qxl: call qemu_spice_display_init_common for secondary devices
[qemu/ar7.git] / target / i386 / hax-all.c
blob3ce69502968c1adc52870342070bd9536461f98e
1 /*
2 * QEMU HAX support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * Copyright (c) 2011 Intel Corporation
12 * Written by:
13 * Jiang Yunhong<yunhong.jiang@intel.com>
14 * Xin Xiaohui<xiaohui.xin@intel.com>
15 * Zhang Xiantao<xiantao.zhang@intel.com>
17 * This work is licensed under the terms of the GNU GPL, version 2 or later.
18 * See the COPYING file in the top-level directory.
23 * HAX common code for both windows and darwin
26 #include "qemu/osdep.h"
27 #include "cpu.h"
28 #include "exec/address-spaces.h"
29 #include "exec/exec-all.h"
30 #include "exec/ioport.h"
32 #include "qemu-common.h"
33 #include "strings.h"
34 #include "hax-i386.h"
35 #include "sysemu/accel.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/main-loop.h"
38 #include "hw/boards.h"
40 #define DEBUG_HAX 0
42 #define DPRINTF(fmt, ...) \
43 do { \
44 if (DEBUG_HAX) { \
45 fprintf(stdout, fmt, ## __VA_ARGS__); \
46 } \
47 } while (0)
49 /* Current version */
50 const uint32_t hax_cur_version = 0x4; /* API v4: unmapping and MMIO moves */
51 /* Minimum HAX kernel version */
52 const uint32_t hax_min_version = 0x4; /* API v4: supports unmapping */
54 static bool hax_allowed;
56 struct hax_state hax_global;
58 static void hax_vcpu_sync_state(CPUArchState *env, int modified);
59 static int hax_arch_get_registers(CPUArchState *env);
61 int hax_enabled(void)
63 return hax_allowed;
66 int valid_hax_tunnel_size(uint16_t size)
68 return size >= sizeof(struct hax_tunnel);
71 hax_fd hax_vcpu_get_fd(CPUArchState *env)
73 struct hax_vcpu_state *vcpu = ENV_GET_CPU(env)->hax_vcpu;
74 if (!vcpu) {
75 return HAX_INVALID_FD;
77 return vcpu->fd;
80 static int hax_get_capability(struct hax_state *hax)
82 int ret;
83 struct hax_capabilityinfo capinfo, *cap = &capinfo;
85 ret = hax_capability(hax, cap);
86 if (ret) {
87 return ret;
90 if ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) == HAX_CAP_STATUS_NOTWORKING) {
91 if (cap->winfo & HAX_CAP_FAILREASON_VT) {
92 DPRINTF
93 ("VTX feature is not enabled, HAX driver will not work.\n");
94 } else if (cap->winfo & HAX_CAP_FAILREASON_NX) {
95 DPRINTF
96 ("NX feature is not enabled, HAX driver will not work.\n");
98 return -ENXIO;
102 if (!(cap->winfo & HAX_CAP_UG)) {
103 fprintf(stderr, "UG mode is not supported by the hardware.\n");
104 return -ENOTSUP;
107 if (cap->wstatus & HAX_CAP_MEMQUOTA) {
108 if (cap->mem_quota < hax->mem_quota) {
109 fprintf(stderr, "The VM memory needed exceeds the driver limit.\n");
110 return -ENOSPC;
113 return 0;
116 static int hax_version_support(struct hax_state *hax)
118 int ret;
119 struct hax_module_version version;
121 ret = hax_mod_version(hax, &version);
122 if (ret < 0) {
123 return 0;
126 if (hax_min_version > version.cur_version) {
127 fprintf(stderr, "Incompatible HAX module version %d,",
128 version.cur_version);
129 fprintf(stderr, "requires minimum version %d\n", hax_min_version);
130 return 0;
132 if (hax_cur_version < version.compat_version) {
133 fprintf(stderr, "Incompatible QEMU HAX API version %x,",
134 hax_cur_version);
135 fprintf(stderr, "requires minimum HAX API version %x\n",
136 version.compat_version);
137 return 0;
140 return 1;
143 int hax_vcpu_create(int id)
145 struct hax_vcpu_state *vcpu = NULL;
146 int ret;
148 if (!hax_global.vm) {
149 fprintf(stderr, "vcpu %x created failed, vm is null\n", id);
150 return -1;
153 if (hax_global.vm->vcpus[id]) {
154 fprintf(stderr, "vcpu %x allocated already\n", id);
155 return 0;
158 vcpu = g_malloc(sizeof(struct hax_vcpu_state));
159 if (!vcpu) {
160 fprintf(stderr, "Failed to alloc vcpu state\n");
161 return -ENOMEM;
164 memset(vcpu, 0, sizeof(struct hax_vcpu_state));
166 ret = hax_host_create_vcpu(hax_global.vm->fd, id);
167 if (ret) {
168 fprintf(stderr, "Failed to create vcpu %x\n", id);
169 goto error;
172 vcpu->vcpu_id = id;
173 vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id);
174 if (hax_invalid_fd(vcpu->fd)) {
175 fprintf(stderr, "Failed to open the vcpu\n");
176 ret = -ENODEV;
177 goto error;
180 hax_global.vm->vcpus[id] = vcpu;
182 ret = hax_host_setup_vcpu_channel(vcpu);
183 if (ret) {
184 fprintf(stderr, "Invalid hax tunnel size\n");
185 ret = -EINVAL;
186 goto error;
188 return 0;
190 error:
191 /* vcpu and tunnel will be closed automatically */
192 if (vcpu && !hax_invalid_fd(vcpu->fd)) {
193 hax_close_fd(vcpu->fd);
196 hax_global.vm->vcpus[id] = NULL;
197 g_free(vcpu);
198 return -1;
201 int hax_vcpu_destroy(CPUState *cpu)
203 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
205 if (!hax_global.vm) {
206 fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id);
207 return -1;
210 if (!vcpu) {
211 return 0;
215 * 1. The hax_tunnel is also destroied when vcpu destroy
216 * 2. close fd will cause hax module vcpu be cleaned
218 hax_close_fd(vcpu->fd);
219 hax_global.vm->vcpus[vcpu->vcpu_id] = NULL;
220 g_free(vcpu);
221 return 0;
224 int hax_init_vcpu(CPUState *cpu)
226 int ret;
228 ret = hax_vcpu_create(cpu->cpu_index);
229 if (ret < 0) {
230 fprintf(stderr, "Failed to create HAX vcpu\n");
231 exit(-1);
234 cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index];
235 cpu->vcpu_dirty = true;
236 qemu_register_reset(hax_reset_vcpu_state, (CPUArchState *) (cpu->env_ptr));
238 return ret;
241 struct hax_vm *hax_vm_create(struct hax_state *hax)
243 struct hax_vm *vm;
244 int vm_id = 0, ret;
246 if (hax_invalid_fd(hax->fd)) {
247 return NULL;
250 if (hax->vm) {
251 return hax->vm;
254 vm = g_malloc(sizeof(struct hax_vm));
255 if (!vm) {
256 return NULL;
258 memset(vm, 0, sizeof(struct hax_vm));
259 ret = hax_host_create_vm(hax, &vm_id);
260 if (ret) {
261 fprintf(stderr, "Failed to create vm %x\n", ret);
262 goto error;
264 vm->id = vm_id;
265 vm->fd = hax_host_open_vm(hax, vm_id);
266 if (hax_invalid_fd(vm->fd)) {
267 fprintf(stderr, "Failed to open vm %d\n", vm_id);
268 goto error;
271 hax->vm = vm;
272 return vm;
274 error:
275 g_free(vm);
276 hax->vm = NULL;
277 return NULL;
280 int hax_vm_destroy(struct hax_vm *vm)
282 int i;
284 for (i = 0; i < HAX_MAX_VCPU; i++)
285 if (vm->vcpus[i]) {
286 fprintf(stderr, "VCPU should be cleaned before vm clean\n");
287 return -1;
289 hax_close_fd(vm->fd);
290 g_free(vm);
291 hax_global.vm = NULL;
292 return 0;
295 static void hax_handle_interrupt(CPUState *cpu, int mask)
297 cpu->interrupt_request |= mask;
299 if (!qemu_cpu_is_self(cpu)) {
300 qemu_cpu_kick(cpu);
304 static int hax_init(ram_addr_t ram_size)
306 struct hax_state *hax = NULL;
307 struct hax_qemu_version qversion;
308 int ret;
310 hax = &hax_global;
312 memset(hax, 0, sizeof(struct hax_state));
313 hax->mem_quota = ram_size;
315 hax->fd = hax_mod_open();
316 if (hax_invalid_fd(hax->fd)) {
317 hax->fd = 0;
318 ret = -ENODEV;
319 goto error;
322 ret = hax_get_capability(hax);
324 if (ret) {
325 if (ret != -ENOSPC) {
326 ret = -EINVAL;
328 goto error;
331 if (!hax_version_support(hax)) {
332 ret = -EINVAL;
333 goto error;
336 hax->vm = hax_vm_create(hax);
337 if (!hax->vm) {
338 fprintf(stderr, "Failed to create HAX VM\n");
339 ret = -EINVAL;
340 goto error;
343 hax_memory_init();
345 qversion.cur_version = hax_cur_version;
346 qversion.min_version = hax_min_version;
347 hax_notify_qemu_version(hax->vm->fd, &qversion);
348 cpu_interrupt_handler = hax_handle_interrupt;
350 return ret;
351 error:
352 if (hax->vm) {
353 hax_vm_destroy(hax->vm);
355 if (hax->fd) {
356 hax_mod_close(hax);
359 return ret;
362 static int hax_accel_init(MachineState *ms)
364 int ret = hax_init(ms->ram_size);
366 if (ret && (ret != -ENOSPC)) {
367 fprintf(stderr, "No accelerator found.\n");
368 } else {
369 fprintf(stdout, "HAX is %s and emulator runs in %s mode.\n",
370 !ret ? "working" : "not working",
371 !ret ? "fast virt" : "emulation");
373 return ret;
376 static int hax_handle_fastmmio(CPUArchState *env, struct hax_fastmmio *hft)
378 if (hft->direction < 2) {
379 cpu_physical_memory_rw(hft->gpa, (uint8_t *) &hft->value, hft->size,
380 hft->direction);
381 } else {
383 * HAX API v4 supports transferring data between two MMIO addresses,
384 * hft->gpa and hft->gpa2 (instructions such as MOVS require this):
385 * hft->direction == 2: gpa ==> gpa2
387 uint64_t value;
388 cpu_physical_memory_rw(hft->gpa, (uint8_t *) &value, hft->size, 0);
389 cpu_physical_memory_rw(hft->gpa2, (uint8_t *) &value, hft->size, 1);
392 return 0;
395 static int hax_handle_io(CPUArchState *env, uint32_t df, uint16_t port,
396 int direction, int size, int count, void *buffer)
398 uint8_t *ptr;
399 int i;
400 MemTxAttrs attrs = { 0 };
402 if (!df) {
403 ptr = (uint8_t *) buffer;
404 } else {
405 ptr = buffer + size * count - size;
407 for (i = 0; i < count; i++) {
408 address_space_rw(&address_space_io, port, attrs,
409 ptr, size, direction == HAX_EXIT_IO_OUT);
410 if (!df) {
411 ptr += size;
412 } else {
413 ptr -= size;
417 return 0;
420 static int hax_vcpu_interrupt(CPUArchState *env)
422 CPUState *cpu = ENV_GET_CPU(env);
423 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
424 struct hax_tunnel *ht = vcpu->tunnel;
427 * Try to inject an interrupt if the guest can accept it
428 * Unlike KVM, HAX kernel check for the eflags, instead of qemu
430 if (ht->ready_for_interrupt_injection &&
431 (cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
432 int irq;
434 irq = cpu_get_pic_interrupt(env);
435 if (irq >= 0) {
436 hax_inject_interrupt(env, irq);
437 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
441 /* If we have an interrupt but the guest is not ready to receive an
442 * interrupt, request an interrupt window exit. This will
443 * cause a return to userspace as soon as the guest is ready to
444 * receive interrupts. */
445 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
446 ht->request_interrupt_window = 1;
447 } else {
448 ht->request_interrupt_window = 0;
450 return 0;
453 void hax_raise_event(CPUState *cpu)
455 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
457 if (!vcpu) {
458 return;
460 vcpu->tunnel->user_event_pending = 1;
464 * Ask hax kernel module to run the CPU for us till:
465 * 1. Guest crash or shutdown
466 * 2. Need QEMU's emulation like guest execute MMIO instruction
467 * 3. Guest execute HLT
468 * 4. QEMU have Signal/event pending
469 * 5. An unknown VMX exit happens
471 static int hax_vcpu_hax_exec(CPUArchState *env)
473 int ret = 0;
474 CPUState *cpu = ENV_GET_CPU(env);
475 X86CPU *x86_cpu = X86_CPU(cpu);
476 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
477 struct hax_tunnel *ht = vcpu->tunnel;
479 if (!hax_enabled()) {
480 DPRINTF("Trying to vcpu execute at eip:" TARGET_FMT_lx "\n", env->eip);
481 return 0;
484 cpu->halted = 0;
486 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
487 cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
488 apic_poll_irq(x86_cpu->apic_state);
491 if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
492 DPRINTF("\nhax_vcpu_hax_exec: handling INIT for %d\n",
493 cpu->cpu_index);
494 do_cpu_init(x86_cpu);
495 hax_vcpu_sync_state(env, 1);
498 if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
499 DPRINTF("hax_vcpu_hax_exec: handling SIPI for %d\n",
500 cpu->cpu_index);
501 hax_vcpu_sync_state(env, 0);
502 do_cpu_sipi(x86_cpu);
503 hax_vcpu_sync_state(env, 1);
506 do {
507 int hax_ret;
509 if (cpu->exit_request) {
510 ret = 1;
511 break;
514 hax_vcpu_interrupt(env);
516 qemu_mutex_unlock_iothread();
517 cpu_exec_start(cpu);
518 hax_ret = hax_vcpu_run(vcpu);
519 cpu_exec_end(cpu);
520 qemu_mutex_lock_iothread();
522 /* Simply continue the vcpu_run if system call interrupted */
523 if (hax_ret == -EINTR || hax_ret == -EAGAIN) {
524 DPRINTF("io window interrupted\n");
525 continue;
528 if (hax_ret < 0) {
529 fprintf(stderr, "vcpu run failed for vcpu %x\n", vcpu->vcpu_id);
530 abort();
532 switch (ht->_exit_status) {
533 case HAX_EXIT_IO:
534 ret = hax_handle_io(env, ht->pio._df, ht->pio._port,
535 ht->pio._direction,
536 ht->pio._size, ht->pio._count, vcpu->iobuf);
537 break;
538 case HAX_EXIT_FAST_MMIO:
539 ret = hax_handle_fastmmio(env, (struct hax_fastmmio *) vcpu->iobuf);
540 break;
541 /* Guest state changed, currently only for shutdown */
542 case HAX_EXIT_STATECHANGE:
543 fprintf(stdout, "VCPU shutdown request\n");
544 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
545 hax_vcpu_sync_state(env, 0);
546 ret = 1;
547 break;
548 case HAX_EXIT_UNKNOWN_VMEXIT:
549 fprintf(stderr, "Unknown VMX exit %x from guest\n",
550 ht->_exit_reason);
551 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
552 hax_vcpu_sync_state(env, 0);
553 cpu_dump_state(cpu, stderr, fprintf, 0);
554 ret = -1;
555 break;
556 case HAX_EXIT_HLT:
557 if (!(cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
558 !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
559 /* hlt instruction with interrupt disabled is shutdown */
560 env->eflags |= IF_MASK;
561 cpu->halted = 1;
562 cpu->exception_index = EXCP_HLT;
563 ret = 1;
565 break;
566 /* these situations will continue to hax module */
567 case HAX_EXIT_INTERRUPT:
568 case HAX_EXIT_PAUSED:
569 break;
570 case HAX_EXIT_MMIO:
571 /* Should not happen on UG system */
572 fprintf(stderr, "HAX: unsupported MMIO emulation\n");
573 ret = -1;
574 break;
575 case HAX_EXIT_REAL:
576 /* Should not happen on UG system */
577 fprintf(stderr, "HAX: unimplemented real mode emulation\n");
578 ret = -1;
579 break;
580 default:
581 fprintf(stderr, "Unknown exit %x from HAX\n", ht->_exit_status);
582 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
583 hax_vcpu_sync_state(env, 0);
584 cpu_dump_state(cpu, stderr, fprintf, 0);
585 ret = 1;
586 break;
588 } while (!ret);
590 if (cpu->exit_request) {
591 cpu->exit_request = 0;
592 cpu->exception_index = EXCP_INTERRUPT;
594 return ret < 0;
597 static void do_hax_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
599 CPUArchState *env = cpu->env_ptr;
601 hax_arch_get_registers(env);
602 cpu->vcpu_dirty = true;
605 void hax_cpu_synchronize_state(CPUState *cpu)
607 if (!cpu->vcpu_dirty) {
608 run_on_cpu(cpu, do_hax_cpu_synchronize_state, RUN_ON_CPU_NULL);
612 static void do_hax_cpu_synchronize_post_reset(CPUState *cpu,
613 run_on_cpu_data arg)
615 CPUArchState *env = cpu->env_ptr;
617 hax_vcpu_sync_state(env, 1);
618 cpu->vcpu_dirty = false;
621 void hax_cpu_synchronize_post_reset(CPUState *cpu)
623 run_on_cpu(cpu, do_hax_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
626 static void do_hax_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
628 CPUArchState *env = cpu->env_ptr;
630 hax_vcpu_sync_state(env, 1);
631 cpu->vcpu_dirty = false;
634 void hax_cpu_synchronize_post_init(CPUState *cpu)
636 run_on_cpu(cpu, do_hax_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
639 static void do_hax_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
641 cpu->vcpu_dirty = true;
644 void hax_cpu_synchronize_pre_loadvm(CPUState *cpu)
646 run_on_cpu(cpu, do_hax_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
649 int hax_smp_cpu_exec(CPUState *cpu)
651 CPUArchState *env = (CPUArchState *) (cpu->env_ptr);
652 int fatal;
653 int ret;
655 while (1) {
656 if (cpu->exception_index >= EXCP_INTERRUPT) {
657 ret = cpu->exception_index;
658 cpu->exception_index = -1;
659 break;
662 fatal = hax_vcpu_hax_exec(env);
664 if (fatal) {
665 fprintf(stderr, "Unsupported HAX vcpu return\n");
666 abort();
670 return ret;
673 static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
675 memset(lhs, 0, sizeof(struct segment_desc_t));
676 lhs->selector = rhs->selector;
677 lhs->base = rhs->base;
678 lhs->limit = rhs->limit;
679 lhs->type = 3;
680 lhs->present = 1;
681 lhs->dpl = 3;
682 lhs->operand_size = 0;
683 lhs->desc = 1;
684 lhs->long_mode = 0;
685 lhs->granularity = 0;
686 lhs->available = 0;
689 static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs)
691 lhs->selector = rhs->selector;
692 lhs->base = rhs->base;
693 lhs->limit = rhs->limit;
694 lhs->flags = (rhs->type << DESC_TYPE_SHIFT)
695 | (rhs->present * DESC_P_MASK)
696 | (rhs->dpl << DESC_DPL_SHIFT)
697 | (rhs->operand_size << DESC_B_SHIFT)
698 | (rhs->desc * DESC_S_MASK)
699 | (rhs->long_mode << DESC_L_SHIFT)
700 | (rhs->granularity * DESC_G_MASK) | (rhs->available * DESC_AVL_MASK);
703 static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
705 unsigned flags = rhs->flags;
707 memset(lhs, 0, sizeof(struct segment_desc_t));
708 lhs->selector = rhs->selector;
709 lhs->base = rhs->base;
710 lhs->limit = rhs->limit;
711 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
712 lhs->present = (flags & DESC_P_MASK) != 0;
713 lhs->dpl = rhs->selector & 3;
714 lhs->operand_size = (flags >> DESC_B_SHIFT) & 1;
715 lhs->desc = (flags & DESC_S_MASK) != 0;
716 lhs->long_mode = (flags >> DESC_L_SHIFT) & 1;
717 lhs->granularity = (flags & DESC_G_MASK) != 0;
718 lhs->available = (flags & DESC_AVL_MASK) != 0;
721 static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set)
723 target_ulong reg = *hax_reg;
725 if (set) {
726 *hax_reg = *qemu_reg;
727 } else {
728 *qemu_reg = reg;
732 /* The sregs has been synced with HAX kernel already before this call */
733 static int hax_get_segments(CPUArchState *env, struct vcpu_state_t *sregs)
735 get_seg(&env->segs[R_CS], &sregs->_cs);
736 get_seg(&env->segs[R_DS], &sregs->_ds);
737 get_seg(&env->segs[R_ES], &sregs->_es);
738 get_seg(&env->segs[R_FS], &sregs->_fs);
739 get_seg(&env->segs[R_GS], &sregs->_gs);
740 get_seg(&env->segs[R_SS], &sregs->_ss);
742 get_seg(&env->tr, &sregs->_tr);
743 get_seg(&env->ldt, &sregs->_ldt);
744 env->idt.limit = sregs->_idt.limit;
745 env->idt.base = sregs->_idt.base;
746 env->gdt.limit = sregs->_gdt.limit;
747 env->gdt.base = sregs->_gdt.base;
748 return 0;
751 static int hax_set_segments(CPUArchState *env, struct vcpu_state_t *sregs)
753 if ((env->eflags & VM_MASK)) {
754 set_v8086_seg(&sregs->_cs, &env->segs[R_CS]);
755 set_v8086_seg(&sregs->_ds, &env->segs[R_DS]);
756 set_v8086_seg(&sregs->_es, &env->segs[R_ES]);
757 set_v8086_seg(&sregs->_fs, &env->segs[R_FS]);
758 set_v8086_seg(&sregs->_gs, &env->segs[R_GS]);
759 set_v8086_seg(&sregs->_ss, &env->segs[R_SS]);
760 } else {
761 set_seg(&sregs->_cs, &env->segs[R_CS]);
762 set_seg(&sregs->_ds, &env->segs[R_DS]);
763 set_seg(&sregs->_es, &env->segs[R_ES]);
764 set_seg(&sregs->_fs, &env->segs[R_FS]);
765 set_seg(&sregs->_gs, &env->segs[R_GS]);
766 set_seg(&sregs->_ss, &env->segs[R_SS]);
768 if (env->cr[0] & CR0_PE_MASK) {
769 /* force ss cpl to cs cpl */
770 sregs->_ss.selector = (sregs->_ss.selector & ~3) |
771 (sregs->_cs.selector & 3);
772 sregs->_ss.dpl = sregs->_ss.selector & 3;
776 set_seg(&sregs->_tr, &env->tr);
777 set_seg(&sregs->_ldt, &env->ldt);
778 sregs->_idt.limit = env->idt.limit;
779 sregs->_idt.base = env->idt.base;
780 sregs->_gdt.limit = env->gdt.limit;
781 sregs->_gdt.base = env->gdt.base;
782 return 0;
786 * After get the state from the kernel module, some
787 * qemu emulator state need be updated also
789 static int hax_setup_qemu_emulator(CPUArchState *env)
792 #define HFLAG_COPY_MASK (~( \
793 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
794 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
795 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
796 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK))
798 uint32_t hflags;
800 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
801 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
802 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
803 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
804 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
805 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
806 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
808 if (env->efer & MSR_EFER_LMA) {
809 hflags |= HF_LMA_MASK;
812 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
813 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
814 } else {
815 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
816 (DESC_B_SHIFT - HF_CS32_SHIFT);
817 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
818 (DESC_B_SHIFT - HF_SS32_SHIFT);
819 if (!(env->cr[0] & CR0_PE_MASK) ||
820 (env->eflags & VM_MASK) || !(hflags & HF_CS32_MASK)) {
821 hflags |= HF_ADDSEG_MASK;
822 } else {
823 hflags |= ((env->segs[R_DS].base |
824 env->segs[R_ES].base |
825 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
829 hflags &= ~HF_SMM_MASK;
831 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
832 return 0;
835 static int hax_sync_vcpu_register(CPUArchState *env, int set)
837 struct vcpu_state_t regs;
838 int ret;
839 memset(&regs, 0, sizeof(struct vcpu_state_t));
841 if (!set) {
842 ret = hax_sync_vcpu_state(env, &regs, 0);
843 if (ret < 0) {
844 return -1;
848 /* generic register */
849 hax_getput_reg(&regs._rax, &env->regs[R_EAX], set);
850 hax_getput_reg(&regs._rbx, &env->regs[R_EBX], set);
851 hax_getput_reg(&regs._rcx, &env->regs[R_ECX], set);
852 hax_getput_reg(&regs._rdx, &env->regs[R_EDX], set);
853 hax_getput_reg(&regs._rsi, &env->regs[R_ESI], set);
854 hax_getput_reg(&regs._rdi, &env->regs[R_EDI], set);
855 hax_getput_reg(&regs._rsp, &env->regs[R_ESP], set);
856 hax_getput_reg(&regs._rbp, &env->regs[R_EBP], set);
857 #ifdef TARGET_X86_64
858 hax_getput_reg(&regs._r8, &env->regs[8], set);
859 hax_getput_reg(&regs._r9, &env->regs[9], set);
860 hax_getput_reg(&regs._r10, &env->regs[10], set);
861 hax_getput_reg(&regs._r11, &env->regs[11], set);
862 hax_getput_reg(&regs._r12, &env->regs[12], set);
863 hax_getput_reg(&regs._r13, &env->regs[13], set);
864 hax_getput_reg(&regs._r14, &env->regs[14], set);
865 hax_getput_reg(&regs._r15, &env->regs[15], set);
866 #endif
867 hax_getput_reg(&regs._rflags, &env->eflags, set);
868 hax_getput_reg(&regs._rip, &env->eip, set);
870 if (set) {
871 regs._cr0 = env->cr[0];
872 regs._cr2 = env->cr[2];
873 regs._cr3 = env->cr[3];
874 regs._cr4 = env->cr[4];
875 hax_set_segments(env, &regs);
876 } else {
877 env->cr[0] = regs._cr0;
878 env->cr[2] = regs._cr2;
879 env->cr[3] = regs._cr3;
880 env->cr[4] = regs._cr4;
881 hax_get_segments(env, &regs);
884 if (set) {
885 ret = hax_sync_vcpu_state(env, &regs, 1);
886 if (ret < 0) {
887 return -1;
890 if (!set) {
891 hax_setup_qemu_emulator(env);
893 return 0;
896 static void hax_msr_entry_set(struct vmx_msr *item, uint32_t index,
897 uint64_t value)
899 item->entry = index;
900 item->value = value;
903 static int hax_get_msrs(CPUArchState *env)
905 struct hax_msr_data md;
906 struct vmx_msr *msrs = md.entries;
907 int ret, i, n;
909 n = 0;
910 msrs[n++].entry = MSR_IA32_SYSENTER_CS;
911 msrs[n++].entry = MSR_IA32_SYSENTER_ESP;
912 msrs[n++].entry = MSR_IA32_SYSENTER_EIP;
913 msrs[n++].entry = MSR_IA32_TSC;
914 #ifdef TARGET_X86_64
915 msrs[n++].entry = MSR_EFER;
916 msrs[n++].entry = MSR_STAR;
917 msrs[n++].entry = MSR_LSTAR;
918 msrs[n++].entry = MSR_CSTAR;
919 msrs[n++].entry = MSR_FMASK;
920 msrs[n++].entry = MSR_KERNELGSBASE;
921 #endif
922 md.nr_msr = n;
923 ret = hax_sync_msr(env, &md, 0);
924 if (ret < 0) {
925 return ret;
928 for (i = 0; i < md.done; i++) {
929 switch (msrs[i].entry) {
930 case MSR_IA32_SYSENTER_CS:
931 env->sysenter_cs = msrs[i].value;
932 break;
933 case MSR_IA32_SYSENTER_ESP:
934 env->sysenter_esp = msrs[i].value;
935 break;
936 case MSR_IA32_SYSENTER_EIP:
937 env->sysenter_eip = msrs[i].value;
938 break;
939 case MSR_IA32_TSC:
940 env->tsc = msrs[i].value;
941 break;
942 #ifdef TARGET_X86_64
943 case MSR_EFER:
944 env->efer = msrs[i].value;
945 break;
946 case MSR_STAR:
947 env->star = msrs[i].value;
948 break;
949 case MSR_LSTAR:
950 env->lstar = msrs[i].value;
951 break;
952 case MSR_CSTAR:
953 env->cstar = msrs[i].value;
954 break;
955 case MSR_FMASK:
956 env->fmask = msrs[i].value;
957 break;
958 case MSR_KERNELGSBASE:
959 env->kernelgsbase = msrs[i].value;
960 break;
961 #endif
965 return 0;
968 static int hax_set_msrs(CPUArchState *env)
970 struct hax_msr_data md;
971 struct vmx_msr *msrs;
972 msrs = md.entries;
973 int n = 0;
975 memset(&md, 0, sizeof(struct hax_msr_data));
976 hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
977 hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
978 hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
979 hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
980 #ifdef TARGET_X86_64
981 hax_msr_entry_set(&msrs[n++], MSR_EFER, env->efer);
982 hax_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
983 hax_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
984 hax_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
985 hax_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
986 hax_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
987 #endif
988 md.nr_msr = n;
989 md.done = 0;
991 return hax_sync_msr(env, &md, 1);
994 static int hax_get_fpu(CPUArchState *env)
996 struct fx_layout fpu;
997 int i, ret;
999 ret = hax_sync_fpu(env, &fpu, 0);
1000 if (ret < 0) {
1001 return ret;
1004 env->fpstt = (fpu.fsw >> 11) & 7;
1005 env->fpus = fpu.fsw;
1006 env->fpuc = fpu.fcw;
1007 for (i = 0; i < 8; ++i) {
1008 env->fptags[i] = !((fpu.ftw >> i) & 1);
1010 memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs));
1012 for (i = 0; i < 8; i++) {
1013 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.mmx_1[i][0]);
1014 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.mmx_1[i][8]);
1015 if (CPU_NB_REGS > 8) {
1016 env->xmm_regs[i + 8].ZMM_Q(0) = ldq_p(&fpu.mmx_2[i][0]);
1017 env->xmm_regs[i + 8].ZMM_Q(1) = ldq_p(&fpu.mmx_2[i][8]);
1020 env->mxcsr = fpu.mxcsr;
1022 return 0;
1025 static int hax_set_fpu(CPUArchState *env)
1027 struct fx_layout fpu;
1028 int i;
1030 memset(&fpu, 0, sizeof(fpu));
1031 fpu.fsw = env->fpus & ~(7 << 11);
1032 fpu.fsw |= (env->fpstt & 7) << 11;
1033 fpu.fcw = env->fpuc;
1035 for (i = 0; i < 8; ++i) {
1036 fpu.ftw |= (!env->fptags[i]) << i;
1039 memcpy(fpu.st_mm, env->fpregs, sizeof(env->fpregs));
1040 for (i = 0; i < 8; i++) {
1041 stq_p(&fpu.mmx_1[i][0], env->xmm_regs[i].ZMM_Q(0));
1042 stq_p(&fpu.mmx_1[i][8], env->xmm_regs[i].ZMM_Q(1));
1043 if (CPU_NB_REGS > 8) {
1044 stq_p(&fpu.mmx_2[i][0], env->xmm_regs[i + 8].ZMM_Q(0));
1045 stq_p(&fpu.mmx_2[i][8], env->xmm_regs[i + 8].ZMM_Q(1));
1049 fpu.mxcsr = env->mxcsr;
1051 return hax_sync_fpu(env, &fpu, 1);
1054 static int hax_arch_get_registers(CPUArchState *env)
1056 int ret;
1058 ret = hax_sync_vcpu_register(env, 0);
1059 if (ret < 0) {
1060 return ret;
1063 ret = hax_get_fpu(env);
1064 if (ret < 0) {
1065 return ret;
1068 ret = hax_get_msrs(env);
1069 if (ret < 0) {
1070 return ret;
1073 return 0;
1076 static int hax_arch_set_registers(CPUArchState *env)
1078 int ret;
1079 ret = hax_sync_vcpu_register(env, 1);
1081 if (ret < 0) {
1082 fprintf(stderr, "Failed to sync vcpu reg\n");
1083 return ret;
1085 ret = hax_set_fpu(env);
1086 if (ret < 0) {
1087 fprintf(stderr, "FPU failed\n");
1088 return ret;
1090 ret = hax_set_msrs(env);
1091 if (ret < 0) {
1092 fprintf(stderr, "MSR failed\n");
1093 return ret;
1096 return 0;
1099 static void hax_vcpu_sync_state(CPUArchState *env, int modified)
1101 if (hax_enabled()) {
1102 if (modified) {
1103 hax_arch_set_registers(env);
1104 } else {
1105 hax_arch_get_registers(env);
1111 * much simpler than kvm, at least in first stage because:
1112 * We don't need consider the device pass-through, we don't need
1113 * consider the framebuffer, and we may even remove the bios at all
1115 int hax_sync_vcpus(void)
1117 if (hax_enabled()) {
1118 CPUState *cpu;
1120 cpu = first_cpu;
1121 if (!cpu) {
1122 return 0;
1125 for (; cpu != NULL; cpu = CPU_NEXT(cpu)) {
1126 int ret;
1128 ret = hax_arch_set_registers(cpu->env_ptr);
1129 if (ret < 0) {
1130 return ret;
1135 return 0;
1138 void hax_reset_vcpu_state(void *opaque)
1140 CPUState *cpu;
1141 for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) {
1142 cpu->hax_vcpu->tunnel->user_event_pending = 0;
1143 cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0;
1147 static void hax_accel_class_init(ObjectClass *oc, void *data)
1149 AccelClass *ac = ACCEL_CLASS(oc);
1150 ac->name = "HAX";
1151 ac->init_machine = hax_accel_init;
1152 ac->allowed = &hax_allowed;
1155 static const TypeInfo hax_accel_type = {
1156 .name = ACCEL_CLASS_NAME("hax"),
1157 .parent = TYPE_ACCEL,
1158 .class_init = hax_accel_class_init,
1161 static void hax_type_init(void)
1163 type_register_static(&hax_accel_type);
1166 type_init(hax_type_init);