinfo.get_dtb = machvirt_dtb;
1334 vbi->bootinfo.firmware_loaded = firmware_loaded;
1335 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1338 * arm_load_kernel machine init done notifier registration must
1339 * happen before the platform_bus_create call. In this latter,
1340 * another notifier is registered which adds platform bus nodes.
1341 * Notifiers are executed in registration reverse order.
1343 create_platform_bus(vbi, pic);
1346 static bool virt_get_secure(Object *obj, Error **errp)
1348 VirtMachineState *vms = VIRT_MACHINE(obj);
1350 return vms->secure;
1353 static void virt_set_secure(Object *obj, bool value, Error **errp)
1355 VirtMachineState *vms = VIRT_MACHINE(obj);
1357 vms->secure = value;
1360 static bool virt_get_highmem(Object *obj, Error **errp)
1362 VirtMachineState *vms = VIRT_MACHINE(obj);
1364 return vms->highmem;
1367 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1369 VirtMachineState *vms = VIRT_MACHINE(obj);
1371 vms->highmem = value;
1374 static char *virt_get_gic_version(Object *obj, Error **errp)
1376 VirtMachineState *vms = VIRT_MACHINE(obj);
1377 const char *val = vms->gic_version == 3 ? "3" : "2";
1379 return g_strdup(val);
1382 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1384 VirtMachineState *vms = VIRT_MACHINE(obj);
1386 if (!strcmp(value, "3")) {
1387 vms->gic_version = 3;
1388 } else if (!strcmp(value, "2")) {
1389 vms->gic_version = 2;
1390 } else if (!strcmp(value, "host")) {
1391 vms->gic_version = 0; /* Will probe later */
1392 } else {
1393 error_setg(errp, "Invalid gic-version value");
1394 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1398 static void virt_machine_class_init(ObjectClass *oc, void *data)
1400 MachineClass *mc = MACHINE_CLASS(oc);
1402 mc->init = machvirt_init;
1403 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1404 * it later in machvirt_init, where we have more information about the
1405 * configuration of the particular instance.
1407 mc->max_cpus = MAX_CPUMASK_BITS;
1408 mc->has_dynamic_sysbus = true;
1409 mc->block_default_type = IF_VIRTIO;
1410 mc->no_cdrom = 1;
1411 mc->pci_allow_0_address = true;
1414 static const TypeInfo virt_machine_info = {
1415 .name = TYPE_VIRT_MACHINE,
1416 .parent = TYPE_MACHINE,
1417 .abstract = true,
1418 .instance_size = sizeof(VirtMachineState),
1419 .class_size = sizeof(VirtMachineClass),
1420 .class_init = virt_machine_class_init,
1423 static void machvirt_machine_init(void)
1425 type_register_static(&virt_machine_info);
1427 type_init(machvirt_machine_init);
1429 static void virt_2_6_instance_init(Object *obj)
1431 VirtMachineState *vms = VIRT_MACHINE(obj);
1433 /* EL3 is disabled by default on virt: this makes us consistent
1434 * between KVM and TCG for this board, and it also allows us to
1435 * boot UEFI blobs which assume no TrustZone support.
1437 vms->secure = false;
1438 object_property_add_bool(obj, "secure", virt_get_secure,
1439 virt_set_secure, NULL);
1440 object_property_set_description(obj, "secure",
1441 "Set on/off to enable/disable the ARM "
1442 "Security Extensions (TrustZone)",
1443 NULL);
1445 /* High memory is enabled by default */
1446 vms->highmem = true;
1447 object_property_add_bool(obj, "highmem", virt_get_highmem,
1448 virt_set_highmem, NULL);
1449 object_property_set_description(obj, "highmem",
1450 "Set on/off to enable/disable using "
1451 "physical address space above 32 bits",
1452 NULL);
1453 /* Default GIC type is v2 */
1454 vms->gic_version = 2;
1455 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1456 virt_set_gic_version, NULL);
1457 object_property_set_description(obj, "gic-version",
1458 "Set GIC version. "
1459 "Valid values are 2, 3 and host", NULL);
1462 static void virt_2_6_class_init(ObjectClass *oc, void *data)
1464 MachineClass *mc = MACHINE_CLASS(oc);
1466 mc->desc = "QEMU 2.6 ARM Virtual Machine";
1467 mc->alias = "virt";
1470 static const TypeInfo machvirt_2_6_info = {
1471 .name = MACHINE_TYPE_NAME("virt-2.6"),
1472 .parent = TYPE_VIRT_MACHINE,
1473 .instance_init = virt_2_6_instance_init,
1474 .class_init = virt_2_6_class_init,
1477 static void machvirt_machine_2_6_init(void)
1479 type_register_static(&machvirt_2_6_info);
1481 type_init(machvirt_machine_2_6_init);