Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / target / m68k / op_helper.c
blobd4f7ef6b3649d255db227abf3d8a5e521b690260
1 /*
2 * M68K helper routines
4 * Copyright (c) 2007 CodeSourcery
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "exec/semihost.h"
26 #if defined(CONFIG_USER_ONLY)
28 void m68k_cpu_do_interrupt(CPUState *cs)
30 cs->exception_index = -1;
33 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
37 #else
39 /* Try to fill the TLB and return an exception if error. If retaddr is
40 NULL, it means that the function was called in C code (i.e. not
41 from generated code or from helper.c) */
42 void tlb_fill(CPUState *cs, target_ulong addr, int size,
43 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
45 int ret;
47 ret = m68k_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
48 if (unlikely(ret)) {
49 /* now we have a real cpu fault */
50 cpu_loop_exit_restore(cs, retaddr);
54 static void cf_rte(CPUM68KState *env)
56 uint32_t sp;
57 uint32_t fmt;
59 sp = env->aregs[7];
60 fmt = cpu_ldl_kernel(env, sp);
61 env->pc = cpu_ldl_kernel(env, sp + 4);
62 sp |= (fmt >> 28) & 3;
63 env->aregs[7] = sp + 8;
65 cpu_m68k_set_sr(env, fmt);
68 static void m68k_rte(CPUM68KState *env)
70 uint32_t sp;
71 uint16_t fmt;
72 uint16_t sr;
74 sp = env->aregs[7];
75 throwaway:
76 sr = cpu_lduw_kernel(env, sp);
77 sp += 2;
78 env->pc = cpu_ldl_kernel(env, sp);
79 sp += 4;
80 if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
81 /* all except 68000 */
82 fmt = cpu_lduw_kernel(env, sp);
83 sp += 2;
84 switch (fmt >> 12) {
85 case 0:
86 break;
87 case 1:
88 env->aregs[7] = sp;
89 cpu_m68k_set_sr(env, sr);
90 goto throwaway;
91 case 2:
92 case 3:
93 sp += 4;
94 break;
95 case 4:
96 sp += 8;
97 break;
98 case 7:
99 sp += 52;
100 break;
103 env->aregs[7] = sp;
104 cpu_m68k_set_sr(env, sr);
107 static const char *m68k_exception_name(int index)
109 switch (index) {
110 case EXCP_ACCESS:
111 return "Access Fault";
112 case EXCP_ADDRESS:
113 return "Address Error";
114 case EXCP_ILLEGAL:
115 return "Illegal Instruction";
116 case EXCP_DIV0:
117 return "Divide by Zero";
118 case EXCP_CHK:
119 return "CHK/CHK2";
120 case EXCP_TRAPCC:
121 return "FTRAPcc, TRAPcc, TRAPV";
122 case EXCP_PRIVILEGE:
123 return "Privilege Violation";
124 case EXCP_TRACE:
125 return "Trace";
126 case EXCP_LINEA:
127 return "A-Line";
128 case EXCP_LINEF:
129 return "F-Line";
130 case EXCP_DEBEGBP: /* 68020/030 only */
131 return "Copro Protocol Violation";
132 case EXCP_FORMAT:
133 return "Format Error";
134 case EXCP_UNINITIALIZED:
135 return "Unitialized Interruot";
136 case EXCP_SPURIOUS:
137 return "Spurious Interrupt";
138 case EXCP_INT_LEVEL_1:
139 return "Level 1 Interrupt";
140 case EXCP_INT_LEVEL_1 + 1:
141 return "Level 2 Interrupt";
142 case EXCP_INT_LEVEL_1 + 2:
143 return "Level 3 Interrupt";
144 case EXCP_INT_LEVEL_1 + 3:
145 return "Level 4 Interrupt";
146 case EXCP_INT_LEVEL_1 + 4:
147 return "Level 5 Interrupt";
148 case EXCP_INT_LEVEL_1 + 5:
149 return "Level 6 Interrupt";
150 case EXCP_INT_LEVEL_1 + 6:
151 return "Level 7 Interrupt";
152 case EXCP_TRAP0:
153 return "TRAP #0";
154 case EXCP_TRAP0 + 1:
155 return "TRAP #1";
156 case EXCP_TRAP0 + 2:
157 return "TRAP #2";
158 case EXCP_TRAP0 + 3:
159 return "TRAP #3";
160 case EXCP_TRAP0 + 4:
161 return "TRAP #4";
162 case EXCP_TRAP0 + 5:
163 return "TRAP #5";
164 case EXCP_TRAP0 + 6:
165 return "TRAP #6";
166 case EXCP_TRAP0 + 7:
167 return "TRAP #7";
168 case EXCP_TRAP0 + 8:
169 return "TRAP #8";
170 case EXCP_TRAP0 + 9:
171 return "TRAP #9";
172 case EXCP_TRAP0 + 10:
173 return "TRAP #10";
174 case EXCP_TRAP0 + 11:
175 return "TRAP #11";
176 case EXCP_TRAP0 + 12:
177 return "TRAP #12";
178 case EXCP_TRAP0 + 13:
179 return "TRAP #13";
180 case EXCP_TRAP0 + 14:
181 return "TRAP #14";
182 case EXCP_TRAP0 + 15:
183 return "TRAP #15";
184 case EXCP_FP_BSUN:
185 return "FP Branch/Set on unordered condition";
186 case EXCP_FP_INEX:
187 return "FP Inexact Result";
188 case EXCP_FP_DZ:
189 return "FP Divide by Zero";
190 case EXCP_FP_UNFL:
191 return "FP Underflow";
192 case EXCP_FP_OPERR:
193 return "FP Operand Error";
194 case EXCP_FP_OVFL:
195 return "FP Overflow";
196 case EXCP_FP_SNAN:
197 return "FP Signaling NAN";
198 case EXCP_FP_UNIMP:
199 return "FP Unimplemented Data Type";
200 case EXCP_MMU_CONF: /* 68030/68851 only */
201 return "MMU Configuration Error";
202 case EXCP_MMU_ILLEGAL: /* 68851 only */
203 return "MMU Illegal Operation";
204 case EXCP_MMU_ACCESS: /* 68851 only */
205 return "MMU Access Level Violation";
206 case 64 ... 255:
207 return "User Defined Vector";
209 return "Unassigned";
212 static void cf_interrupt_all(CPUM68KState *env, int is_hw)
214 CPUState *cs = CPU(m68k_env_get_cpu(env));
215 uint32_t sp;
216 uint32_t sr;
217 uint32_t fmt;
218 uint32_t retaddr;
219 uint32_t vector;
221 fmt = 0;
222 retaddr = env->pc;
224 if (!is_hw) {
225 switch (cs->exception_index) {
226 case EXCP_RTE:
227 /* Return from an exception. */
228 cf_rte(env);
229 return;
230 case EXCP_HALT_INSN:
231 if (semihosting_enabled()
232 && (env->sr & SR_S) != 0
233 && (env->pc & 3) == 0
234 && cpu_lduw_code(env, env->pc - 4) == 0x4e71
235 && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
236 env->pc += 4;
237 do_m68k_semihosting(env, env->dregs[0]);
238 return;
240 cs->halted = 1;
241 cs->exception_index = EXCP_HLT;
242 cpu_loop_exit(cs);
243 return;
245 if (cs->exception_index >= EXCP_TRAP0
246 && cs->exception_index <= EXCP_TRAP15) {
247 /* Move the PC after the trap instruction. */
248 retaddr += 2;
252 vector = cs->exception_index << 2;
254 sr = env->sr | cpu_m68k_get_ccr(env);
255 if (qemu_loglevel_mask(CPU_LOG_INT)) {
256 static int count;
257 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
258 ++count, m68k_exception_name(cs->exception_index),
259 vector, env->pc, env->aregs[7], sr);
262 fmt |= 0x40000000;
263 fmt |= vector << 16;
264 fmt |= sr;
266 env->sr |= SR_S;
267 if (is_hw) {
268 env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
269 env->sr &= ~SR_M;
271 m68k_switch_sp(env);
272 sp = env->aregs[7];
273 fmt |= (sp & 3) << 28;
275 /* ??? This could cause MMU faults. */
276 sp &= ~3;
277 sp -= 4;
278 cpu_stl_kernel(env, sp, retaddr);
279 sp -= 4;
280 cpu_stl_kernel(env, sp, fmt);
281 env->aregs[7] = sp;
282 /* Jump to vector. */
283 env->pc = cpu_ldl_kernel(env, env->vbr + vector);
286 static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp,
287 uint16_t format, uint16_t sr,
288 uint32_t addr, uint32_t retaddr)
290 CPUState *cs = CPU(m68k_env_get_cpu(env));
291 switch (format) {
292 case 4:
293 *sp -= 4;
294 cpu_stl_kernel(env, *sp, env->pc);
295 *sp -= 4;
296 cpu_stl_kernel(env, *sp, addr);
297 break;
298 case 3:
299 case 2:
300 *sp -= 4;
301 cpu_stl_kernel(env, *sp, addr);
302 break;
304 *sp -= 2;
305 cpu_stw_kernel(env, *sp, (format << 12) + (cs->exception_index << 2));
306 *sp -= 4;
307 cpu_stl_kernel(env, *sp, retaddr);
308 *sp -= 2;
309 cpu_stw_kernel(env, *sp, sr);
312 static void m68k_interrupt_all(CPUM68KState *env, int is_hw)
314 CPUState *cs = CPU(m68k_env_get_cpu(env));
315 uint32_t sp;
316 uint32_t retaddr;
317 uint32_t vector;
318 uint16_t sr, oldsr;
320 retaddr = env->pc;
322 if (!is_hw) {
323 switch (cs->exception_index) {
324 case EXCP_RTE:
325 /* Return from an exception. */
326 m68k_rte(env);
327 return;
328 case EXCP_TRAP0 ... EXCP_TRAP15:
329 /* Move the PC after the trap instruction. */
330 retaddr += 2;
331 break;
335 vector = cs->exception_index << 2;
337 sr = env->sr | cpu_m68k_get_ccr(env);
338 if (qemu_loglevel_mask(CPU_LOG_INT)) {
339 static int count;
340 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
341 ++count, m68k_exception_name(cs->exception_index),
342 vector, env->pc, env->aregs[7], sr);
346 * MC68040UM/AD, chapter 9.3.10
349 /* "the processor first make an internal copy" */
350 oldsr = sr;
351 /* "set the mode to supervisor" */
352 sr |= SR_S;
353 /* "suppress tracing" */
354 sr &= ~SR_T;
355 /* "sets the processor interrupt mask" */
356 if (is_hw) {
357 sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
359 cpu_m68k_set_sr(env, sr);
360 sp = env->aregs[7];
362 sp &= ~1;
363 if (cs->exception_index == EXCP_ACCESS) {
364 if (env->mmu.fault) {
365 cpu_abort(cs, "DOUBLE MMU FAULT\n");
367 env->mmu.fault = true;
368 sp -= 4;
369 cpu_stl_kernel(env, sp, 0); /* push data 3 */
370 sp -= 4;
371 cpu_stl_kernel(env, sp, 0); /* push data 2 */
372 sp -= 4;
373 cpu_stl_kernel(env, sp, 0); /* push data 1 */
374 sp -= 4;
375 cpu_stl_kernel(env, sp, 0); /* write back 1 / push data 0 */
376 sp -= 4;
377 cpu_stl_kernel(env, sp, 0); /* write back 1 address */
378 sp -= 4;
379 cpu_stl_kernel(env, sp, 0); /* write back 2 data */
380 sp -= 4;
381 cpu_stl_kernel(env, sp, 0); /* write back 2 address */
382 sp -= 4;
383 cpu_stl_kernel(env, sp, 0); /* write back 3 data */
384 sp -= 4;
385 cpu_stl_kernel(env, sp, env->mmu.ar); /* write back 3 address */
386 sp -= 4;
387 cpu_stl_kernel(env, sp, env->mmu.ar); /* fault address */
388 sp -= 2;
389 cpu_stw_kernel(env, sp, 0); /* write back 1 status */
390 sp -= 2;
391 cpu_stw_kernel(env, sp, 0); /* write back 2 status */
392 sp -= 2;
393 cpu_stw_kernel(env, sp, 0); /* write back 3 status */
394 sp -= 2;
395 cpu_stw_kernel(env, sp, env->mmu.ssw); /* special status word */
396 sp -= 4;
397 cpu_stl_kernel(env, sp, env->mmu.ar); /* effective address */
398 do_stack_frame(env, &sp, 7, oldsr, 0, retaddr);
399 env->mmu.fault = false;
400 if (qemu_loglevel_mask(CPU_LOG_INT)) {
401 qemu_log(" "
402 "ssw: %08x ea: %08x sfc: %d dfc: %d\n",
403 env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc);
405 } else if (cs->exception_index == EXCP_ADDRESS) {
406 do_stack_frame(env, &sp, 2, oldsr, 0, retaddr);
407 } else if (cs->exception_index == EXCP_ILLEGAL ||
408 cs->exception_index == EXCP_DIV0 ||
409 cs->exception_index == EXCP_CHK ||
410 cs->exception_index == EXCP_TRAPCC ||
411 cs->exception_index == EXCP_TRACE) {
412 /* FIXME: addr is not only env->pc */
413 do_stack_frame(env, &sp, 2, oldsr, env->pc, retaddr);
414 } else if (is_hw && oldsr & SR_M &&
415 cs->exception_index >= EXCP_SPURIOUS &&
416 cs->exception_index <= EXCP_INT_LEVEL_7) {
417 do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
418 oldsr = sr;
419 env->aregs[7] = sp;
420 cpu_m68k_set_sr(env, sr &= ~SR_M);
421 sp = env->aregs[7] & ~1;
422 do_stack_frame(env, &sp, 1, oldsr, 0, retaddr);
423 } else {
424 do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
427 env->aregs[7] = sp;
428 /* Jump to vector. */
429 env->pc = cpu_ldl_kernel(env, env->vbr + vector);
432 static void do_interrupt_all(CPUM68KState *env, int is_hw)
434 if (m68k_feature(env, M68K_FEATURE_M68000)) {
435 m68k_interrupt_all(env, is_hw);
436 return;
438 cf_interrupt_all(env, is_hw);
441 void m68k_cpu_do_interrupt(CPUState *cs)
443 M68kCPU *cpu = M68K_CPU(cs);
444 CPUM68KState *env = &cpu->env;
446 do_interrupt_all(env, 0);
449 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
451 do_interrupt_all(env, 1);
454 void m68k_cpu_unassigned_access(CPUState *cs, hwaddr addr, bool is_write,
455 bool is_exec, int is_asi, unsigned size)
457 M68kCPU *cpu = M68K_CPU(cs);
458 CPUM68KState *env = &cpu->env;
459 #ifdef DEBUG_UNASSIGNED
460 qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
461 addr, is_write, is_exec);
462 #endif
463 if (env == NULL) {
464 /* when called from gdb, env is NULL */
465 return;
468 if (m68k_feature(env, M68K_FEATURE_M68040)) {
469 env->mmu.mmusr = 0;
470 env->mmu.ssw |= M68K_ATC_040;
471 /* FIXME: manage MMU table access error */
472 env->mmu.ssw &= ~M68K_TM_040;
473 if (env->sr & SR_S) { /* SUPERVISOR */
474 env->mmu.ssw |= M68K_TM_040_SUPER;
476 if (is_exec) { /* instruction or data */
477 env->mmu.ssw |= M68K_TM_040_CODE;
478 } else {
479 env->mmu.ssw |= M68K_TM_040_DATA;
481 env->mmu.ssw &= ~M68K_BA_SIZE_MASK;
482 switch (size) {
483 case 1:
484 env->mmu.ssw |= M68K_BA_SIZE_BYTE;
485 break;
486 case 2:
487 env->mmu.ssw |= M68K_BA_SIZE_WORD;
488 break;
489 case 4:
490 env->mmu.ssw |= M68K_BA_SIZE_LONG;
491 break;
494 if (!is_write) {
495 env->mmu.ssw |= M68K_RW_040;
498 env->mmu.ar = addr;
500 cs->exception_index = EXCP_ACCESS;
501 cpu_loop_exit(cs);
504 #endif
506 bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
508 M68kCPU *cpu = M68K_CPU(cs);
509 CPUM68KState *env = &cpu->env;
511 if (interrupt_request & CPU_INTERRUPT_HARD
512 && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
513 /* Real hardware gets the interrupt vector via an IACK cycle
514 at this point. Current emulated hardware doesn't rely on
515 this, so we provide/save the vector when the interrupt is
516 first signalled. */
517 cs->exception_index = env->pending_vector;
518 do_interrupt_m68k_hardirq(env);
519 return true;
521 return false;
524 static void QEMU_NORETURN raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
526 CPUState *cs = CPU(m68k_env_get_cpu(env));
528 cs->exception_index = tt;
529 cpu_loop_exit_restore(cs, raddr);
532 static void QEMU_NORETURN raise_exception(CPUM68KState *env, int tt)
534 raise_exception_ra(env, tt, 0);
537 void QEMU_NORETURN HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
539 raise_exception(env, tt);
542 void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
544 uint32_t num = env->dregs[destr];
545 uint32_t quot, rem;
547 if (den == 0) {
548 raise_exception_ra(env, EXCP_DIV0, GETPC());
550 quot = num / den;
551 rem = num % den;
553 env->cc_c = 0; /* always cleared, even if overflow */
554 if (quot > 0xffff) {
555 env->cc_v = -1;
556 /* real 68040 keeps N and unset Z on overflow,
557 * whereas documentation says "undefined"
559 env->cc_z = 1;
560 return;
562 env->dregs[destr] = deposit32(quot, 16, 16, rem);
563 env->cc_z = (int16_t)quot;
564 env->cc_n = (int16_t)quot;
565 env->cc_v = 0;
568 void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
570 int32_t num = env->dregs[destr];
571 uint32_t quot, rem;
573 if (den == 0) {
574 raise_exception_ra(env, EXCP_DIV0, GETPC());
576 quot = num / den;
577 rem = num % den;
579 env->cc_c = 0; /* always cleared, even if overflow */
580 if (quot != (int16_t)quot) {
581 env->cc_v = -1;
582 /* nothing else is modified */
583 /* real 68040 keeps N and unset Z on overflow,
584 * whereas documentation says "undefined"
586 env->cc_z = 1;
587 return;
589 env->dregs[destr] = deposit32(quot, 16, 16, rem);
590 env->cc_z = (int16_t)quot;
591 env->cc_n = (int16_t)quot;
592 env->cc_v = 0;
595 void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
597 uint32_t num = env->dregs[numr];
598 uint32_t quot, rem;
600 if (den == 0) {
601 raise_exception_ra(env, EXCP_DIV0, GETPC());
603 quot = num / den;
604 rem = num % den;
606 env->cc_c = 0;
607 env->cc_z = quot;
608 env->cc_n = quot;
609 env->cc_v = 0;
611 if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
612 if (numr == regr) {
613 env->dregs[numr] = quot;
614 } else {
615 env->dregs[regr] = rem;
617 } else {
618 env->dregs[regr] = rem;
619 env->dregs[numr] = quot;
623 void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
625 int32_t num = env->dregs[numr];
626 int32_t quot, rem;
628 if (den == 0) {
629 raise_exception_ra(env, EXCP_DIV0, GETPC());
631 quot = num / den;
632 rem = num % den;
634 env->cc_c = 0;
635 env->cc_z = quot;
636 env->cc_n = quot;
637 env->cc_v = 0;
639 if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
640 if (numr == regr) {
641 env->dregs[numr] = quot;
642 } else {
643 env->dregs[regr] = rem;
645 } else {
646 env->dregs[regr] = rem;
647 env->dregs[numr] = quot;
651 void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
653 uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
654 uint64_t quot;
655 uint32_t rem;
657 if (den == 0) {
658 raise_exception_ra(env, EXCP_DIV0, GETPC());
660 quot = num / den;
661 rem = num % den;
663 env->cc_c = 0; /* always cleared, even if overflow */
664 if (quot > 0xffffffffULL) {
665 env->cc_v = -1;
666 /* real 68040 keeps N and unset Z on overflow,
667 * whereas documentation says "undefined"
669 env->cc_z = 1;
670 return;
672 env->cc_z = quot;
673 env->cc_n = quot;
674 env->cc_v = 0;
677 * If Dq and Dr are the same, the quotient is returned.
678 * therefore we set Dq last.
681 env->dregs[regr] = rem;
682 env->dregs[numr] = quot;
685 void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
687 int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
688 int64_t quot;
689 int32_t rem;
691 if (den == 0) {
692 raise_exception_ra(env, EXCP_DIV0, GETPC());
694 quot = num / den;
695 rem = num % den;
697 env->cc_c = 0; /* always cleared, even if overflow */
698 if (quot != (int32_t)quot) {
699 env->cc_v = -1;
700 /* real 68040 keeps N and unset Z on overflow,
701 * whereas documentation says "undefined"
703 env->cc_z = 1;
704 return;
706 env->cc_z = quot;
707 env->cc_n = quot;
708 env->cc_v = 0;
711 * If Dq and Dr are the same, the quotient is returned.
712 * therefore we set Dq last.
715 env->dregs[regr] = rem;
716 env->dregs[numr] = quot;
719 /* We're executing in a serial context -- no need to be atomic. */
720 void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
722 uint32_t Dc1 = extract32(regs, 9, 3);
723 uint32_t Dc2 = extract32(regs, 6, 3);
724 uint32_t Du1 = extract32(regs, 3, 3);
725 uint32_t Du2 = extract32(regs, 0, 3);
726 int16_t c1 = env->dregs[Dc1];
727 int16_t c2 = env->dregs[Dc2];
728 int16_t u1 = env->dregs[Du1];
729 int16_t u2 = env->dregs[Du2];
730 int16_t l1, l2;
731 uintptr_t ra = GETPC();
733 l1 = cpu_lduw_data_ra(env, a1, ra);
734 l2 = cpu_lduw_data_ra(env, a2, ra);
735 if (l1 == c1 && l2 == c2) {
736 cpu_stw_data_ra(env, a1, u1, ra);
737 cpu_stw_data_ra(env, a2, u2, ra);
740 if (c1 != l1) {
741 env->cc_n = l1;
742 env->cc_v = c1;
743 } else {
744 env->cc_n = l2;
745 env->cc_v = c2;
747 env->cc_op = CC_OP_CMPW;
748 env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
749 env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
752 static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2,
753 bool parallel)
755 uint32_t Dc1 = extract32(regs, 9, 3);
756 uint32_t Dc2 = extract32(regs, 6, 3);
757 uint32_t Du1 = extract32(regs, 3, 3);
758 uint32_t Du2 = extract32(regs, 0, 3);
759 uint32_t c1 = env->dregs[Dc1];
760 uint32_t c2 = env->dregs[Dc2];
761 uint32_t u1 = env->dregs[Du1];
762 uint32_t u2 = env->dregs[Du2];
763 uint32_t l1, l2;
764 uintptr_t ra = GETPC();
765 #if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY)
766 int mmu_idx = cpu_mmu_index(env, 0);
767 TCGMemOpIdx oi;
768 #endif
770 if (parallel) {
771 /* We're executing in a parallel context -- must be atomic. */
772 #ifdef CONFIG_ATOMIC64
773 uint64_t c, u, l;
774 if ((a1 & 7) == 0 && a2 == a1 + 4) {
775 c = deposit64(c2, 32, 32, c1);
776 u = deposit64(u2, 32, 32, u1);
777 #ifdef CONFIG_USER_ONLY
778 l = helper_atomic_cmpxchgq_be(env, a1, c, u);
779 #else
780 oi = make_memop_idx(MO_BEQ, mmu_idx);
781 l = helper_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
782 #endif
783 l1 = l >> 32;
784 l2 = l;
785 } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
786 c = deposit64(c1, 32, 32, c2);
787 u = deposit64(u1, 32, 32, u2);
788 #ifdef CONFIG_USER_ONLY
789 l = helper_atomic_cmpxchgq_be(env, a2, c, u);
790 #else
791 oi = make_memop_idx(MO_BEQ, mmu_idx);
792 l = helper_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
793 #endif
794 l2 = l >> 32;
795 l1 = l;
796 } else
797 #endif
799 /* Tell the main loop we need to serialize this insn. */
800 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
802 } else {
803 /* We're executing in a serial context -- no need to be atomic. */
804 l1 = cpu_ldl_data_ra(env, a1, ra);
805 l2 = cpu_ldl_data_ra(env, a2, ra);
806 if (l1 == c1 && l2 == c2) {
807 cpu_stl_data_ra(env, a1, u1, ra);
808 cpu_stl_data_ra(env, a2, u2, ra);
812 if (c1 != l1) {
813 env->cc_n = l1;
814 env->cc_v = c1;
815 } else {
816 env->cc_n = l2;
817 env->cc_v = c2;
819 env->cc_op = CC_OP_CMPL;
820 env->dregs[Dc1] = l1;
821 env->dregs[Dc2] = l2;
824 void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
826 do_cas2l(env, regs, a1, a2, false);
829 void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1,
830 uint32_t a2)
832 do_cas2l(env, regs, a1, a2, true);
835 struct bf_data {
836 uint32_t addr;
837 uint32_t bofs;
838 uint32_t blen;
839 uint32_t len;
842 static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
844 int bofs, blen;
846 /* Bound length; map 0 to 32. */
847 len = ((len - 1) & 31) + 1;
849 /* Note that ofs is signed. */
850 addr += ofs / 8;
851 bofs = ofs % 8;
852 if (bofs < 0) {
853 bofs += 8;
854 addr -= 1;
857 /* Compute the number of bytes required (minus one) to
858 satisfy the bitfield. */
859 blen = (bofs + len - 1) / 8;
861 /* Canonicalize the bit offset for data loaded into a 64-bit big-endian
862 word. For the cases where BLEN is not a power of 2, adjust ADDR so
863 that we can use the next power of two sized load without crossing a
864 page boundary, unless the field itself crosses the boundary. */
865 switch (blen) {
866 case 0:
867 bofs += 56;
868 break;
869 case 1:
870 bofs += 48;
871 break;
872 case 2:
873 if (addr & 1) {
874 bofs += 8;
875 addr -= 1;
877 /* fallthru */
878 case 3:
879 bofs += 32;
880 break;
881 case 4:
882 if (addr & 3) {
883 bofs += 8 * (addr & 3);
884 addr &= -4;
886 break;
887 default:
888 g_assert_not_reached();
891 return (struct bf_data){
892 .addr = addr,
893 .bofs = bofs,
894 .blen = blen,
895 .len = len,
899 static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
900 uintptr_t ra)
902 switch (blen) {
903 case 0:
904 return cpu_ldub_data_ra(env, addr, ra);
905 case 1:
906 return cpu_lduw_data_ra(env, addr, ra);
907 case 2:
908 case 3:
909 return cpu_ldl_data_ra(env, addr, ra);
910 case 4:
911 return cpu_ldq_data_ra(env, addr, ra);
912 default:
913 g_assert_not_reached();
917 static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
918 uint64_t data, uintptr_t ra)
920 switch (blen) {
921 case 0:
922 cpu_stb_data_ra(env, addr, data, ra);
923 break;
924 case 1:
925 cpu_stw_data_ra(env, addr, data, ra);
926 break;
927 case 2:
928 case 3:
929 cpu_stl_data_ra(env, addr, data, ra);
930 break;
931 case 4:
932 cpu_stq_data_ra(env, addr, data, ra);
933 break;
934 default:
935 g_assert_not_reached();
939 uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
940 int32_t ofs, uint32_t len)
942 uintptr_t ra = GETPC();
943 struct bf_data d = bf_prep(addr, ofs, len);
944 uint64_t data = bf_load(env, d.addr, d.blen, ra);
946 return (int64_t)(data << d.bofs) >> (64 - d.len);
949 uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
950 int32_t ofs, uint32_t len)
952 uintptr_t ra = GETPC();
953 struct bf_data d = bf_prep(addr, ofs, len);
954 uint64_t data = bf_load(env, d.addr, d.blen, ra);
956 /* Put CC_N at the top of the high word; put the zero-extended value
957 at the bottom of the low word. */
958 data <<= d.bofs;
959 data >>= 64 - d.len;
960 data |= data << (64 - d.len);
962 return data;
965 uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
966 int32_t ofs, uint32_t len)
968 uintptr_t ra = GETPC();
969 struct bf_data d = bf_prep(addr, ofs, len);
970 uint64_t data = bf_load(env, d.addr, d.blen, ra);
971 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
973 data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
975 bf_store(env, d.addr, d.blen, data, ra);
977 /* The field at the top of the word is also CC_N for CC_OP_LOGIC. */
978 return val << (32 - d.len);
981 uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
982 int32_t ofs, uint32_t len)
984 uintptr_t ra = GETPC();
985 struct bf_data d = bf_prep(addr, ofs, len);
986 uint64_t data = bf_load(env, d.addr, d.blen, ra);
987 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
989 bf_store(env, d.addr, d.blen, data ^ mask, ra);
991 return ((data & mask) << d.bofs) >> 32;
994 uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
995 int32_t ofs, uint32_t len)
997 uintptr_t ra = GETPC();
998 struct bf_data d = bf_prep(addr, ofs, len);
999 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1000 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1002 bf_store(env, d.addr, d.blen, data & ~mask, ra);
1004 return ((data & mask) << d.bofs) >> 32;
1007 uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
1008 int32_t ofs, uint32_t len)
1010 uintptr_t ra = GETPC();
1011 struct bf_data d = bf_prep(addr, ofs, len);
1012 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1013 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1015 bf_store(env, d.addr, d.blen, data | mask, ra);
1017 return ((data & mask) << d.bofs) >> 32;
1020 uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
1022 return (n ? clz32(n) : len) + ofs;
1025 uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
1026 int32_t ofs, uint32_t len)
1028 uintptr_t ra = GETPC();
1029 struct bf_data d = bf_prep(addr, ofs, len);
1030 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1031 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1032 uint64_t n = (data & mask) << d.bofs;
1033 uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
1035 /* Return FFO in the low word and N in the high word.
1036 Note that because of MASK and the shift, the low word
1037 is already zero. */
1038 return n | ffo;
1041 void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
1043 /* From the specs:
1044 * X: Not affected, C,V,Z: Undefined,
1045 * N: Set if val < 0; cleared if val > ub, undefined otherwise
1046 * We implement here values found from a real MC68040:
1047 * X,V,Z: Not affected
1048 * N: Set if val < 0; cleared if val >= 0
1049 * C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise
1050 * if 0 > ub: set if val > ub and val < 0, cleared otherwise
1052 env->cc_n = val;
1053 env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0;
1055 if (val < 0 || val > ub) {
1056 CPUState *cs = CPU(m68k_env_get_cpu(env));
1058 /* Recover PC and CC_OP for the beginning of the insn. */
1059 cpu_restore_state(cs, GETPC());
1061 /* flags have been modified by gen_flush_flags() */
1062 env->cc_op = CC_OP_FLAGS;
1063 /* Adjust PC to end of the insn. */
1064 env->pc += 2;
1066 cs->exception_index = EXCP_CHK;
1067 cpu_loop_exit(cs);
1071 void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub)
1073 /* From the specs:
1074 * X: Not affected, N,V: Undefined,
1075 * Z: Set if val is equal to lb or ub
1076 * C: Set if val < lb or val > ub, cleared otherwise
1077 * We implement here values found from a real MC68040:
1078 * X,N,V: Not affected
1079 * Z: Set if val is equal to lb or ub
1080 * C: if lb <= ub: set if val < lb or val > ub, cleared otherwise
1081 * if lb > ub: set if val > ub and val < lb, cleared otherwise
1083 env->cc_z = val != lb && val != ub;
1084 env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb;
1086 if (env->cc_c) {
1087 CPUState *cs = CPU(m68k_env_get_cpu(env));
1089 /* Recover PC and CC_OP for the beginning of the insn. */
1090 cpu_restore_state(cs, GETPC());
1092 /* flags have been modified by gen_flush_flags() */
1093 env->cc_op = CC_OP_FLAGS;
1094 /* Adjust PC to end of the insn. */
1095 env->pc += 4;
1097 cs->exception_index = EXCP_CHK;
1098 cpu_loop_exit(cs);