qxl: call qemu_spice_display_init_common for secondary devices
[qemu/ar7.git] / target / ppc / mmu-hash64.c
blob14d34e512f42b12266b2b1bf0e59b25164b1a8d8
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/error-report.h"
26 #include "sysemu/hw_accel.h"
27 #include "kvm_ppc.h"
28 #include "mmu-hash64.h"
29 #include "exec/log.h"
30 #include "hw/hw.h"
31 #include "mmu-book3s-v3.h"
33 //#define DEBUG_SLB
35 #ifdef DEBUG_SLB
36 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
37 #else
38 # define LOG_SLB(...) do { } while (0)
39 #endif
42 * SLB handling
45 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
47 CPUPPCState *env = &cpu->env;
48 uint64_t esid_256M, esid_1T;
49 int n;
51 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
53 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
54 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
56 for (n = 0; n < env->slb_nr; n++) {
57 ppc_slb_t *slb = &env->slb[n];
59 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
60 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
61 /* We check for 1T matches on all MMUs here - if the MMU
62 * doesn't have 1T segment support, we will have prevented 1T
63 * entries from being inserted in the slbmte code. */
64 if (((slb->esid == esid_256M) &&
65 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
66 || ((slb->esid == esid_1T) &&
67 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
68 return slb;
72 return NULL;
75 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
77 CPUPPCState *env = &cpu->env;
78 int i;
79 uint64_t slbe, slbv;
81 cpu_synchronize_state(CPU(cpu));
83 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
84 for (i = 0; i < env->slb_nr; i++) {
85 slbe = env->slb[i].esid;
86 slbv = env->slb[i].vsid;
87 if (slbe == 0 && slbv == 0) {
88 continue;
90 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
91 i, slbe, slbv);
95 void helper_slbia(CPUPPCState *env)
97 int n;
99 /* XXX: Warning: slbia never invalidates the first segment */
100 for (n = 1; n < env->slb_nr; n++) {
101 ppc_slb_t *slb = &env->slb[n];
103 if (slb->esid & SLB_ESID_V) {
104 slb->esid &= ~SLB_ESID_V;
105 /* XXX: given the fact that segment size is 256 MB or 1TB,
106 * and we still don't have a tlb_flush_mask(env, n, mask)
107 * in QEMU, we just invalidate all TLBs
109 env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
114 static void __helper_slbie(CPUPPCState *env, target_ulong addr,
115 target_ulong global)
117 PowerPCCPU *cpu = ppc_env_get_cpu(env);
118 ppc_slb_t *slb;
120 slb = slb_lookup(cpu, addr);
121 if (!slb) {
122 return;
125 if (slb->esid & SLB_ESID_V) {
126 slb->esid &= ~SLB_ESID_V;
128 /* XXX: given the fact that segment size is 256 MB or 1TB,
129 * and we still don't have a tlb_flush_mask(env, n, mask)
130 * in QEMU, we just invalidate all TLBs
132 env->tlb_need_flush |=
133 (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
137 void helper_slbie(CPUPPCState *env, target_ulong addr)
139 __helper_slbie(env, addr, false);
142 void helper_slbieg(CPUPPCState *env, target_ulong addr)
144 __helper_slbie(env, addr, true);
147 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
148 target_ulong esid, target_ulong vsid)
150 CPUPPCState *env = &cpu->env;
151 ppc_slb_t *slb = &env->slb[slot];
152 const struct ppc_one_seg_page_size *sps = NULL;
153 int i;
155 if (slot >= env->slb_nr) {
156 return -1; /* Bad slot number */
158 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
159 return -1; /* Reserved bits set */
161 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
162 return -1; /* Bad segment size */
164 if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
165 return -1; /* 1T segment on MMU that doesn't support it */
168 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
169 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
171 if (!sps1->page_shift) {
172 break;
175 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
176 sps = sps1;
177 break;
181 if (!sps) {
182 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
183 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
184 slot, esid, vsid);
185 return -1;
188 slb->esid = esid;
189 slb->vsid = vsid;
190 slb->sps = sps;
192 LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
193 " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
194 slb->esid, slb->vsid);
196 return 0;
199 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
200 target_ulong *rt)
202 CPUPPCState *env = &cpu->env;
203 int slot = rb & 0xfff;
204 ppc_slb_t *slb = &env->slb[slot];
206 if (slot >= env->slb_nr) {
207 return -1;
210 *rt = slb->esid;
211 return 0;
214 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
215 target_ulong *rt)
217 CPUPPCState *env = &cpu->env;
218 int slot = rb & 0xfff;
219 ppc_slb_t *slb = &env->slb[slot];
221 if (slot >= env->slb_nr) {
222 return -1;
225 *rt = slb->vsid;
226 return 0;
229 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
230 target_ulong *rt)
232 CPUPPCState *env = &cpu->env;
233 ppc_slb_t *slb;
235 if (!msr_is_64bit(env, env->msr)) {
236 rb &= 0xffffffff;
238 slb = slb_lookup(cpu, rb);
239 if (slb == NULL) {
240 *rt = (target_ulong)-1ul;
241 } else {
242 *rt = slb->vsid;
244 return 0;
247 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
249 PowerPCCPU *cpu = ppc_env_get_cpu(env);
251 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
252 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
253 POWERPC_EXCP_INVAL, GETPC());
257 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
259 PowerPCCPU *cpu = ppc_env_get_cpu(env);
260 target_ulong rt = 0;
262 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
263 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
264 POWERPC_EXCP_INVAL, GETPC());
266 return rt;
269 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
271 PowerPCCPU *cpu = ppc_env_get_cpu(env);
272 target_ulong rt = 0;
274 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
275 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
276 POWERPC_EXCP_INVAL, GETPC());
278 return rt;
281 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
283 PowerPCCPU *cpu = ppc_env_get_cpu(env);
284 target_ulong rt = 0;
286 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
287 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
288 POWERPC_EXCP_INVAL, GETPC());
290 return rt;
293 /* Check No-Execute or Guarded Storage */
294 static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
295 ppc_hash_pte64_t pte)
297 /* Exec permissions CANNOT take away read or write permissions */
298 return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
299 PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
302 /* Check Basic Storage Protection */
303 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
304 ppc_slb_t *slb, ppc_hash_pte64_t pte)
306 CPUPPCState *env = &cpu->env;
307 unsigned pp, key;
308 /* Some pp bit combinations have undefined behaviour, so default
309 * to no access in those cases */
310 int prot = 0;
312 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
313 : (slb->vsid & SLB_VSID_KS));
314 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
316 if (key == 0) {
317 switch (pp) {
318 case 0x0:
319 case 0x1:
320 case 0x2:
321 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
322 break;
324 case 0x3:
325 case 0x6:
326 prot = PAGE_READ | PAGE_EXEC;
327 break;
329 } else {
330 switch (pp) {
331 case 0x0:
332 case 0x6:
333 break;
335 case 0x1:
336 case 0x3:
337 prot = PAGE_READ | PAGE_EXEC;
338 break;
340 case 0x2:
341 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
342 break;
346 return prot;
349 /* Check the instruction access permissions specified in the IAMR */
350 static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
352 CPUPPCState *env = &cpu->env;
353 int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
356 * An instruction fetch is permitted if the IAMR bit is 0.
357 * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
358 * can only take away EXEC permissions not READ or WRITE permissions.
359 * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
360 * EXEC permissions are allowed.
362 return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
363 PAGE_READ | PAGE_WRITE | PAGE_EXEC;
366 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
368 CPUPPCState *env = &cpu->env;
369 int key, amrbits;
370 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
372 /* Only recent MMUs implement Virtual Page Class Key Protection */
373 if (!(env->mmu_model & POWERPC_MMU_AMR)) {
374 return prot;
377 key = HPTE64_R_KEY(pte.pte1);
378 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
380 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
381 /* env->spr[SPR_AMR]); */
384 * A store is permitted if the AMR bit is 0. Remove write
385 * protection if it is set.
387 if (amrbits & 0x2) {
388 prot &= ~PAGE_WRITE;
391 * A load is permitted if the AMR bit is 0. Remove read
392 * protection if it is set.
394 if (amrbits & 0x1) {
395 prot &= ~PAGE_READ;
398 switch (env->mmu_model) {
400 * MMU version 2.07 and later support IAMR
401 * Check if the IAMR allows the instruction access - it will return
402 * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
403 * if it does (and prot will be unchanged indicating execution support).
405 case POWERPC_MMU_2_07:
406 case POWERPC_MMU_3_00:
407 prot &= ppc_hash64_iamr_prot(cpu, key);
408 break;
409 default:
410 break;
413 return prot;
416 const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
417 hwaddr ptex, int n)
419 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
420 hwaddr base = ppc_hash64_hpt_base(cpu);
421 hwaddr plen = n * HASH_PTE_SIZE_64;
422 const ppc_hash_pte64_t *hptes;
424 if (cpu->vhyp) {
425 PPCVirtualHypervisorClass *vhc =
426 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
427 return vhc->map_hptes(cpu->vhyp, ptex, n);
430 if (!base) {
431 return NULL;
434 hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false);
435 if (plen < (n * HASH_PTE_SIZE_64)) {
436 hw_error("%s: Unable to map all requested HPTEs\n", __func__);
438 return hptes;
441 void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
442 hwaddr ptex, int n)
444 if (cpu->vhyp) {
445 PPCVirtualHypervisorClass *vhc =
446 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
447 vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
448 return;
451 address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
452 false, n * HASH_PTE_SIZE_64);
455 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
456 uint64_t pte0, uint64_t pte1)
458 int i;
460 if (!(pte0 & HPTE64_V_LARGE)) {
461 if (sps->page_shift != 12) {
462 /* 4kiB page in a non 4kiB segment */
463 return 0;
465 /* Normal 4kiB page */
466 return 12;
469 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
470 const struct ppc_one_page_size *ps = &sps->enc[i];
471 uint64_t mask;
473 if (!ps->page_shift) {
474 break;
477 if (ps->page_shift == 12) {
478 /* L bit is set so this can't be a 4kiB page */
479 continue;
482 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
484 if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
485 return ps->page_shift;
489 return 0; /* Bad page size encoding */
492 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
493 const struct ppc_one_seg_page_size *sps,
494 target_ulong ptem,
495 ppc_hash_pte64_t *pte, unsigned *pshift)
497 int i;
498 const ppc_hash_pte64_t *pteg;
499 target_ulong pte0, pte1;
500 target_ulong ptex;
502 ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
503 pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
504 if (!pteg) {
505 return -1;
507 for (i = 0; i < HPTES_PER_GROUP; i++) {
508 pte0 = ppc_hash64_hpte0(cpu, pteg, i);
509 pte1 = ppc_hash64_hpte1(cpu, pteg, i);
511 /* This compares V, B, H (secondary) and the AVPN */
512 if (HPTE64_V_COMPARE(pte0, ptem)) {
513 *pshift = hpte_page_shift(sps, pte0, pte1);
515 * If there is no match, ignore the PTE, it could simply
516 * be for a different segment size encoding and the
517 * architecture specifies we should not match. Linux will
518 * potentially leave behind PTEs for the wrong base page
519 * size when demoting segments.
521 if (*pshift == 0) {
522 continue;
524 /* We don't do anything with pshift yet as qemu TLB only deals
525 * with 4K pages anyway
527 pte->pte0 = pte0;
528 pte->pte1 = pte1;
529 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
530 return ptex + i;
533 ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
535 * We didn't find a valid entry.
537 return -1;
540 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
541 ppc_slb_t *slb, target_ulong eaddr,
542 ppc_hash_pte64_t *pte, unsigned *pshift)
544 CPUPPCState *env = &cpu->env;
545 hwaddr hash, ptex;
546 uint64_t vsid, epnmask, epn, ptem;
547 const struct ppc_one_seg_page_size *sps = slb->sps;
549 /* The SLB store path should prevent any bad page size encodings
550 * getting in there, so: */
551 assert(sps);
553 /* If ISL is set in LPCR we need to clamp the page size to 4K */
554 if (env->spr[SPR_LPCR] & LPCR_ISL) {
555 /* We assume that when using TCG, 4k is first entry of SPS */
556 sps = &env->sps.sps[0];
557 assert(sps->page_shift == 12);
560 epnmask = ~((1ULL << sps->page_shift) - 1);
562 if (slb->vsid & SLB_VSID_B) {
563 /* 1TB segment */
564 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
565 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
566 hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
567 } else {
568 /* 256M segment */
569 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
570 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
571 hash = vsid ^ (epn >> sps->page_shift);
573 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
574 ptem |= HPTE64_V_VALID;
576 /* Page address translation */
577 qemu_log_mask(CPU_LOG_MMU,
578 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
579 " hash " TARGET_FMT_plx "\n",
580 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
582 /* Primary PTEG lookup */
583 qemu_log_mask(CPU_LOG_MMU,
584 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
585 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
586 " hash=" TARGET_FMT_plx "\n",
587 ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
588 vsid, ptem, hash);
589 ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
591 if (ptex == -1) {
592 /* Secondary PTEG lookup */
593 ptem |= HPTE64_V_SECONDARY;
594 qemu_log_mask(CPU_LOG_MMU,
595 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
596 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
597 " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
598 ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
600 ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
603 return ptex;
606 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
607 uint64_t pte0, uint64_t pte1)
609 CPUPPCState *env = &cpu->env;
610 int i;
612 if (!(pte0 & HPTE64_V_LARGE)) {
613 return 12;
617 * The encodings in env->sps need to be carefully chosen so that
618 * this gives an unambiguous result.
620 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
621 const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
622 unsigned shift;
624 if (!sps->page_shift) {
625 break;
628 shift = hpte_page_shift(sps, pte0, pte1);
629 if (shift) {
630 return shift;
634 return 0;
637 static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
638 uint64_t error_code)
640 bool vpm;
642 if (msr_ir) {
643 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
644 } else {
645 switch (env->mmu_model) {
646 case POWERPC_MMU_3_00:
647 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
648 vpm = true;
649 break;
650 default:
651 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
652 break;
655 if (vpm && !msr_hv) {
656 cs->exception_index = POWERPC_EXCP_HISI;
657 } else {
658 cs->exception_index = POWERPC_EXCP_ISI;
660 env->error_code = error_code;
663 static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
664 uint64_t dsisr)
666 bool vpm;
668 if (msr_dr) {
669 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
670 } else {
671 switch (env->mmu_model) {
672 case POWERPC_MMU_3_00:
673 /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
674 vpm = true;
675 break;
676 default:
677 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
678 break;
681 if (vpm && !msr_hv) {
682 cs->exception_index = POWERPC_EXCP_HDSI;
683 env->spr[SPR_HDAR] = dar;
684 env->spr[SPR_HDSISR] = dsisr;
685 } else {
686 cs->exception_index = POWERPC_EXCP_DSI;
687 env->spr[SPR_DAR] = dar;
688 env->spr[SPR_DSISR] = dsisr;
690 env->error_code = 0;
694 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
695 int rwx, int mmu_idx)
697 CPUState *cs = CPU(cpu);
698 CPUPPCState *env = &cpu->env;
699 ppc_slb_t *slb;
700 unsigned apshift;
701 hwaddr ptex;
702 ppc_hash_pte64_t pte;
703 int exec_prot, pp_prot, amr_prot, prot;
704 uint64_t new_pte1;
705 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
706 hwaddr raddr;
708 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
710 /* Note on LPCR usage: 970 uses HID4, but our special variant
711 * of store_spr copies relevant fields into env->spr[SPR_LPCR].
712 * Similarily we filter unimplemented bits when storing into
713 * LPCR depending on the MMU version. This code can thus just
714 * use the LPCR "as-is".
717 /* 1. Handle real mode accesses */
718 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
719 /* Translation is supposedly "off" */
720 /* In real mode the top 4 effective address bits are (mostly) ignored */
721 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
723 /* In HV mode, add HRMOR if top EA bit is clear */
724 if (msr_hv || !env->has_hv_mode) {
725 if (!(eaddr >> 63)) {
726 raddr |= env->spr[SPR_HRMOR];
728 } else {
729 /* Otherwise, check VPM for RMA vs VRMA */
730 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
731 slb = &env->vrma_slb;
732 if (slb->sps) {
733 goto skip_slb_search;
735 /* Not much else to do here */
736 cs->exception_index = POWERPC_EXCP_MCHECK;
737 env->error_code = 0;
738 return 1;
739 } else if (raddr < env->rmls) {
740 /* RMA. Check bounds in RMLS */
741 raddr |= env->spr[SPR_RMOR];
742 } else {
743 /* The access failed, generate the approriate interrupt */
744 if (rwx == 2) {
745 ppc_hash64_set_isi(cs, env, SRR1_PROTFAULT);
746 } else {
747 int dsisr = DSISR_PROTFAULT;
748 if (rwx == 1) {
749 dsisr |= DSISR_ISSTORE;
751 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
753 return 1;
756 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
757 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
758 TARGET_PAGE_SIZE);
759 return 0;
762 /* 2. Translation is on, so look up the SLB */
763 slb = slb_lookup(cpu, eaddr);
764 if (!slb) {
765 /* No entry found, check if in-memory segment tables are in use */
766 if ((env->mmu_model & POWERPC_MMU_V3) && ppc64_use_proc_tbl(cpu)) {
767 /* TODO - Unsupported */
768 error_report("Segment Table Support Unimplemented");
769 exit(1);
771 /* Segment still not found, generate the appropriate interrupt */
772 if (rwx == 2) {
773 cs->exception_index = POWERPC_EXCP_ISEG;
774 env->error_code = 0;
775 } else {
776 cs->exception_index = POWERPC_EXCP_DSEG;
777 env->error_code = 0;
778 env->spr[SPR_DAR] = eaddr;
780 return 1;
783 skip_slb_search:
785 /* 3. Check for segment level no-execute violation */
786 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
787 ppc_hash64_set_isi(cs, env, SRR1_NOEXEC_GUARD);
788 return 1;
791 /* 4. Locate the PTE in the hash table */
792 ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
793 if (ptex == -1) {
794 if (rwx == 2) {
795 ppc_hash64_set_isi(cs, env, SRR1_NOPTE);
796 } else {
797 int dsisr = DSISR_NOPTE;
798 if (rwx == 1) {
799 dsisr |= DSISR_ISSTORE;
801 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
803 return 1;
805 qemu_log_mask(CPU_LOG_MMU,
806 "found PTE at index %08" HWADDR_PRIx "\n", ptex);
808 /* 5. Check access permissions */
810 exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
811 pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
812 amr_prot = ppc_hash64_amr_prot(cpu, pte);
813 prot = exec_prot & pp_prot & amr_prot;
815 if ((need_prot[rwx] & ~prot) != 0) {
816 /* Access right violation */
817 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
818 if (rwx == 2) {
819 int srr1 = 0;
820 if (PAGE_EXEC & ~exec_prot) {
821 srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
822 } else if (PAGE_EXEC & ~pp_prot) {
823 srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
825 if (PAGE_EXEC & ~amr_prot) {
826 srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
828 ppc_hash64_set_isi(cs, env, srr1);
829 } else {
830 int dsisr = 0;
831 if (need_prot[rwx] & ~pp_prot) {
832 dsisr |= DSISR_PROTFAULT;
834 if (rwx == 1) {
835 dsisr |= DSISR_ISSTORE;
837 if (need_prot[rwx] & ~amr_prot) {
838 dsisr |= DSISR_AMR;
840 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
842 return 1;
845 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
847 /* 6. Update PTE referenced and changed bits if necessary */
849 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
850 if (rwx == 1) {
851 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
852 } else {
853 /* Treat the page as read-only for now, so that a later write
854 * will pass through this function again to set the C bit */
855 prot &= ~PAGE_WRITE;
858 if (new_pte1 != pte.pte1) {
859 ppc_hash64_store_hpte(cpu, ptex, pte.pte0, new_pte1);
862 /* 7. Determine the real address from the PTE */
864 raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
866 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
867 prot, mmu_idx, 1ULL << apshift);
869 return 0;
872 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
874 CPUPPCState *env = &cpu->env;
875 ppc_slb_t *slb;
876 hwaddr ptex, raddr;
877 ppc_hash_pte64_t pte;
878 unsigned apshift;
880 /* Handle real mode */
881 if (msr_dr == 0) {
882 /* In real mode the top 4 effective address bits are ignored */
883 raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
885 /* In HV mode, add HRMOR if top EA bit is clear */
886 if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
887 return raddr | env->spr[SPR_HRMOR];
890 /* Otherwise, check VPM for RMA vs VRMA */
891 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
892 slb = &env->vrma_slb;
893 if (!slb->sps) {
894 return -1;
896 } else if (raddr < env->rmls) {
897 /* RMA. Check bounds in RMLS */
898 return raddr | env->spr[SPR_RMOR];
899 } else {
900 return -1;
902 } else {
903 slb = slb_lookup(cpu, addr);
904 if (!slb) {
905 return -1;
909 ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
910 if (ptex == -1) {
911 return -1;
914 return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
915 & TARGET_PAGE_MASK;
918 void ppc_hash64_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
919 uint64_t pte0, uint64_t pte1)
921 hwaddr base = ppc_hash64_hpt_base(cpu);
922 hwaddr offset = ptex * HASH_PTE_SIZE_64;
924 if (cpu->vhyp) {
925 PPCVirtualHypervisorClass *vhc =
926 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
927 vhc->store_hpte(cpu->vhyp, ptex, pte0, pte1);
928 return;
931 stq_phys(CPU(cpu)->as, base + offset, pte0);
932 stq_phys(CPU(cpu)->as, base + offset + HASH_PTE_SIZE_64 / 2, pte1);
935 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
936 target_ulong pte0, target_ulong pte1)
939 * XXX: given the fact that there are too many segments to
940 * invalidate, and we still don't have a tlb_flush_mask(env, n,
941 * mask) in QEMU, we just invalidate all TLBs
943 cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
946 void ppc_hash64_update_rmls(CPUPPCState *env)
948 uint64_t lpcr = env->spr[SPR_LPCR];
951 * This is the full 4 bits encoding of POWER8. Previous
952 * CPUs only support a subset of these but the filtering
953 * is done when writing LPCR
955 switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
956 case 0x8: /* 32MB */
957 env->rmls = 0x2000000ull;
958 break;
959 case 0x3: /* 64MB */
960 env->rmls = 0x4000000ull;
961 break;
962 case 0x7: /* 128MB */
963 env->rmls = 0x8000000ull;
964 break;
965 case 0x4: /* 256MB */
966 env->rmls = 0x10000000ull;
967 break;
968 case 0x2: /* 1GB */
969 env->rmls = 0x40000000ull;
970 break;
971 case 0x1: /* 16GB */
972 env->rmls = 0x400000000ull;
973 break;
974 default:
975 /* What to do here ??? */
976 env->rmls = 0;
980 void ppc_hash64_update_vrma(CPUPPCState *env)
982 const struct ppc_one_seg_page_size *sps = NULL;
983 target_ulong esid, vsid, lpcr;
984 ppc_slb_t *slb = &env->vrma_slb;
985 uint32_t vrmasd;
986 int i;
988 /* First clear it */
989 slb->esid = slb->vsid = 0;
990 slb->sps = NULL;
992 /* Is VRMA enabled ? */
993 lpcr = env->spr[SPR_LPCR];
994 if (!(lpcr & LPCR_VPM0)) {
995 return;
998 /* Make one up. Mostly ignore the ESID which will not be
999 * needed for translation
1001 vsid = SLB_VSID_VRMA;
1002 vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
1003 vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
1004 esid = SLB_ESID_V;
1006 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
1007 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
1009 if (!sps1->page_shift) {
1010 break;
1013 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
1014 sps = sps1;
1015 break;
1019 if (!sps) {
1020 error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
1021 " vsid 0x"TARGET_FMT_lx, esid, vsid);
1022 return;
1025 slb->vsid = vsid;
1026 slb->esid = esid;
1027 slb->sps = sps;
1030 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1032 uint64_t lpcr = 0;
1034 /* Filter out bits */
1035 switch (POWERPC_MMU_VER(env->mmu_model)) {
1036 case POWERPC_MMU_VER_64B: /* 970 */
1037 if (val & 0x40) {
1038 lpcr |= LPCR_LPES0;
1040 if (val & 0x8000000000000000ull) {
1041 lpcr |= LPCR_LPES1;
1043 if (val & 0x20) {
1044 lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1046 if (val & 0x4000000000000000ull) {
1047 lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1049 if (val & 0x2000000000000000ull) {
1050 lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1052 env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1054 /* XXX We could also write LPID from HID4 here
1055 * but since we don't tag any translation on it
1056 * it doesn't actually matter
1058 /* XXX For proper emulation of 970 we also need
1059 * to dig HRMOR out of HID5
1061 break;
1062 case POWERPC_MMU_VER_2_03: /* P5p */
1063 lpcr = val & (LPCR_RMLS | LPCR_ILE |
1064 LPCR_LPES0 | LPCR_LPES1 |
1065 LPCR_RMI | LPCR_HDICE);
1066 break;
1067 case POWERPC_MMU_VER_2_06: /* P7 */
1068 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1069 LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1070 LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1071 LPCR_MER | LPCR_TC |
1072 LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1073 break;
1074 case POWERPC_MMU_VER_2_07: /* P8 */
1075 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1076 LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1077 LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1078 LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1079 LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1080 break;
1081 case POWERPC_MMU_VER_3_00: /* P9 */
1082 lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
1083 (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
1084 LPCR_UPRT | LPCR_EVIRT | LPCR_ONL |
1085 (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
1086 LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
1087 LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
1088 break;
1089 default:
1092 env->spr[SPR_LPCR] = lpcr;
1093 ppc_hash64_update_rmls(env);
1094 ppc_hash64_update_vrma(env);