cutils: add qemu_strtoi & qemu_strtoui parsers for int/unsigned int types
[qemu/ar7.git] / target / ppc / fpu_helper.c
blob9ae418a5771174197f83577495a03e390b2c7c37
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
26 static inline float128 float128_snan_to_qnan(float128 x)
28 float128 r;
30 r.high = x.high | 0x0000800000000000;
31 r.low = x.low;
32 return r;
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
39 /*****************************************************************************/
40 /* Floating point operations helpers */
41 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
43 CPU_FloatU f;
44 CPU_DoubleU d;
46 f.l = arg;
47 d.d = float32_to_float64(f.f, &env->fp_status);
48 return d.ll;
51 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
53 CPU_FloatU f;
54 CPU_DoubleU d;
56 d.ll = arg;
57 f.f = float64_to_float32(d.d, &env->fp_status);
58 return f.l;
61 static inline int ppc_float32_get_unbiased_exp(float32 f)
63 return ((f >> 23) & 0xFF) - 127;
66 static inline int ppc_float64_get_unbiased_exp(float64 f)
68 return ((f >> 52) & 0x7FF) - 1023;
71 #define COMPUTE_FPRF(tp) \
72 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
73 { \
74 int isneg; \
75 int fprf; \
77 isneg = tp##_is_neg(arg); \
78 if (unlikely(tp##_is_any_nan(arg))) { \
79 if (tp##_is_signaling_nan(arg, &env->fp_status)) { \
80 /* Signaling NaN: flags are undefined */ \
81 fprf = 0x00; \
82 } else { \
83 /* Quiet NaN */ \
84 fprf = 0x11; \
85 } \
86 } else if (unlikely(tp##_is_infinity(arg))) { \
87 /* +/- infinity */ \
88 if (isneg) { \
89 fprf = 0x09; \
90 } else { \
91 fprf = 0x05; \
92 } \
93 } else { \
94 if (tp##_is_zero(arg)) { \
95 /* +/- zero */ \
96 if (isneg) { \
97 fprf = 0x12; \
98 } else { \
99 fprf = 0x02; \
101 } else { \
102 if (tp##_is_zero_or_denormal(arg)) { \
103 /* Denormalized numbers */ \
104 fprf = 0x10; \
105 } else { \
106 /* Normalized numbers */ \
107 fprf = 0x00; \
109 if (isneg) { \
110 fprf |= 0x08; \
111 } else { \
112 fprf |= 0x04; \
116 /* We update FPSCR_FPRF */ \
117 env->fpscr &= ~(0x1F << FPSCR_FPRF); \
118 env->fpscr |= fprf << FPSCR_FPRF; \
121 COMPUTE_FPRF(float16)
122 COMPUTE_FPRF(float32)
123 COMPUTE_FPRF(float64)
124 COMPUTE_FPRF(float128)
126 /* Floating-point invalid operations exception */
127 static inline __attribute__((__always_inline__))
128 uint64_t float_invalid_op_excp(CPUPPCState *env, int op, int set_fpcc)
130 CPUState *cs = CPU(ppc_env_get_cpu(env));
131 uint64_t ret = 0;
132 int ve;
134 ve = fpscr_ve;
135 switch (op) {
136 case POWERPC_EXCP_FP_VXSNAN:
137 env->fpscr |= 1 << FPSCR_VXSNAN;
138 break;
139 case POWERPC_EXCP_FP_VXSOFT:
140 env->fpscr |= 1 << FPSCR_VXSOFT;
141 break;
142 case POWERPC_EXCP_FP_VXISI:
143 /* Magnitude subtraction of infinities */
144 env->fpscr |= 1 << FPSCR_VXISI;
145 goto update_arith;
146 case POWERPC_EXCP_FP_VXIDI:
147 /* Division of infinity by infinity */
148 env->fpscr |= 1 << FPSCR_VXIDI;
149 goto update_arith;
150 case POWERPC_EXCP_FP_VXZDZ:
151 /* Division of zero by zero */
152 env->fpscr |= 1 << FPSCR_VXZDZ;
153 goto update_arith;
154 case POWERPC_EXCP_FP_VXIMZ:
155 /* Multiplication of zero by infinity */
156 env->fpscr |= 1 << FPSCR_VXIMZ;
157 goto update_arith;
158 case POWERPC_EXCP_FP_VXVC:
159 /* Ordered comparison of NaN */
160 env->fpscr |= 1 << FPSCR_VXVC;
161 if (set_fpcc) {
162 env->fpscr &= ~(0xF << FPSCR_FPCC);
163 env->fpscr |= 0x11 << FPSCR_FPCC;
165 /* We must update the target FPR before raising the exception */
166 if (ve != 0) {
167 cs->exception_index = POWERPC_EXCP_PROGRAM;
168 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
169 /* Update the floating-point enabled exception summary */
170 env->fpscr |= 1 << FPSCR_FEX;
171 /* Exception is differed */
172 ve = 0;
174 break;
175 case POWERPC_EXCP_FP_VXSQRT:
176 /* Square root of a negative number */
177 env->fpscr |= 1 << FPSCR_VXSQRT;
178 update_arith:
179 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
180 if (ve == 0) {
181 /* Set the result to quiet NaN */
182 ret = 0x7FF8000000000000ULL;
183 if (set_fpcc) {
184 env->fpscr &= ~(0xF << FPSCR_FPCC);
185 env->fpscr |= 0x11 << FPSCR_FPCC;
188 break;
189 case POWERPC_EXCP_FP_VXCVI:
190 /* Invalid conversion */
191 env->fpscr |= 1 << FPSCR_VXCVI;
192 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
193 if (ve == 0) {
194 /* Set the result to quiet NaN */
195 ret = 0x7FF8000000000000ULL;
196 if (set_fpcc) {
197 env->fpscr &= ~(0xF << FPSCR_FPCC);
198 env->fpscr |= 0x11 << FPSCR_FPCC;
201 break;
203 /* Update the floating-point invalid operation summary */
204 env->fpscr |= 1 << FPSCR_VX;
205 /* Update the floating-point exception summary */
206 env->fpscr |= FP_FX;
207 if (ve != 0) {
208 /* Update the floating-point enabled exception summary */
209 env->fpscr |= 1 << FPSCR_FEX;
210 if (msr_fe0 != 0 || msr_fe1 != 0) {
211 /* GETPC() works here because this is inline */
212 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
213 POWERPC_EXCP_FP | op, GETPC());
216 return ret;
219 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
221 env->fpscr |= 1 << FPSCR_ZX;
222 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
223 /* Update the floating-point exception summary */
224 env->fpscr |= FP_FX;
225 if (fpscr_ze != 0) {
226 /* Update the floating-point enabled exception summary */
227 env->fpscr |= 1 << FPSCR_FEX;
228 if (msr_fe0 != 0 || msr_fe1 != 0) {
229 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
230 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
231 raddr);
236 static inline void float_overflow_excp(CPUPPCState *env)
238 CPUState *cs = CPU(ppc_env_get_cpu(env));
240 env->fpscr |= 1 << FPSCR_OX;
241 /* Update the floating-point exception summary */
242 env->fpscr |= FP_FX;
243 if (fpscr_oe != 0) {
244 /* XXX: should adjust the result */
245 /* Update the floating-point enabled exception summary */
246 env->fpscr |= 1 << FPSCR_FEX;
247 /* We must update the target FPR before raising the exception */
248 cs->exception_index = POWERPC_EXCP_PROGRAM;
249 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
250 } else {
251 env->fpscr |= 1 << FPSCR_XX;
252 env->fpscr |= 1 << FPSCR_FI;
256 static inline void float_underflow_excp(CPUPPCState *env)
258 CPUState *cs = CPU(ppc_env_get_cpu(env));
260 env->fpscr |= 1 << FPSCR_UX;
261 /* Update the floating-point exception summary */
262 env->fpscr |= FP_FX;
263 if (fpscr_ue != 0) {
264 /* XXX: should adjust the result */
265 /* Update the floating-point enabled exception summary */
266 env->fpscr |= 1 << FPSCR_FEX;
267 /* We must update the target FPR before raising the exception */
268 cs->exception_index = POWERPC_EXCP_PROGRAM;
269 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
273 static inline void float_inexact_excp(CPUPPCState *env)
275 CPUState *cs = CPU(ppc_env_get_cpu(env));
277 env->fpscr |= 1 << FPSCR_XX;
278 /* Update the floating-point exception summary */
279 env->fpscr |= FP_FX;
280 if (fpscr_xe != 0) {
281 /* Update the floating-point enabled exception summary */
282 env->fpscr |= 1 << FPSCR_FEX;
283 /* We must update the target FPR before raising the exception */
284 cs->exception_index = POWERPC_EXCP_PROGRAM;
285 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
289 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
291 int rnd_type;
293 /* Set rounding mode */
294 switch (fpscr_rn) {
295 case 0:
296 /* Best approximation (round to nearest) */
297 rnd_type = float_round_nearest_even;
298 break;
299 case 1:
300 /* Smaller magnitude (round toward zero) */
301 rnd_type = float_round_to_zero;
302 break;
303 case 2:
304 /* Round toward +infinite */
305 rnd_type = float_round_up;
306 break;
307 default:
308 case 3:
309 /* Round toward -infinite */
310 rnd_type = float_round_down;
311 break;
313 set_float_rounding_mode(rnd_type, &env->fp_status);
316 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
318 int prev;
320 prev = (env->fpscr >> bit) & 1;
321 env->fpscr &= ~(1 << bit);
322 if (prev == 1) {
323 switch (bit) {
324 case FPSCR_RN1:
325 case FPSCR_RN:
326 fpscr_set_rounding_mode(env);
327 break;
328 default:
329 break;
334 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
336 CPUState *cs = CPU(ppc_env_get_cpu(env));
337 int prev;
339 prev = (env->fpscr >> bit) & 1;
340 env->fpscr |= 1 << bit;
341 if (prev == 0) {
342 switch (bit) {
343 case FPSCR_VX:
344 env->fpscr |= FP_FX;
345 if (fpscr_ve) {
346 goto raise_ve;
348 break;
349 case FPSCR_OX:
350 env->fpscr |= FP_FX;
351 if (fpscr_oe) {
352 goto raise_oe;
354 break;
355 case FPSCR_UX:
356 env->fpscr |= FP_FX;
357 if (fpscr_ue) {
358 goto raise_ue;
360 break;
361 case FPSCR_ZX:
362 env->fpscr |= FP_FX;
363 if (fpscr_ze) {
364 goto raise_ze;
366 break;
367 case FPSCR_XX:
368 env->fpscr |= FP_FX;
369 if (fpscr_xe) {
370 goto raise_xe;
372 break;
373 case FPSCR_VXSNAN:
374 case FPSCR_VXISI:
375 case FPSCR_VXIDI:
376 case FPSCR_VXZDZ:
377 case FPSCR_VXIMZ:
378 case FPSCR_VXVC:
379 case FPSCR_VXSOFT:
380 case FPSCR_VXSQRT:
381 case FPSCR_VXCVI:
382 env->fpscr |= 1 << FPSCR_VX;
383 env->fpscr |= FP_FX;
384 if (fpscr_ve != 0) {
385 goto raise_ve;
387 break;
388 case FPSCR_VE:
389 if (fpscr_vx != 0) {
390 raise_ve:
391 env->error_code = POWERPC_EXCP_FP;
392 if (fpscr_vxsnan) {
393 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
395 if (fpscr_vxisi) {
396 env->error_code |= POWERPC_EXCP_FP_VXISI;
398 if (fpscr_vxidi) {
399 env->error_code |= POWERPC_EXCP_FP_VXIDI;
401 if (fpscr_vxzdz) {
402 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
404 if (fpscr_vximz) {
405 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
407 if (fpscr_vxvc) {
408 env->error_code |= POWERPC_EXCP_FP_VXVC;
410 if (fpscr_vxsoft) {
411 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
413 if (fpscr_vxsqrt) {
414 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
416 if (fpscr_vxcvi) {
417 env->error_code |= POWERPC_EXCP_FP_VXCVI;
419 goto raise_excp;
421 break;
422 case FPSCR_OE:
423 if (fpscr_ox != 0) {
424 raise_oe:
425 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
426 goto raise_excp;
428 break;
429 case FPSCR_UE:
430 if (fpscr_ux != 0) {
431 raise_ue:
432 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
433 goto raise_excp;
435 break;
436 case FPSCR_ZE:
437 if (fpscr_zx != 0) {
438 raise_ze:
439 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
440 goto raise_excp;
442 break;
443 case FPSCR_XE:
444 if (fpscr_xx != 0) {
445 raise_xe:
446 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
447 goto raise_excp;
449 break;
450 case FPSCR_RN1:
451 case FPSCR_RN:
452 fpscr_set_rounding_mode(env);
453 break;
454 default:
455 break;
456 raise_excp:
457 /* Update the floating-point enabled exception summary */
458 env->fpscr |= 1 << FPSCR_FEX;
459 /* We have to update Rc1 before raising the exception */
460 cs->exception_index = POWERPC_EXCP_PROGRAM;
461 break;
466 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
468 CPUState *cs = CPU(ppc_env_get_cpu(env));
469 target_ulong prev, new;
470 int i;
472 prev = env->fpscr;
473 new = (target_ulong)arg;
474 new &= ~0x60000000LL;
475 new |= prev & 0x60000000LL;
476 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
477 if (mask & (1 << i)) {
478 env->fpscr &= ~(0xFLL << (4 * i));
479 env->fpscr |= new & (0xFLL << (4 * i));
482 /* Update VX and FEX */
483 if (fpscr_ix != 0) {
484 env->fpscr |= 1 << FPSCR_VX;
485 } else {
486 env->fpscr &= ~(1 << FPSCR_VX);
488 if ((fpscr_ex & fpscr_eex) != 0) {
489 env->fpscr |= 1 << FPSCR_FEX;
490 cs->exception_index = POWERPC_EXCP_PROGRAM;
491 /* XXX: we should compute it properly */
492 env->error_code = POWERPC_EXCP_FP;
493 } else {
494 env->fpscr &= ~(1 << FPSCR_FEX);
496 fpscr_set_rounding_mode(env);
499 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
501 helper_store_fpscr(env, arg, mask);
504 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
506 CPUState *cs = CPU(ppc_env_get_cpu(env));
507 int status = get_float_exception_flags(&env->fp_status);
509 if (status & float_flag_divbyzero) {
510 float_zero_divide_excp(env, raddr);
511 } else if (status & float_flag_overflow) {
512 float_overflow_excp(env);
513 } else if (status & float_flag_underflow) {
514 float_underflow_excp(env);
515 } else if (status & float_flag_inexact) {
516 float_inexact_excp(env);
519 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
520 (env->error_code & POWERPC_EXCP_FP)) {
521 /* Differred floating-point exception after target FPR update */
522 if (msr_fe0 != 0 || msr_fe1 != 0) {
523 raise_exception_err_ra(env, cs->exception_index,
524 env->error_code, raddr);
529 static inline __attribute__((__always_inline__))
530 void float_check_status(CPUPPCState *env)
532 /* GETPC() works here because this is inline */
533 do_float_check_status(env, GETPC());
536 void helper_float_check_status(CPUPPCState *env)
538 do_float_check_status(env, GETPC());
541 void helper_reset_fpstatus(CPUPPCState *env)
543 set_float_exception_flags(0, &env->fp_status);
546 /* fadd - fadd. */
547 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
549 CPU_DoubleU farg1, farg2;
551 farg1.ll = arg1;
552 farg2.ll = arg2;
554 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
555 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
556 /* Magnitude subtraction of infinities */
557 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
558 } else {
559 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
560 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
561 /* sNaN addition */
562 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
564 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
567 return farg1.ll;
570 /* fsub - fsub. */
571 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
573 CPU_DoubleU farg1, farg2;
575 farg1.ll = arg1;
576 farg2.ll = arg2;
578 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
579 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
580 /* Magnitude subtraction of infinities */
581 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
582 } else {
583 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
584 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
585 /* sNaN subtraction */
586 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
588 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
591 return farg1.ll;
594 /* fmul - fmul. */
595 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
597 CPU_DoubleU farg1, farg2;
599 farg1.ll = arg1;
600 farg2.ll = arg2;
602 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
603 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
604 /* Multiplication of zero by infinity */
605 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
606 } else {
607 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
608 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
609 /* sNaN multiplication */
610 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
612 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
615 return farg1.ll;
618 /* fdiv - fdiv. */
619 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
621 CPU_DoubleU farg1, farg2;
623 farg1.ll = arg1;
624 farg2.ll = arg2;
626 if (unlikely(float64_is_infinity(farg1.d) &&
627 float64_is_infinity(farg2.d))) {
628 /* Division of infinity by infinity */
629 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
630 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
631 /* Division of zero by zero */
632 farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
633 } else {
634 if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
635 float64_is_signaling_nan(farg2.d, &env->fp_status))) {
636 /* sNaN division */
637 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
639 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
642 return farg1.ll;
646 #define FPU_FCTI(op, cvt, nanval) \
647 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
649 CPU_DoubleU farg; \
651 farg.ll = arg; \
652 farg.ll = float64_to_##cvt(farg.d, &env->fp_status); \
654 if (unlikely(env->fp_status.float_exception_flags)) { \
655 if (float64_is_any_nan(arg)) { \
656 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
657 if (float64_is_signaling_nan(arg, &env->fp_status)) { \
658 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
660 farg.ll = nanval; \
661 } else if (env->fp_status.float_exception_flags & \
662 float_flag_invalid) { \
663 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
665 float_check_status(env); \
667 return farg.ll; \
670 FPU_FCTI(fctiw, int32, 0x80000000U)
671 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
672 FPU_FCTI(fctiwu, uint32, 0x00000000U)
673 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
674 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
675 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
676 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
677 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
679 #define FPU_FCFI(op, cvtr, is_single) \
680 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
682 CPU_DoubleU farg; \
684 if (is_single) { \
685 float32 tmp = cvtr(arg, &env->fp_status); \
686 farg.d = float32_to_float64(tmp, &env->fp_status); \
687 } else { \
688 farg.d = cvtr(arg, &env->fp_status); \
690 float_check_status(env); \
691 return farg.ll; \
694 FPU_FCFI(fcfid, int64_to_float64, 0)
695 FPU_FCFI(fcfids, int64_to_float32, 1)
696 FPU_FCFI(fcfidu, uint64_to_float64, 0)
697 FPU_FCFI(fcfidus, uint64_to_float32, 1)
699 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
700 int rounding_mode)
702 CPU_DoubleU farg;
704 farg.ll = arg;
706 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
707 /* sNaN round */
708 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
709 farg.ll = arg | 0x0008000000000000ULL;
710 } else {
711 int inexact = get_float_exception_flags(&env->fp_status) &
712 float_flag_inexact;
713 set_float_rounding_mode(rounding_mode, &env->fp_status);
714 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
715 /* Restore rounding mode from FPSCR */
716 fpscr_set_rounding_mode(env);
718 /* fri* does not set FPSCR[XX] */
719 if (!inexact) {
720 env->fp_status.float_exception_flags &= ~float_flag_inexact;
723 float_check_status(env);
724 return farg.ll;
727 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
729 return do_fri(env, arg, float_round_ties_away);
732 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
734 return do_fri(env, arg, float_round_to_zero);
737 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
739 return do_fri(env, arg, float_round_up);
742 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
744 return do_fri(env, arg, float_round_down);
747 #define FPU_MADDSUB_UPDATE(NAME, TP) \
748 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \
749 unsigned int madd_flags) \
751 if (TP##_is_signaling_nan(arg1, &env->fp_status) || \
752 TP##_is_signaling_nan(arg2, &env->fp_status) || \
753 TP##_is_signaling_nan(arg3, &env->fp_status)) { \
754 /* sNaN operation */ \
755 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
757 if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \
758 (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \
759 /* Multiplication of zero by infinity */ \
760 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); \
762 if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \
763 TP##_is_infinity(arg3)) { \
764 uint8_t aSign, bSign, cSign; \
766 aSign = TP##_is_neg(arg1); \
767 bSign = TP##_is_neg(arg2); \
768 cSign = TP##_is_neg(arg3); \
769 if (madd_flags & float_muladd_negate_c) { \
770 cSign ^= 1; \
772 if (aSign ^ bSign ^ cSign) { \
773 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); \
777 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
778 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
780 #define FPU_FMADD(op, madd_flags) \
781 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
782 uint64_t arg2, uint64_t arg3) \
784 uint32_t flags; \
785 float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \
786 &env->fp_status); \
787 flags = get_float_exception_flags(&env->fp_status); \
788 if (flags) { \
789 if (flags & float_flag_invalid) { \
790 float64_maddsub_update_excp(env, arg1, arg2, arg3, \
791 madd_flags); \
793 float_check_status(env); \
795 return ret; \
798 #define MADD_FLGS 0
799 #define MSUB_FLGS float_muladd_negate_c
800 #define NMADD_FLGS float_muladd_negate_result
801 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
803 FPU_FMADD(fmadd, MADD_FLGS)
804 FPU_FMADD(fnmadd, NMADD_FLGS)
805 FPU_FMADD(fmsub, MSUB_FLGS)
806 FPU_FMADD(fnmsub, NMSUB_FLGS)
808 /* frsp - frsp. */
809 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
811 CPU_DoubleU farg;
812 float32 f32;
814 farg.ll = arg;
816 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
817 /* sNaN square root */
818 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
820 f32 = float64_to_float32(farg.d, &env->fp_status);
821 farg.d = float32_to_float64(f32, &env->fp_status);
823 return farg.ll;
826 /* fsqrt - fsqrt. */
827 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
829 CPU_DoubleU farg;
831 farg.ll = arg;
833 if (unlikely(float64_is_any_nan(farg.d))) {
834 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
835 /* sNaN reciprocal square root */
836 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
837 farg.ll = float64_snan_to_qnan(farg.ll);
839 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
840 /* Square root of a negative nonzero number */
841 farg.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
842 } else {
843 farg.d = float64_sqrt(farg.d, &env->fp_status);
845 return farg.ll;
848 /* fre - fre. */
849 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
851 CPU_DoubleU farg;
853 farg.ll = arg;
855 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
856 /* sNaN reciprocal */
857 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
859 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
860 return farg.d;
863 /* fres - fres. */
864 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
866 CPU_DoubleU farg;
867 float32 f32;
869 farg.ll = arg;
871 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
872 /* sNaN reciprocal */
873 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
875 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
876 f32 = float64_to_float32(farg.d, &env->fp_status);
877 farg.d = float32_to_float64(f32, &env->fp_status);
879 return farg.ll;
882 /* frsqrte - frsqrte. */
883 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
885 CPU_DoubleU farg;
887 farg.ll = arg;
889 if (unlikely(float64_is_any_nan(farg.d))) {
890 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
891 /* sNaN reciprocal square root */
892 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
893 farg.ll = float64_snan_to_qnan(farg.ll);
895 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
896 /* Reciprocal square root of a negative nonzero number */
897 farg.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
898 } else {
899 farg.d = float64_sqrt(farg.d, &env->fp_status);
900 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
903 return farg.ll;
906 /* fsel - fsel. */
907 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
908 uint64_t arg3)
910 CPU_DoubleU farg1;
912 farg1.ll = arg1;
914 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
915 !float64_is_any_nan(farg1.d)) {
916 return arg2;
917 } else {
918 return arg3;
922 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
924 int fe_flag = 0;
925 int fg_flag = 0;
927 if (unlikely(float64_is_infinity(fra) ||
928 float64_is_infinity(frb) ||
929 float64_is_zero(frb))) {
930 fe_flag = 1;
931 fg_flag = 1;
932 } else {
933 int e_a = ppc_float64_get_unbiased_exp(fra);
934 int e_b = ppc_float64_get_unbiased_exp(frb);
936 if (unlikely(float64_is_any_nan(fra) ||
937 float64_is_any_nan(frb))) {
938 fe_flag = 1;
939 } else if ((e_b <= -1022) || (e_b >= 1021)) {
940 fe_flag = 1;
941 } else if (!float64_is_zero(fra) &&
942 (((e_a - e_b) >= 1023) ||
943 ((e_a - e_b) <= -1021) ||
944 (e_a <= -970))) {
945 fe_flag = 1;
948 if (unlikely(float64_is_zero_or_denormal(frb))) {
949 /* XB is not zero because of the above check and */
950 /* so must be denormalized. */
951 fg_flag = 1;
955 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
958 uint32_t helper_ftsqrt(uint64_t frb)
960 int fe_flag = 0;
961 int fg_flag = 0;
963 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
964 fe_flag = 1;
965 fg_flag = 1;
966 } else {
967 int e_b = ppc_float64_get_unbiased_exp(frb);
969 if (unlikely(float64_is_any_nan(frb))) {
970 fe_flag = 1;
971 } else if (unlikely(float64_is_zero(frb))) {
972 fe_flag = 1;
973 } else if (unlikely(float64_is_neg(frb))) {
974 fe_flag = 1;
975 } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
976 fe_flag = 1;
979 if (unlikely(float64_is_zero_or_denormal(frb))) {
980 /* XB is not zero because of the above check and */
981 /* therefore must be denormalized. */
982 fg_flag = 1;
986 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
989 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
990 uint32_t crfD)
992 CPU_DoubleU farg1, farg2;
993 uint32_t ret = 0;
995 farg1.ll = arg1;
996 farg2.ll = arg2;
998 if (unlikely(float64_is_any_nan(farg1.d) ||
999 float64_is_any_nan(farg2.d))) {
1000 ret = 0x01UL;
1001 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1002 ret = 0x08UL;
1003 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1004 ret = 0x04UL;
1005 } else {
1006 ret = 0x02UL;
1009 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1010 env->fpscr |= ret << FPSCR_FPRF;
1011 env->crf[crfD] = ret;
1012 if (unlikely(ret == 0x01UL
1013 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1014 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1015 /* sNaN comparison */
1016 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1020 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1021 uint32_t crfD)
1023 CPU_DoubleU farg1, farg2;
1024 uint32_t ret = 0;
1026 farg1.ll = arg1;
1027 farg2.ll = arg2;
1029 if (unlikely(float64_is_any_nan(farg1.d) ||
1030 float64_is_any_nan(farg2.d))) {
1031 ret = 0x01UL;
1032 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1033 ret = 0x08UL;
1034 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1035 ret = 0x04UL;
1036 } else {
1037 ret = 0x02UL;
1040 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1041 env->fpscr |= ret << FPSCR_FPRF;
1042 env->crf[crfD] = ret;
1043 if (unlikely(ret == 0x01UL)) {
1044 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1045 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1046 /* sNaN comparison */
1047 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1048 POWERPC_EXCP_FP_VXVC, 1);
1049 } else {
1050 /* qNaN comparison */
1051 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1056 /* Single-precision floating-point conversions */
1057 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1059 CPU_FloatU u;
1061 u.f = int32_to_float32(val, &env->vec_status);
1063 return u.l;
1066 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1068 CPU_FloatU u;
1070 u.f = uint32_to_float32(val, &env->vec_status);
1072 return u.l;
1075 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1077 CPU_FloatU u;
1079 u.l = val;
1080 /* NaN are not treated the same way IEEE 754 does */
1081 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1082 return 0;
1085 return float32_to_int32(u.f, &env->vec_status);
1088 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1090 CPU_FloatU u;
1092 u.l = val;
1093 /* NaN are not treated the same way IEEE 754 does */
1094 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1095 return 0;
1098 return float32_to_uint32(u.f, &env->vec_status);
1101 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1103 CPU_FloatU u;
1105 u.l = val;
1106 /* NaN are not treated the same way IEEE 754 does */
1107 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1108 return 0;
1111 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1114 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1116 CPU_FloatU u;
1118 u.l = val;
1119 /* NaN are not treated the same way IEEE 754 does */
1120 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1121 return 0;
1124 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1127 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1129 CPU_FloatU u;
1130 float32 tmp;
1132 u.f = int32_to_float32(val, &env->vec_status);
1133 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1134 u.f = float32_div(u.f, tmp, &env->vec_status);
1136 return u.l;
1139 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1141 CPU_FloatU u;
1142 float32 tmp;
1144 u.f = uint32_to_float32(val, &env->vec_status);
1145 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1146 u.f = float32_div(u.f, tmp, &env->vec_status);
1148 return u.l;
1151 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1153 CPU_FloatU u;
1154 float32 tmp;
1156 u.l = val;
1157 /* NaN are not treated the same way IEEE 754 does */
1158 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1159 return 0;
1161 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1162 u.f = float32_mul(u.f, tmp, &env->vec_status);
1164 return float32_to_int32(u.f, &env->vec_status);
1167 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1169 CPU_FloatU u;
1170 float32 tmp;
1172 u.l = val;
1173 /* NaN are not treated the same way IEEE 754 does */
1174 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1175 return 0;
1177 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1178 u.f = float32_mul(u.f, tmp, &env->vec_status);
1180 return float32_to_uint32(u.f, &env->vec_status);
1183 #define HELPER_SPE_SINGLE_CONV(name) \
1184 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1186 return e##name(env, val); \
1188 /* efscfsi */
1189 HELPER_SPE_SINGLE_CONV(fscfsi);
1190 /* efscfui */
1191 HELPER_SPE_SINGLE_CONV(fscfui);
1192 /* efscfuf */
1193 HELPER_SPE_SINGLE_CONV(fscfuf);
1194 /* efscfsf */
1195 HELPER_SPE_SINGLE_CONV(fscfsf);
1196 /* efsctsi */
1197 HELPER_SPE_SINGLE_CONV(fsctsi);
1198 /* efsctui */
1199 HELPER_SPE_SINGLE_CONV(fsctui);
1200 /* efsctsiz */
1201 HELPER_SPE_SINGLE_CONV(fsctsiz);
1202 /* efsctuiz */
1203 HELPER_SPE_SINGLE_CONV(fsctuiz);
1204 /* efsctsf */
1205 HELPER_SPE_SINGLE_CONV(fsctsf);
1206 /* efsctuf */
1207 HELPER_SPE_SINGLE_CONV(fsctuf);
1209 #define HELPER_SPE_VECTOR_CONV(name) \
1210 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1212 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1213 (uint64_t)e##name(env, val); \
1215 /* evfscfsi */
1216 HELPER_SPE_VECTOR_CONV(fscfsi);
1217 /* evfscfui */
1218 HELPER_SPE_VECTOR_CONV(fscfui);
1219 /* evfscfuf */
1220 HELPER_SPE_VECTOR_CONV(fscfuf);
1221 /* evfscfsf */
1222 HELPER_SPE_VECTOR_CONV(fscfsf);
1223 /* evfsctsi */
1224 HELPER_SPE_VECTOR_CONV(fsctsi);
1225 /* evfsctui */
1226 HELPER_SPE_VECTOR_CONV(fsctui);
1227 /* evfsctsiz */
1228 HELPER_SPE_VECTOR_CONV(fsctsiz);
1229 /* evfsctuiz */
1230 HELPER_SPE_VECTOR_CONV(fsctuiz);
1231 /* evfsctsf */
1232 HELPER_SPE_VECTOR_CONV(fsctsf);
1233 /* evfsctuf */
1234 HELPER_SPE_VECTOR_CONV(fsctuf);
1236 /* Single-precision floating-point arithmetic */
1237 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1239 CPU_FloatU u1, u2;
1241 u1.l = op1;
1242 u2.l = op2;
1243 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1244 return u1.l;
1247 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1249 CPU_FloatU u1, u2;
1251 u1.l = op1;
1252 u2.l = op2;
1253 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1254 return u1.l;
1257 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1259 CPU_FloatU u1, u2;
1261 u1.l = op1;
1262 u2.l = op2;
1263 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1264 return u1.l;
1267 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1269 CPU_FloatU u1, u2;
1271 u1.l = op1;
1272 u2.l = op2;
1273 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1274 return u1.l;
1277 #define HELPER_SPE_SINGLE_ARITH(name) \
1278 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1280 return e##name(env, op1, op2); \
1282 /* efsadd */
1283 HELPER_SPE_SINGLE_ARITH(fsadd);
1284 /* efssub */
1285 HELPER_SPE_SINGLE_ARITH(fssub);
1286 /* efsmul */
1287 HELPER_SPE_SINGLE_ARITH(fsmul);
1288 /* efsdiv */
1289 HELPER_SPE_SINGLE_ARITH(fsdiv);
1291 #define HELPER_SPE_VECTOR_ARITH(name) \
1292 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1294 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1295 (uint64_t)e##name(env, op1, op2); \
1297 /* evfsadd */
1298 HELPER_SPE_VECTOR_ARITH(fsadd);
1299 /* evfssub */
1300 HELPER_SPE_VECTOR_ARITH(fssub);
1301 /* evfsmul */
1302 HELPER_SPE_VECTOR_ARITH(fsmul);
1303 /* evfsdiv */
1304 HELPER_SPE_VECTOR_ARITH(fsdiv);
1306 /* Single-precision floating-point comparisons */
1307 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1309 CPU_FloatU u1, u2;
1311 u1.l = op1;
1312 u2.l = op2;
1313 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1316 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1318 CPU_FloatU u1, u2;
1320 u1.l = op1;
1321 u2.l = op2;
1322 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1325 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1327 CPU_FloatU u1, u2;
1329 u1.l = op1;
1330 u2.l = op2;
1331 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1334 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1336 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1337 return efscmplt(env, op1, op2);
1340 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1342 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1343 return efscmpgt(env, op1, op2);
1346 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1348 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1349 return efscmpeq(env, op1, op2);
1352 #define HELPER_SINGLE_SPE_CMP(name) \
1353 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1355 return e##name(env, op1, op2); \
1357 /* efststlt */
1358 HELPER_SINGLE_SPE_CMP(fststlt);
1359 /* efststgt */
1360 HELPER_SINGLE_SPE_CMP(fststgt);
1361 /* efststeq */
1362 HELPER_SINGLE_SPE_CMP(fststeq);
1363 /* efscmplt */
1364 HELPER_SINGLE_SPE_CMP(fscmplt);
1365 /* efscmpgt */
1366 HELPER_SINGLE_SPE_CMP(fscmpgt);
1367 /* efscmpeq */
1368 HELPER_SINGLE_SPE_CMP(fscmpeq);
1370 static inline uint32_t evcmp_merge(int t0, int t1)
1372 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1375 #define HELPER_VECTOR_SPE_CMP(name) \
1376 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1378 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1379 e##name(env, op1, op2)); \
1381 /* evfststlt */
1382 HELPER_VECTOR_SPE_CMP(fststlt);
1383 /* evfststgt */
1384 HELPER_VECTOR_SPE_CMP(fststgt);
1385 /* evfststeq */
1386 HELPER_VECTOR_SPE_CMP(fststeq);
1387 /* evfscmplt */
1388 HELPER_VECTOR_SPE_CMP(fscmplt);
1389 /* evfscmpgt */
1390 HELPER_VECTOR_SPE_CMP(fscmpgt);
1391 /* evfscmpeq */
1392 HELPER_VECTOR_SPE_CMP(fscmpeq);
1394 /* Double-precision floating-point conversion */
1395 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1397 CPU_DoubleU u;
1399 u.d = int32_to_float64(val, &env->vec_status);
1401 return u.ll;
1404 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1406 CPU_DoubleU u;
1408 u.d = int64_to_float64(val, &env->vec_status);
1410 return u.ll;
1413 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1415 CPU_DoubleU u;
1417 u.d = uint32_to_float64(val, &env->vec_status);
1419 return u.ll;
1422 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1424 CPU_DoubleU u;
1426 u.d = uint64_to_float64(val, &env->vec_status);
1428 return u.ll;
1431 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1433 CPU_DoubleU u;
1435 u.ll = val;
1436 /* NaN are not treated the same way IEEE 754 does */
1437 if (unlikely(float64_is_any_nan(u.d))) {
1438 return 0;
1441 return float64_to_int32(u.d, &env->vec_status);
1444 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1446 CPU_DoubleU u;
1448 u.ll = val;
1449 /* NaN are not treated the same way IEEE 754 does */
1450 if (unlikely(float64_is_any_nan(u.d))) {
1451 return 0;
1454 return float64_to_uint32(u.d, &env->vec_status);
1457 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1459 CPU_DoubleU u;
1461 u.ll = val;
1462 /* NaN are not treated the same way IEEE 754 does */
1463 if (unlikely(float64_is_any_nan(u.d))) {
1464 return 0;
1467 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1470 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1472 CPU_DoubleU u;
1474 u.ll = val;
1475 /* NaN are not treated the same way IEEE 754 does */
1476 if (unlikely(float64_is_any_nan(u.d))) {
1477 return 0;
1480 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1483 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1485 CPU_DoubleU u;
1487 u.ll = val;
1488 /* NaN are not treated the same way IEEE 754 does */
1489 if (unlikely(float64_is_any_nan(u.d))) {
1490 return 0;
1493 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1496 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1498 CPU_DoubleU u;
1500 u.ll = val;
1501 /* NaN are not treated the same way IEEE 754 does */
1502 if (unlikely(float64_is_any_nan(u.d))) {
1503 return 0;
1506 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1509 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1511 CPU_DoubleU u;
1512 float64 tmp;
1514 u.d = int32_to_float64(val, &env->vec_status);
1515 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1516 u.d = float64_div(u.d, tmp, &env->vec_status);
1518 return u.ll;
1521 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1523 CPU_DoubleU u;
1524 float64 tmp;
1526 u.d = uint32_to_float64(val, &env->vec_status);
1527 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1528 u.d = float64_div(u.d, tmp, &env->vec_status);
1530 return u.ll;
1533 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1535 CPU_DoubleU u;
1536 float64 tmp;
1538 u.ll = val;
1539 /* NaN are not treated the same way IEEE 754 does */
1540 if (unlikely(float64_is_any_nan(u.d))) {
1541 return 0;
1543 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1544 u.d = float64_mul(u.d, tmp, &env->vec_status);
1546 return float64_to_int32(u.d, &env->vec_status);
1549 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1551 CPU_DoubleU u;
1552 float64 tmp;
1554 u.ll = val;
1555 /* NaN are not treated the same way IEEE 754 does */
1556 if (unlikely(float64_is_any_nan(u.d))) {
1557 return 0;
1559 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1560 u.d = float64_mul(u.d, tmp, &env->vec_status);
1562 return float64_to_uint32(u.d, &env->vec_status);
1565 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1567 CPU_DoubleU u1;
1568 CPU_FloatU u2;
1570 u1.ll = val;
1571 u2.f = float64_to_float32(u1.d, &env->vec_status);
1573 return u2.l;
1576 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1578 CPU_DoubleU u2;
1579 CPU_FloatU u1;
1581 u1.l = val;
1582 u2.d = float32_to_float64(u1.f, &env->vec_status);
1584 return u2.ll;
1587 /* Double precision fixed-point arithmetic */
1588 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1590 CPU_DoubleU u1, u2;
1592 u1.ll = op1;
1593 u2.ll = op2;
1594 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1595 return u1.ll;
1598 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1600 CPU_DoubleU u1, u2;
1602 u1.ll = op1;
1603 u2.ll = op2;
1604 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1605 return u1.ll;
1608 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1610 CPU_DoubleU u1, u2;
1612 u1.ll = op1;
1613 u2.ll = op2;
1614 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1615 return u1.ll;
1618 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1620 CPU_DoubleU u1, u2;
1622 u1.ll = op1;
1623 u2.ll = op2;
1624 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1625 return u1.ll;
1628 /* Double precision floating point helpers */
1629 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1631 CPU_DoubleU u1, u2;
1633 u1.ll = op1;
1634 u2.ll = op2;
1635 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1638 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1640 CPU_DoubleU u1, u2;
1642 u1.ll = op1;
1643 u2.ll = op2;
1644 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1647 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1649 CPU_DoubleU u1, u2;
1651 u1.ll = op1;
1652 u2.ll = op2;
1653 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1656 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1658 /* XXX: TODO: test special values (NaN, infinites, ...) */
1659 return helper_efdtstlt(env, op1, op2);
1662 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1664 /* XXX: TODO: test special values (NaN, infinites, ...) */
1665 return helper_efdtstgt(env, op1, op2);
1668 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1670 /* XXX: TODO: test special values (NaN, infinites, ...) */
1671 return helper_efdtsteq(env, op1, op2);
1674 #define float64_to_float64(x, env) x
1677 /* VSX_ADD_SUB - VSX floating point add/subract
1678 * name - instruction mnemonic
1679 * op - operation (add or sub)
1680 * nels - number of elements (1, 2 or 4)
1681 * tp - type (float32 or float64)
1682 * fld - vsr_t field (VsrD(*) or VsrW(*))
1683 * sfprf - set FPRF
1685 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1686 void helper_##name(CPUPPCState *env, uint32_t opcode) \
1688 ppc_vsr_t xt, xa, xb; \
1689 int i; \
1691 getVSR(xA(opcode), &xa, env); \
1692 getVSR(xB(opcode), &xb, env); \
1693 getVSR(xT(opcode), &xt, env); \
1694 helper_reset_fpstatus(env); \
1696 for (i = 0; i < nels; i++) { \
1697 float_status tstat = env->fp_status; \
1698 set_float_exception_flags(0, &tstat); \
1699 xt.fld = tp##_##op(xa.fld, xb.fld, &tstat); \
1700 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1702 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1703 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1704 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
1705 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1706 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1707 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1711 if (r2sp) { \
1712 xt.fld = helper_frsp(env, xt.fld); \
1715 if (sfprf) { \
1716 helper_compute_fprf_float64(env, xt.fld); \
1719 putVSR(xT(opcode), &xt, env); \
1720 float_check_status(env); \
1723 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1724 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1725 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1726 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1727 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1728 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1729 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1730 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1732 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode)
1734 ppc_vsr_t xt, xa, xb;
1735 float_status tstat;
1737 getVSR(rA(opcode) + 32, &xa, env);
1738 getVSR(rB(opcode) + 32, &xb, env);
1739 getVSR(rD(opcode) + 32, &xt, env);
1740 helper_reset_fpstatus(env);
1742 tstat = env->fp_status;
1743 if (unlikely(Rc(opcode) != 0)) {
1744 tstat.float_rounding_mode = float_round_to_odd;
1747 set_float_exception_flags(0, &tstat);
1748 xt.f128 = float128_add(xa.f128, xb.f128, &tstat);
1749 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1751 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1752 if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
1753 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
1754 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1755 float128_is_signaling_nan(xb.f128, &tstat)) {
1756 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1760 helper_compute_fprf_float128(env, xt.f128);
1762 putVSR(rD(opcode) + 32, &xt, env);
1763 float_check_status(env);
1766 /* VSX_MUL - VSX floating point multiply
1767 * op - instruction mnemonic
1768 * nels - number of elements (1, 2 or 4)
1769 * tp - type (float32 or float64)
1770 * fld - vsr_t field (VsrD(*) or VsrW(*))
1771 * sfprf - set FPRF
1773 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1774 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1776 ppc_vsr_t xt, xa, xb; \
1777 int i; \
1779 getVSR(xA(opcode), &xa, env); \
1780 getVSR(xB(opcode), &xb, env); \
1781 getVSR(xT(opcode), &xt, env); \
1782 helper_reset_fpstatus(env); \
1784 for (i = 0; i < nels; i++) { \
1785 float_status tstat = env->fp_status; \
1786 set_float_exception_flags(0, &tstat); \
1787 xt.fld = tp##_mul(xa.fld, xb.fld, &tstat); \
1788 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1790 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1791 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) || \
1792 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) { \
1793 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf); \
1794 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1795 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1796 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1800 if (r2sp) { \
1801 xt.fld = helper_frsp(env, xt.fld); \
1804 if (sfprf) { \
1805 helper_compute_fprf_float64(env, xt.fld); \
1809 putVSR(xT(opcode), &xt, env); \
1810 float_check_status(env); \
1813 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1814 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1815 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1816 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1818 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode)
1820 ppc_vsr_t xt, xa, xb;
1821 float_status tstat;
1823 getVSR(rA(opcode) + 32, &xa, env);
1824 getVSR(rB(opcode) + 32, &xb, env);
1825 getVSR(rD(opcode) + 32, &xt, env);
1827 helper_reset_fpstatus(env);
1828 tstat = env->fp_status;
1829 if (unlikely(Rc(opcode) != 0)) {
1830 tstat.float_rounding_mode = float_round_to_odd;
1833 set_float_exception_flags(0, &tstat);
1834 xt.f128 = float128_mul(xa.f128, xb.f128, &tstat);
1835 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1837 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1838 if ((float128_is_infinity(xa.f128) && float128_is_zero(xb.f128)) ||
1839 (float128_is_infinity(xb.f128) && float128_is_zero(xa.f128))) {
1840 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
1841 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1842 float128_is_signaling_nan(xb.f128, &tstat)) {
1843 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1846 helper_compute_fprf_float128(env, xt.f128);
1848 putVSR(rD(opcode) + 32, &xt, env);
1849 float_check_status(env);
1852 /* VSX_DIV - VSX floating point divide
1853 * op - instruction mnemonic
1854 * nels - number of elements (1, 2 or 4)
1855 * tp - type (float32 or float64)
1856 * fld - vsr_t field (VsrD(*) or VsrW(*))
1857 * sfprf - set FPRF
1859 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1860 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1862 ppc_vsr_t xt, xa, xb; \
1863 int i; \
1865 getVSR(xA(opcode), &xa, env); \
1866 getVSR(xB(opcode), &xb, env); \
1867 getVSR(xT(opcode), &xt, env); \
1868 helper_reset_fpstatus(env); \
1870 for (i = 0; i < nels; i++) { \
1871 float_status tstat = env->fp_status; \
1872 set_float_exception_flags(0, &tstat); \
1873 xt.fld = tp##_div(xa.fld, xb.fld, &tstat); \
1874 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1876 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1877 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1878 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf); \
1879 } else if (tp##_is_zero(xa.fld) && \
1880 tp##_is_zero(xb.fld)) { \
1881 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf); \
1882 } else if (tp##_is_signaling_nan(xa.fld, &tstat) || \
1883 tp##_is_signaling_nan(xb.fld, &tstat)) { \
1884 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1888 if (r2sp) { \
1889 xt.fld = helper_frsp(env, xt.fld); \
1892 if (sfprf) { \
1893 helper_compute_fprf_float64(env, xt.fld); \
1897 putVSR(xT(opcode), &xt, env); \
1898 float_check_status(env); \
1901 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1902 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1903 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1904 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1906 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode)
1908 ppc_vsr_t xt, xa, xb;
1909 float_status tstat;
1911 getVSR(rA(opcode) + 32, &xa, env);
1912 getVSR(rB(opcode) + 32, &xb, env);
1913 getVSR(rD(opcode) + 32, &xt, env);
1915 helper_reset_fpstatus(env);
1916 tstat = env->fp_status;
1917 if (unlikely(Rc(opcode) != 0)) {
1918 tstat.float_rounding_mode = float_round_to_odd;
1921 set_float_exception_flags(0, &tstat);
1922 xt.f128 = float128_div(xa.f128, xb.f128, &tstat);
1923 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1925 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1926 if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
1927 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
1928 } else if (float128_is_zero(xa.f128) &&
1929 float128_is_zero(xb.f128)) {
1930 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
1931 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1932 float128_is_signaling_nan(xb.f128, &tstat)) {
1933 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1937 helper_compute_fprf_float128(env, xt.f128);
1938 putVSR(rD(opcode) + 32, &xt, env);
1939 float_check_status(env);
1942 /* VSX_RE - VSX floating point reciprocal estimate
1943 * op - instruction mnemonic
1944 * nels - number of elements (1, 2 or 4)
1945 * tp - type (float32 or float64)
1946 * fld - vsr_t field (VsrD(*) or VsrW(*))
1947 * sfprf - set FPRF
1949 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
1950 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1952 ppc_vsr_t xt, xb; \
1953 int i; \
1955 getVSR(xB(opcode), &xb, env); \
1956 getVSR(xT(opcode), &xt, env); \
1957 helper_reset_fpstatus(env); \
1959 for (i = 0; i < nels; i++) { \
1960 if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
1961 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1963 xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status); \
1965 if (r2sp) { \
1966 xt.fld = helper_frsp(env, xt.fld); \
1969 if (sfprf) { \
1970 helper_compute_fprf_float64(env, xt.fld); \
1974 putVSR(xT(opcode), &xt, env); \
1975 float_check_status(env); \
1978 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
1979 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
1980 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
1981 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
1983 /* VSX_SQRT - VSX floating point square root
1984 * op - instruction mnemonic
1985 * nels - number of elements (1, 2 or 4)
1986 * tp - type (float32 or float64)
1987 * fld - vsr_t field (VsrD(*) or VsrW(*))
1988 * sfprf - set FPRF
1990 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
1991 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1993 ppc_vsr_t xt, xb; \
1994 int i; \
1996 getVSR(xB(opcode), &xb, env); \
1997 getVSR(xT(opcode), &xt, env); \
1998 helper_reset_fpstatus(env); \
2000 for (i = 0; i < nels; i++) { \
2001 float_status tstat = env->fp_status; \
2002 set_float_exception_flags(0, &tstat); \
2003 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2004 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2006 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2007 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2008 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2009 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2010 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2014 if (r2sp) { \
2015 xt.fld = helper_frsp(env, xt.fld); \
2018 if (sfprf) { \
2019 helper_compute_fprf_float64(env, xt.fld); \
2023 putVSR(xT(opcode), &xt, env); \
2024 float_check_status(env); \
2027 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2028 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2029 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2030 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2032 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2033 * op - instruction mnemonic
2034 * nels - number of elements (1, 2 or 4)
2035 * tp - type (float32 or float64)
2036 * fld - vsr_t field (VsrD(*) or VsrW(*))
2037 * sfprf - set FPRF
2039 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2040 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2042 ppc_vsr_t xt, xb; \
2043 int i; \
2045 getVSR(xB(opcode), &xb, env); \
2046 getVSR(xT(opcode), &xt, env); \
2047 helper_reset_fpstatus(env); \
2049 for (i = 0; i < nels; i++) { \
2050 float_status tstat = env->fp_status; \
2051 set_float_exception_flags(0, &tstat); \
2052 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2053 xt.fld = tp##_div(tp##_one, xt.fld, &tstat); \
2054 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2056 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2057 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2058 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2059 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2060 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2064 if (r2sp) { \
2065 xt.fld = helper_frsp(env, xt.fld); \
2068 if (sfprf) { \
2069 helper_compute_fprf_float64(env, xt.fld); \
2073 putVSR(xT(opcode), &xt, env); \
2074 float_check_status(env); \
2077 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2078 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2079 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2080 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2082 /* VSX_TDIV - VSX floating point test for divide
2083 * op - instruction mnemonic
2084 * nels - number of elements (1, 2 or 4)
2085 * tp - type (float32 or float64)
2086 * fld - vsr_t field (VsrD(*) or VsrW(*))
2087 * emin - minimum unbiased exponent
2088 * emax - maximum unbiased exponent
2089 * nbits - number of fraction bits
2091 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2092 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2094 ppc_vsr_t xa, xb; \
2095 int i; \
2096 int fe_flag = 0; \
2097 int fg_flag = 0; \
2099 getVSR(xA(opcode), &xa, env); \
2100 getVSR(xB(opcode), &xb, env); \
2102 for (i = 0; i < nels; i++) { \
2103 if (unlikely(tp##_is_infinity(xa.fld) || \
2104 tp##_is_infinity(xb.fld) || \
2105 tp##_is_zero(xb.fld))) { \
2106 fe_flag = 1; \
2107 fg_flag = 1; \
2108 } else { \
2109 int e_a = ppc_##tp##_get_unbiased_exp(xa.fld); \
2110 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2112 if (unlikely(tp##_is_any_nan(xa.fld) || \
2113 tp##_is_any_nan(xb.fld))) { \
2114 fe_flag = 1; \
2115 } else if ((e_b <= emin) || (e_b >= (emax-2))) { \
2116 fe_flag = 1; \
2117 } else if (!tp##_is_zero(xa.fld) && \
2118 (((e_a - e_b) >= emax) || \
2119 ((e_a - e_b) <= (emin+1)) || \
2120 (e_a <= (emin+nbits)))) { \
2121 fe_flag = 1; \
2124 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2125 /* XB is not zero because of the above check and */ \
2126 /* so must be denormalized. */ \
2127 fg_flag = 1; \
2132 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2135 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2136 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2137 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2139 /* VSX_TSQRT - VSX floating point test for square root
2140 * op - instruction mnemonic
2141 * nels - number of elements (1, 2 or 4)
2142 * tp - type (float32 or float64)
2143 * fld - vsr_t field (VsrD(*) or VsrW(*))
2144 * emin - minimum unbiased exponent
2145 * emax - maximum unbiased exponent
2146 * nbits - number of fraction bits
2148 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2149 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2151 ppc_vsr_t xa, xb; \
2152 int i; \
2153 int fe_flag = 0; \
2154 int fg_flag = 0; \
2156 getVSR(xA(opcode), &xa, env); \
2157 getVSR(xB(opcode), &xb, env); \
2159 for (i = 0; i < nels; i++) { \
2160 if (unlikely(tp##_is_infinity(xb.fld) || \
2161 tp##_is_zero(xb.fld))) { \
2162 fe_flag = 1; \
2163 fg_flag = 1; \
2164 } else { \
2165 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2167 if (unlikely(tp##_is_any_nan(xb.fld))) { \
2168 fe_flag = 1; \
2169 } else if (unlikely(tp##_is_zero(xb.fld))) { \
2170 fe_flag = 1; \
2171 } else if (unlikely(tp##_is_neg(xb.fld))) { \
2172 fe_flag = 1; \
2173 } else if (!tp##_is_zero(xb.fld) && \
2174 (e_b <= (emin+nbits))) { \
2175 fe_flag = 1; \
2178 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2179 /* XB is not zero because of the above check and */ \
2180 /* therefore must be denormalized. */ \
2181 fg_flag = 1; \
2186 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2189 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2190 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2191 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2193 /* VSX_MADD - VSX floating point muliply/add variations
2194 * op - instruction mnemonic
2195 * nels - number of elements (1, 2 or 4)
2196 * tp - type (float32 or float64)
2197 * fld - vsr_t field (VsrD(*) or VsrW(*))
2198 * maddflgs - flags for the float*muladd routine that control the
2199 * various forms (madd, msub, nmadd, nmsub)
2200 * afrm - A form (1=A, 0=M)
2201 * sfprf - set FPRF
2203 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \
2204 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2206 ppc_vsr_t xt_in, xa, xb, xt_out; \
2207 ppc_vsr_t *b, *c; \
2208 int i; \
2210 if (afrm) { /* AxB + T */ \
2211 b = &xb; \
2212 c = &xt_in; \
2213 } else { /* AxT + B */ \
2214 b = &xt_in; \
2215 c = &xb; \
2218 getVSR(xA(opcode), &xa, env); \
2219 getVSR(xB(opcode), &xb, env); \
2220 getVSR(xT(opcode), &xt_in, env); \
2222 xt_out = xt_in; \
2224 helper_reset_fpstatus(env); \
2226 for (i = 0; i < nels; i++) { \
2227 float_status tstat = env->fp_status; \
2228 set_float_exception_flags(0, &tstat); \
2229 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2230 /* Avoid double rounding errors by rounding the intermediate */ \
2231 /* result to odd. */ \
2232 set_float_rounding_mode(float_round_to_zero, &tstat); \
2233 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2234 maddflgs, &tstat); \
2235 xt_out.fld |= (get_float_exception_flags(&tstat) & \
2236 float_flag_inexact) != 0; \
2237 } else { \
2238 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2239 maddflgs, &tstat); \
2241 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2243 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2244 tp##_maddsub_update_excp(env, xa.fld, b->fld, c->fld, maddflgs); \
2247 if (r2sp) { \
2248 xt_out.fld = helper_frsp(env, xt_out.fld); \
2251 if (sfprf) { \
2252 helper_compute_fprf_float64(env, xt_out.fld); \
2255 putVSR(xT(opcode), &xt_out, env); \
2256 float_check_status(env); \
2259 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2260 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2261 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2262 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2263 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2264 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2265 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2266 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2268 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2269 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2270 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2271 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2272 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2273 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2274 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2275 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2277 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2278 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2279 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2280 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2281 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2282 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2283 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2284 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2286 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2287 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2288 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2289 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2290 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2291 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2292 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2293 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2295 /* VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2296 * op - instruction mnemonic
2297 * cmp - comparison operation
2298 * exp - expected result of comparison
2299 * svxvc - set VXVC bit
2301 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2302 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2304 ppc_vsr_t xt, xa, xb; \
2305 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2307 getVSR(xA(opcode), &xa, env); \
2308 getVSR(xB(opcode), &xb, env); \
2309 getVSR(xT(opcode), &xt, env); \
2311 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2312 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2313 vxsnan_flag = true; \
2314 if (fpscr_ve == 0 && svxvc) { \
2315 vxvc_flag = true; \
2317 } else if (svxvc) { \
2318 vxvc_flag = float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \
2319 float64_is_quiet_nan(xb.VsrD(0), &env->fp_status); \
2321 if (vxsnan_flag) { \
2322 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2324 if (vxvc_flag) { \
2325 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2327 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2329 if (!vex_flag) { \
2330 if (float64_##cmp(xb.VsrD(0), xa.VsrD(0), &env->fp_status) == exp) { \
2331 xt.VsrD(0) = -1; \
2332 xt.VsrD(1) = 0; \
2333 } else { \
2334 xt.VsrD(0) = 0; \
2335 xt.VsrD(1) = 0; \
2338 putVSR(xT(opcode), &xt, env); \
2339 helper_float_check_status(env); \
2342 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2343 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2344 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2345 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2347 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode)
2349 ppc_vsr_t xa, xb;
2350 int64_t exp_a, exp_b;
2351 uint32_t cc;
2353 getVSR(xA(opcode), &xa, env);
2354 getVSR(xB(opcode), &xb, env);
2356 exp_a = extract64(xa.VsrD(0), 52, 11);
2357 exp_b = extract64(xb.VsrD(0), 52, 11);
2359 if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||
2360 float64_is_any_nan(xb.VsrD(0)))) {
2361 cc = CRF_SO;
2362 } else {
2363 if (exp_a < exp_b) {
2364 cc = CRF_LT;
2365 } else if (exp_a > exp_b) {
2366 cc = CRF_GT;
2367 } else {
2368 cc = CRF_EQ;
2372 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2373 env->fpscr |= cc << FPSCR_FPRF;
2374 env->crf[BF(opcode)] = cc;
2376 helper_float_check_status(env);
2379 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode)
2381 ppc_vsr_t xa, xb;
2382 int64_t exp_a, exp_b;
2383 uint32_t cc;
2385 getVSR(rA(opcode) + 32, &xa, env);
2386 getVSR(rB(opcode) + 32, &xb, env);
2388 exp_a = extract64(xa.VsrD(0), 48, 15);
2389 exp_b = extract64(xb.VsrD(0), 48, 15);
2391 if (unlikely(float128_is_any_nan(xa.f128) ||
2392 float128_is_any_nan(xb.f128))) {
2393 cc = CRF_SO;
2394 } else {
2395 if (exp_a < exp_b) {
2396 cc = CRF_LT;
2397 } else if (exp_a > exp_b) {
2398 cc = CRF_GT;
2399 } else {
2400 cc = CRF_EQ;
2404 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2405 env->fpscr |= cc << FPSCR_FPRF;
2406 env->crf[BF(opcode)] = cc;
2408 helper_float_check_status(env);
2411 #define VSX_SCALAR_CMP(op, ordered) \
2412 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2414 ppc_vsr_t xa, xb; \
2415 uint32_t cc = 0; \
2416 bool vxsnan_flag = false, vxvc_flag = false; \
2418 helper_reset_fpstatus(env); \
2419 getVSR(xA(opcode), &xa, env); \
2420 getVSR(xB(opcode), &xb, env); \
2422 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2423 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2424 vxsnan_flag = true; \
2425 cc = CRF_SO; \
2426 if (fpscr_ve == 0 && ordered) { \
2427 vxvc_flag = true; \
2429 } else if (float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \
2430 float64_is_quiet_nan(xb.VsrD(0), &env->fp_status)) { \
2431 cc = CRF_SO; \
2432 if (ordered) { \
2433 vxvc_flag = true; \
2436 if (vxsnan_flag) { \
2437 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2439 if (vxvc_flag) { \
2440 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2443 if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2444 cc |= CRF_LT; \
2445 } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2446 cc |= CRF_GT; \
2447 } else { \
2448 cc |= CRF_EQ; \
2451 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2452 env->fpscr |= cc << FPSCR_FPRF; \
2453 env->crf[BF(opcode)] = cc; \
2455 float_check_status(env); \
2458 VSX_SCALAR_CMP(xscmpodp, 1)
2459 VSX_SCALAR_CMP(xscmpudp, 0)
2461 #define VSX_SCALAR_CMPQ(op, ordered) \
2462 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2464 ppc_vsr_t xa, xb; \
2465 uint32_t cc = 0; \
2466 bool vxsnan_flag = false, vxvc_flag = false; \
2468 helper_reset_fpstatus(env); \
2469 getVSR(rA(opcode) + 32, &xa, env); \
2470 getVSR(rB(opcode) + 32, &xb, env); \
2472 if (float128_is_signaling_nan(xa.f128, &env->fp_status) || \
2473 float128_is_signaling_nan(xb.f128, &env->fp_status)) { \
2474 vxsnan_flag = true; \
2475 cc = CRF_SO; \
2476 if (fpscr_ve == 0 && ordered) { \
2477 vxvc_flag = true; \
2479 } else if (float128_is_quiet_nan(xa.f128, &env->fp_status) || \
2480 float128_is_quiet_nan(xb.f128, &env->fp_status)) { \
2481 cc = CRF_SO; \
2482 if (ordered) { \
2483 vxvc_flag = true; \
2486 if (vxsnan_flag) { \
2487 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2489 if (vxvc_flag) { \
2490 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2493 if (float128_lt(xa.f128, xb.f128, &env->fp_status)) { \
2494 cc |= CRF_LT; \
2495 } else if (!float128_le(xa.f128, xb.f128, &env->fp_status)) { \
2496 cc |= CRF_GT; \
2497 } else { \
2498 cc |= CRF_EQ; \
2501 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2502 env->fpscr |= cc << FPSCR_FPRF; \
2503 env->crf[BF(opcode)] = cc; \
2505 float_check_status(env); \
2508 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2509 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2511 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2512 * name - instruction mnemonic
2513 * op - operation (max or min)
2514 * nels - number of elements (1, 2 or 4)
2515 * tp - type (float32 or float64)
2516 * fld - vsr_t field (VsrD(*) or VsrW(*))
2518 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2519 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2521 ppc_vsr_t xt, xa, xb; \
2522 int i; \
2524 getVSR(xA(opcode), &xa, env); \
2525 getVSR(xB(opcode), &xb, env); \
2526 getVSR(xT(opcode), &xt, env); \
2528 for (i = 0; i < nels; i++) { \
2529 xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status); \
2530 if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2531 tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
2532 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2536 putVSR(xT(opcode), &xt, env); \
2537 float_check_status(env); \
2540 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2541 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2542 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2543 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2544 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2545 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2547 #define VSX_MAX_MINC(name, max) \
2548 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2550 ppc_vsr_t xt, xa, xb; \
2551 bool vxsnan_flag = false, vex_flag = false; \
2553 getVSR(rA(opcode) + 32, &xa, env); \
2554 getVSR(rB(opcode) + 32, &xb, env); \
2555 getVSR(rD(opcode) + 32, &xt, env); \
2557 if (unlikely(float64_is_any_nan(xa.VsrD(0)) || \
2558 float64_is_any_nan(xb.VsrD(0)))) { \
2559 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2560 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2561 vxsnan_flag = true; \
2563 xt.VsrD(0) = xb.VsrD(0); \
2564 } else if ((max && \
2565 !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) || \
2566 (!max && \
2567 float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) { \
2568 xt.VsrD(0) = xa.VsrD(0); \
2569 } else { \
2570 xt.VsrD(0) = xb.VsrD(0); \
2573 vex_flag = fpscr_ve & vxsnan_flag; \
2574 if (vxsnan_flag) { \
2575 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2577 if (!vex_flag) { \
2578 putVSR(rD(opcode) + 32, &xt, env); \
2582 VSX_MAX_MINC(xsmaxcdp, 1);
2583 VSX_MAX_MINC(xsmincdp, 0);
2585 #define VSX_MAX_MINJ(name, max) \
2586 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2588 ppc_vsr_t xt, xa, xb; \
2589 bool vxsnan_flag = false, vex_flag = false; \
2591 getVSR(rA(opcode) + 32, &xa, env); \
2592 getVSR(rB(opcode) + 32, &xb, env); \
2593 getVSR(rD(opcode) + 32, &xt, env); \
2595 if (unlikely(float64_is_any_nan(xa.VsrD(0)))) { \
2596 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status)) { \
2597 vxsnan_flag = true; \
2599 xt.VsrD(0) = xa.VsrD(0); \
2600 } else if (unlikely(float64_is_any_nan(xb.VsrD(0)))) { \
2601 if (float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2602 vxsnan_flag = true; \
2604 xt.VsrD(0) = xb.VsrD(0); \
2605 } else if (float64_is_zero(xa.VsrD(0)) && float64_is_zero(xb.VsrD(0))) { \
2606 if (max) { \
2607 if (!float64_is_neg(xa.VsrD(0)) || !float64_is_neg(xb.VsrD(0))) { \
2608 xt.VsrD(0) = 0ULL; \
2609 } else { \
2610 xt.VsrD(0) = 0x8000000000000000ULL; \
2612 } else { \
2613 if (float64_is_neg(xa.VsrD(0)) || float64_is_neg(xb.VsrD(0))) { \
2614 xt.VsrD(0) = 0x8000000000000000ULL; \
2615 } else { \
2616 xt.VsrD(0) = 0ULL; \
2619 } else if ((max && \
2620 !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) || \
2621 (!max && \
2622 float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) { \
2623 xt.VsrD(0) = xa.VsrD(0); \
2624 } else { \
2625 xt.VsrD(0) = xb.VsrD(0); \
2628 vex_flag = fpscr_ve & vxsnan_flag; \
2629 if (vxsnan_flag) { \
2630 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2632 if (!vex_flag) { \
2633 putVSR(rD(opcode) + 32, &xt, env); \
2637 VSX_MAX_MINJ(xsmaxjdp, 1);
2638 VSX_MAX_MINJ(xsminjdp, 0);
2640 /* VSX_CMP - VSX floating point compare
2641 * op - instruction mnemonic
2642 * nels - number of elements (1, 2 or 4)
2643 * tp - type (float32 or float64)
2644 * fld - vsr_t field (VsrD(*) or VsrW(*))
2645 * cmp - comparison operation
2646 * svxvc - set VXVC bit
2647 * exp - expected result of comparison
2649 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2650 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2652 ppc_vsr_t xt, xa, xb; \
2653 int i; \
2654 int all_true = 1; \
2655 int all_false = 1; \
2657 getVSR(xA(opcode), &xa, env); \
2658 getVSR(xB(opcode), &xb, env); \
2659 getVSR(xT(opcode), &xt, env); \
2661 for (i = 0; i < nels; i++) { \
2662 if (unlikely(tp##_is_any_nan(xa.fld) || \
2663 tp##_is_any_nan(xb.fld))) { \
2664 if (tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2665 tp##_is_signaling_nan(xb.fld, &env->fp_status)) { \
2666 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2668 if (svxvc) { \
2669 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2671 xt.fld = 0; \
2672 all_true = 0; \
2673 } else { \
2674 if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == exp) { \
2675 xt.fld = -1; \
2676 all_false = 0; \
2677 } else { \
2678 xt.fld = 0; \
2679 all_true = 0; \
2684 putVSR(xT(opcode), &xt, env); \
2685 if ((opcode >> (31-21)) & 1) { \
2686 env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2688 float_check_status(env); \
2691 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2692 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2693 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2694 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2695 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2696 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2697 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2698 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2700 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2701 * op - instruction mnemonic
2702 * nels - number of elements (1, 2 or 4)
2703 * stp - source type (float32 or float64)
2704 * ttp - target type (float32 or float64)
2705 * sfld - source vsr_t field
2706 * tfld - target vsr_t field (f32 or f64)
2707 * sfprf - set FPRF
2709 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2710 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2712 ppc_vsr_t xt, xb; \
2713 int i; \
2715 getVSR(xB(opcode), &xb, env); \
2716 getVSR(xT(opcode), &xt, env); \
2718 for (i = 0; i < nels; i++) { \
2719 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2720 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2721 &env->fp_status))) { \
2722 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2723 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2725 if (sfprf) { \
2726 helper_compute_fprf_##ttp(env, xt.tfld); \
2730 putVSR(xT(opcode), &xt, env); \
2731 float_check_status(env); \
2734 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2735 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2736 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2737 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2739 /* VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2740 * op - instruction mnemonic
2741 * nels - number of elements (1, 2 or 4)
2742 * stp - source type (float32 or float64)
2743 * ttp - target type (float32 or float64)
2744 * sfld - source vsr_t field
2745 * tfld - target vsr_t field (f32 or f64)
2746 * sfprf - set FPRF
2748 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2749 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2751 ppc_vsr_t xt, xb; \
2752 int i; \
2754 getVSR(rB(opcode) + 32, &xb, env); \
2755 getVSR(rD(opcode) + 32, &xt, env); \
2757 for (i = 0; i < nels; i++) { \
2758 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2759 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2760 &env->fp_status))) { \
2761 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2762 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2764 if (sfprf) { \
2765 helper_compute_fprf_##ttp(env, xt.tfld); \
2769 putVSR(rD(opcode) + 32, &xt, env); \
2770 float_check_status(env); \
2773 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2775 /* VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2776 * involving one half precision value
2777 * op - instruction mnemonic
2778 * nels - number of elements (1, 2 or 4)
2779 * stp - source type
2780 * ttp - target type
2781 * sfld - source vsr_t field
2782 * tfld - target vsr_t field
2783 * sfprf - set FPRF
2785 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2786 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2788 ppc_vsr_t xt, xb; \
2789 int i; \
2791 getVSR(xB(opcode), &xb, env); \
2792 memset(&xt, 0, sizeof(xt)); \
2794 for (i = 0; i < nels; i++) { \
2795 xt.tfld = stp##_to_##ttp(xb.sfld, 1, &env->fp_status); \
2796 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2797 &env->fp_status))) { \
2798 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2799 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2801 if (sfprf) { \
2802 helper_compute_fprf_##ttp(env, xt.tfld); \
2806 putVSR(xT(opcode), &xt, env); \
2807 float_check_status(env); \
2810 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2811 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2812 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
2813 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2816 * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2817 * added to this later.
2819 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode)
2821 ppc_vsr_t xt, xb;
2822 float_status tstat;
2824 getVSR(rB(opcode) + 32, &xb, env);
2825 memset(&xt, 0, sizeof(xt));
2827 tstat = env->fp_status;
2828 if (unlikely(Rc(opcode) != 0)) {
2829 tstat.float_rounding_mode = float_round_to_odd;
2832 xt.VsrD(0) = float128_to_float64(xb.f128, &tstat);
2833 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2834 if (unlikely(float128_is_signaling_nan(xb.f128,
2835 &tstat))) {
2836 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);
2837 xt.VsrD(0) = float64_snan_to_qnan(xt.VsrD(0));
2839 helper_compute_fprf_float64(env, xt.VsrD(0));
2841 putVSR(rD(opcode) + 32, &xt, env);
2842 float_check_status(env);
2845 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2847 float_status tstat = env->fp_status;
2848 set_float_exception_flags(0, &tstat);
2850 return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2853 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2855 float_status tstat = env->fp_status;
2856 set_float_exception_flags(0, &tstat);
2858 return float32_to_float64(xb >> 32, &tstat);
2861 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2862 * op - instruction mnemonic
2863 * nels - number of elements (1, 2 or 4)
2864 * stp - source type (float32 or float64)
2865 * ttp - target type (int32, uint32, int64 or uint64)
2866 * sfld - source vsr_t field
2867 * tfld - target vsr_t field
2868 * rnan - resulting NaN
2870 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2871 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2873 ppc_vsr_t xt, xb; \
2874 int i; \
2876 getVSR(xB(opcode), &xb, env); \
2877 getVSR(xT(opcode), &xt, env); \
2879 for (i = 0; i < nels; i++) { \
2880 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2881 if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) { \
2882 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2884 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2885 xt.tfld = rnan; \
2886 } else { \
2887 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, \
2888 &env->fp_status); \
2889 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2890 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2895 putVSR(xT(opcode), &xt, env); \
2896 float_check_status(env); \
2899 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2900 0x8000000000000000ULL)
2901 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2902 0x80000000U)
2903 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2904 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2905 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2906 0x8000000000000000ULL)
2907 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2908 0x80000000U)
2909 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2910 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2911 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2912 0x8000000000000000ULL)
2913 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2914 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2915 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2917 /* VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2918 * op - instruction mnemonic
2919 * stp - source type (float32 or float64)
2920 * ttp - target type (int32, uint32, int64 or uint64)
2921 * sfld - source vsr_t field
2922 * tfld - target vsr_t field
2923 * rnan - resulting NaN
2925 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2926 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2928 ppc_vsr_t xt, xb; \
2930 getVSR(rB(opcode) + 32, &xb, env); \
2931 memset(&xt, 0, sizeof(xt)); \
2933 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2934 if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) { \
2935 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2937 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2938 xt.tfld = rnan; \
2939 } else { \
2940 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, \
2941 &env->fp_status); \
2942 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2943 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2947 putVSR(rD(opcode) + 32, &xt, env); \
2948 float_check_status(env); \
2951 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
2952 0x8000000000000000ULL)
2954 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
2955 0xffffffff80000000ULL)
2956 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
2957 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
2959 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2960 * op - instruction mnemonic
2961 * nels - number of elements (1, 2 or 4)
2962 * stp - source type (int32, uint32, int64 or uint64)
2963 * ttp - target type (float32 or float64)
2964 * sfld - source vsr_t field
2965 * tfld - target vsr_t field
2966 * jdef - definition of the j index (i or 2*i)
2967 * sfprf - set FPRF
2969 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
2970 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2972 ppc_vsr_t xt, xb; \
2973 int i; \
2975 getVSR(xB(opcode), &xb, env); \
2976 getVSR(xT(opcode), &xt, env); \
2978 for (i = 0; i < nels; i++) { \
2979 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2980 if (r2sp) { \
2981 xt.tfld = helper_frsp(env, xt.tfld); \
2983 if (sfprf) { \
2984 helper_compute_fprf_float64(env, xt.tfld); \
2988 putVSR(xT(opcode), &xt, env); \
2989 float_check_status(env); \
2992 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2993 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2994 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2995 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2996 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2997 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2998 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
2999 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
3000 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
3001 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
3002 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3003 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3005 /* VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3006 * op - instruction mnemonic
3007 * stp - source type (int32, uint32, int64 or uint64)
3008 * ttp - target type (float32 or float64)
3009 * sfld - source vsr_t field
3010 * tfld - target vsr_t field
3012 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3013 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3015 ppc_vsr_t xt, xb; \
3017 getVSR(rB(opcode) + 32, &xb, env); \
3018 getVSR(rD(opcode) + 32, &xt, env); \
3020 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
3021 helper_compute_fprf_##ttp(env, xt.tfld); \
3023 putVSR(xT(opcode) + 32, &xt, env); \
3024 float_check_status(env); \
3027 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3028 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3030 /* For "use current rounding mode", define a value that will not be one of
3031 * the existing rounding model enums.
3033 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3034 float_round_up + float_round_to_zero)
3036 /* VSX_ROUND - VSX floating point round
3037 * op - instruction mnemonic
3038 * nels - number of elements (1, 2 or 4)
3039 * tp - type (float32 or float64)
3040 * fld - vsr_t field (VsrD(*) or VsrW(*))
3041 * rmode - rounding mode
3042 * sfprf - set FPRF
3044 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
3045 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3047 ppc_vsr_t xt, xb; \
3048 int i; \
3049 getVSR(xB(opcode), &xb, env); \
3050 getVSR(xT(opcode), &xt, env); \
3052 if (rmode != FLOAT_ROUND_CURRENT) { \
3053 set_float_rounding_mode(rmode, &env->fp_status); \
3056 for (i = 0; i < nels; i++) { \
3057 if (unlikely(tp##_is_signaling_nan(xb.fld, \
3058 &env->fp_status))) { \
3059 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
3060 xt.fld = tp##_snan_to_qnan(xb.fld); \
3061 } else { \
3062 xt.fld = tp##_round_to_int(xb.fld, &env->fp_status); \
3064 if (sfprf) { \
3065 helper_compute_fprf_float64(env, xt.fld); \
3069 /* If this is not a "use current rounding mode" instruction, \
3070 * then inhibit setting of the XX bit and restore rounding \
3071 * mode from FPSCR */ \
3072 if (rmode != FLOAT_ROUND_CURRENT) { \
3073 fpscr_set_rounding_mode(env); \
3074 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3077 putVSR(xT(opcode), &xt, env); \
3078 float_check_status(env); \
3081 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3082 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3083 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3084 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3085 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3087 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3088 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3089 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3090 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3091 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3093 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3094 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3095 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3096 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3097 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3099 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3101 helper_reset_fpstatus(env);
3103 uint64_t xt = helper_frsp(env, xb);
3105 helper_compute_fprf_float64(env, xt);
3106 float_check_status(env);
3107 return xt;
3110 #define VSX_XXPERM(op, indexed) \
3111 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3113 ppc_vsr_t xt, xa, pcv, xto; \
3114 int i, idx; \
3116 getVSR(xA(opcode), &xa, env); \
3117 getVSR(xT(opcode), &xt, env); \
3118 getVSR(xB(opcode), &pcv, env); \
3120 for (i = 0; i < 16; i++) { \
3121 idx = pcv.VsrB(i) & 0x1F; \
3122 if (indexed) { \
3123 idx = 31 - idx; \
3125 xto.VsrB(i) = (idx <= 15) ? xa.VsrB(idx) : xt.VsrB(idx - 16); \
3127 putVSR(xT(opcode), &xto, env); \
3130 VSX_XXPERM(xxperm, 0)
3131 VSX_XXPERM(xxpermr, 1)
3133 void helper_xvxsigsp(CPUPPCState *env, uint32_t opcode)
3135 ppc_vsr_t xt, xb;
3136 uint32_t exp, i, fraction;
3138 getVSR(xB(opcode), &xb, env);
3139 memset(&xt, 0, sizeof(xt));
3141 for (i = 0; i < 4; i++) {
3142 exp = (xb.VsrW(i) >> 23) & 0xFF;
3143 fraction = xb.VsrW(i) & 0x7FFFFF;
3144 if (exp != 0 && exp != 255) {
3145 xt.VsrW(i) = fraction | 0x00800000;
3146 } else {
3147 xt.VsrW(i) = fraction;
3150 putVSR(xT(opcode), &xt, env);
3153 /* VSX_TEST_DC - VSX floating point test data class
3154 * op - instruction mnemonic
3155 * nels - number of elements (1, 2 or 4)
3156 * xbn - VSR register number
3157 * tp - type (float32 or float64)
3158 * fld - vsr_t field (VsrD(*) or VsrW(*))
3159 * tfld - target vsr_t field (VsrD(*) or VsrW(*))
3160 * fld_max - target field max
3161 * scrf - set result in CR and FPCC
3163 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
3164 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3166 ppc_vsr_t xt, xb; \
3167 uint32_t i, sign, dcmx; \
3168 uint32_t cc, match = 0; \
3170 getVSR(xbn, &xb, env); \
3171 if (!scrf) { \
3172 memset(&xt, 0, sizeof(xt)); \
3173 dcmx = DCMX_XV(opcode); \
3174 } else { \
3175 dcmx = DCMX(opcode); \
3178 for (i = 0; i < nels; i++) { \
3179 sign = tp##_is_neg(xb.fld); \
3180 if (tp##_is_any_nan(xb.fld)) { \
3181 match = extract32(dcmx, 6, 1); \
3182 } else if (tp##_is_infinity(xb.fld)) { \
3183 match = extract32(dcmx, 4 + !sign, 1); \
3184 } else if (tp##_is_zero(xb.fld)) { \
3185 match = extract32(dcmx, 2 + !sign, 1); \
3186 } else if (tp##_is_zero_or_denormal(xb.fld)) { \
3187 match = extract32(dcmx, 0 + !sign, 1); \
3190 if (scrf) { \
3191 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3192 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
3193 env->fpscr |= cc << FPSCR_FPRF; \
3194 env->crf[BF(opcode)] = cc; \
3195 } else { \
3196 xt.tfld = match ? fld_max : 0; \
3198 match = 0; \
3200 if (!scrf) { \
3201 putVSR(xT(opcode), &xt, env); \
3205 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3206 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3207 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3208 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3210 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode)
3212 ppc_vsr_t xb;
3213 uint32_t dcmx, sign, exp;
3214 uint32_t cc, match = 0, not_sp = 0;
3216 getVSR(xB(opcode), &xb, env);
3217 dcmx = DCMX(opcode);
3218 exp = (xb.VsrD(0) >> 52) & 0x7FF;
3220 sign = float64_is_neg(xb.VsrD(0));
3221 if (float64_is_any_nan(xb.VsrD(0))) {
3222 match = extract32(dcmx, 6, 1);
3223 } else if (float64_is_infinity(xb.VsrD(0))) {
3224 match = extract32(dcmx, 4 + !sign, 1);
3225 } else if (float64_is_zero(xb.VsrD(0))) {
3226 match = extract32(dcmx, 2 + !sign, 1);
3227 } else if (float64_is_zero_or_denormal(xb.VsrD(0)) ||
3228 (exp > 0 && exp < 0x381)) {
3229 match = extract32(dcmx, 0 + !sign, 1);
3232 not_sp = !float64_eq(xb.VsrD(0),
3233 float32_to_float64(
3234 float64_to_float32(xb.VsrD(0), &env->fp_status),
3235 &env->fp_status), &env->fp_status);
3237 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3238 env->fpscr &= ~(0x0F << FPSCR_FPRF);
3239 env->fpscr |= cc << FPSCR_FPRF;
3240 env->crf[BF(opcode)] = cc;
3243 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode)
3245 ppc_vsr_t xb;
3246 ppc_vsr_t xt;
3247 uint8_t r = Rrm(opcode);
3248 uint8_t ex = Rc(opcode);
3249 uint8_t rmc = RMC(opcode);
3250 uint8_t rmode = 0;
3251 float_status tstat;
3253 getVSR(rB(opcode) + 32, &xb, env);
3254 memset(&xt, 0, sizeof(xt));
3255 helper_reset_fpstatus(env);
3257 if (r == 0 && rmc == 0) {
3258 rmode = float_round_ties_away;
3259 } else if (r == 0 && rmc == 0x3) {
3260 rmode = fpscr_rn;
3261 } else if (r == 1) {
3262 switch (rmc) {
3263 case 0:
3264 rmode = float_round_nearest_even;
3265 break;
3266 case 1:
3267 rmode = float_round_to_zero;
3268 break;
3269 case 2:
3270 rmode = float_round_up;
3271 break;
3272 case 3:
3273 rmode = float_round_down;
3274 break;
3275 default:
3276 abort();
3280 tstat = env->fp_status;
3281 set_float_exception_flags(0, &tstat);
3282 set_float_rounding_mode(rmode, &tstat);
3283 xt.f128 = float128_round_to_int(xb.f128, &tstat);
3284 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3286 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3287 if (float128_is_signaling_nan(xb.f128, &tstat)) {
3288 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);
3289 xt.f128 = float128_snan_to_qnan(xt.f128);
3293 if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3294 env->fp_status.float_exception_flags &= ~float_flag_inexact;
3297 helper_compute_fprf_float128(env, xt.f128);
3298 float_check_status(env);
3299 putVSR(rD(opcode) + 32, &xt, env);
3302 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode)
3304 ppc_vsr_t xb;
3305 ppc_vsr_t xt;
3306 uint8_t r = Rrm(opcode);
3307 uint8_t rmc = RMC(opcode);
3308 uint8_t rmode = 0;
3309 floatx80 round_res;
3310 float_status tstat;
3312 getVSR(rB(opcode) + 32, &xb, env);
3313 memset(&xt, 0, sizeof(xt));
3314 helper_reset_fpstatus(env);
3316 if (r == 0 && rmc == 0) {
3317 rmode = float_round_ties_away;
3318 } else if (r == 0 && rmc == 0x3) {
3319 rmode = fpscr_rn;
3320 } else if (r == 1) {
3321 switch (rmc) {
3322 case 0:
3323 rmode = float_round_nearest_even;
3324 break;
3325 case 1:
3326 rmode = float_round_to_zero;
3327 break;
3328 case 2:
3329 rmode = float_round_up;
3330 break;
3331 case 3:
3332 rmode = float_round_down;
3333 break;
3334 default:
3335 abort();
3339 tstat = env->fp_status;
3340 set_float_exception_flags(0, &tstat);
3341 set_float_rounding_mode(rmode, &tstat);
3342 round_res = float128_to_floatx80(xb.f128, &tstat);
3343 xt.f128 = floatx80_to_float128(round_res, &tstat);
3344 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3346 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3347 if (float128_is_signaling_nan(xb.f128, &tstat)) {
3348 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);
3349 xt.f128 = float128_snan_to_qnan(xt.f128);
3353 helper_compute_fprf_float128(env, xt.f128);
3354 putVSR(rD(opcode) + 32, &xt, env);
3355 float_check_status(env);
3358 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode)
3360 ppc_vsr_t xb;
3361 ppc_vsr_t xt;
3362 float_status tstat;
3364 getVSR(rB(opcode) + 32, &xb, env);
3365 memset(&xt, 0, sizeof(xt));
3366 helper_reset_fpstatus(env);
3368 tstat = env->fp_status;
3369 if (unlikely(Rc(opcode) != 0)) {
3370 tstat.float_rounding_mode = float_round_to_odd;
3373 set_float_exception_flags(0, &tstat);
3374 xt.f128 = float128_sqrt(xb.f128, &tstat);
3375 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3377 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3378 if (float128_is_signaling_nan(xb.f128, &tstat)) {
3379 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
3380 xt.f128 = float128_snan_to_qnan(xb.f128);
3381 } else if (float128_is_quiet_nan(xb.f128, &tstat)) {
3382 xt.f128 = xb.f128;
3383 } else if (float128_is_neg(xb.f128) && !float128_is_zero(xb.f128)) {
3384 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
3385 set_snan_bit_is_one(0, &env->fp_status);
3386 xt.f128 = float128_default_nan(&env->fp_status);
3390 helper_compute_fprf_float128(env, xt.f128);
3391 putVSR(rD(opcode) + 32, &xt, env);
3392 float_check_status(env);
3395 void helper_xssubqp(CPUPPCState *env, uint32_t opcode)
3397 ppc_vsr_t xt, xa, xb;
3398 float_status tstat;
3400 getVSR(rA(opcode) + 32, &xa, env);
3401 getVSR(rB(opcode) + 32, &xb, env);
3402 getVSR(rD(opcode) + 32, &xt, env);
3403 helper_reset_fpstatus(env);
3405 tstat = env->fp_status;
3406 if (unlikely(Rc(opcode) != 0)) {
3407 tstat.float_rounding_mode = float_round_to_odd;
3410 set_float_exception_flags(0, &tstat);
3411 xt.f128 = float128_sub(xa.f128, xb.f128, &tstat);
3412 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3414 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3415 if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
3416 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
3417 } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
3418 float128_is_signaling_nan(xb.f128, &tstat)) {
3419 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
3423 helper_compute_fprf_float128(env, xt.f128);
3424 putVSR(rD(opcode) + 32, &xt, env);
3425 float_check_status(env);