qxl: call qemu_spice_display_init_common for secondary devices
[qemu/ar7.git] / target / i386 / gdbstub.c
blob9b94ab852c72b2ae6523575af24848abda027307
1 /*
2 * x86 gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 * Copyright (c) 2013 SUSE LINUX Products GmbH
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "cpu.h"
23 #include "exec/gdbstub.h"
25 #ifdef TARGET_X86_64
26 static const int gpr_map[16] = {
27 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
28 8, 9, 10, 11, 12, 13, 14, 15
30 #else
31 #define gpr_map gpr_map32
32 #endif
33 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
35 #define IDX_IP_REG CPU_NB_REGS
36 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
37 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
38 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
39 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
40 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
42 int x86_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
44 X86CPU *cpu = X86_CPU(cs);
45 CPUX86State *env = &cpu->env;
47 /* N.B. GDB can't deal with changes in registers or sizes in the middle
48 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
49 as if we're on a 64-bit cpu. */
51 if (n < CPU_NB_REGS) {
52 if (TARGET_LONG_BITS == 64) {
53 if (env->hflags & HF_CS64_MASK) {
54 return gdb_get_reg64(mem_buf, env->regs[gpr_map[n]]);
55 } else if (n < CPU_NB_REGS32) {
56 return gdb_get_reg64(mem_buf,
57 env->regs[gpr_map[n]] & 0xffffffffUL);
58 } else {
59 memset(mem_buf, 0, sizeof(target_ulong));
60 return sizeof(target_ulong);
62 } else {
63 return gdb_get_reg32(mem_buf, env->regs[gpr_map32[n]]);
65 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
66 #ifdef USE_X86LDOUBLE
67 /* FIXME: byteswap float values - after fixing fpregs layout. */
68 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
69 #else
70 memset(mem_buf, 0, 10);
71 #endif
72 return 10;
73 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
74 n -= IDX_XMM_REGS;
75 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
76 stq_p(mem_buf, env->xmm_regs[n].ZMM_Q(0));
77 stq_p(mem_buf + 8, env->xmm_regs[n].ZMM_Q(1));
78 return 16;
80 } else {
81 switch (n) {
82 case IDX_IP_REG:
83 if (TARGET_LONG_BITS == 64) {
84 if (env->hflags & HF_CS64_MASK) {
85 return gdb_get_reg64(mem_buf, env->eip);
86 } else {
87 return gdb_get_reg64(mem_buf, env->eip & 0xffffffffUL);
89 } else {
90 return gdb_get_reg32(mem_buf, env->eip);
92 case IDX_FLAGS_REG:
93 return gdb_get_reg32(mem_buf, env->eflags);
95 case IDX_SEG_REGS:
96 return gdb_get_reg32(mem_buf, env->segs[R_CS].selector);
97 case IDX_SEG_REGS + 1:
98 return gdb_get_reg32(mem_buf, env->segs[R_SS].selector);
99 case IDX_SEG_REGS + 2:
100 return gdb_get_reg32(mem_buf, env->segs[R_DS].selector);
101 case IDX_SEG_REGS + 3:
102 return gdb_get_reg32(mem_buf, env->segs[R_ES].selector);
103 case IDX_SEG_REGS + 4:
104 return gdb_get_reg32(mem_buf, env->segs[R_FS].selector);
105 case IDX_SEG_REGS + 5:
106 return gdb_get_reg32(mem_buf, env->segs[R_GS].selector);
108 case IDX_FP_REGS + 8:
109 return gdb_get_reg32(mem_buf, env->fpuc);
110 case IDX_FP_REGS + 9:
111 return gdb_get_reg32(mem_buf, (env->fpus & ~0x3800) |
112 (env->fpstt & 0x7) << 11);
113 case IDX_FP_REGS + 10:
114 return gdb_get_reg32(mem_buf, 0); /* ftag */
115 case IDX_FP_REGS + 11:
116 return gdb_get_reg32(mem_buf, 0); /* fiseg */
117 case IDX_FP_REGS + 12:
118 return gdb_get_reg32(mem_buf, 0); /* fioff */
119 case IDX_FP_REGS + 13:
120 return gdb_get_reg32(mem_buf, 0); /* foseg */
121 case IDX_FP_REGS + 14:
122 return gdb_get_reg32(mem_buf, 0); /* fooff */
123 case IDX_FP_REGS + 15:
124 return gdb_get_reg32(mem_buf, 0); /* fop */
126 case IDX_MXCSR_REG:
127 return gdb_get_reg32(mem_buf, env->mxcsr);
130 return 0;
133 static int x86_cpu_gdb_load_seg(X86CPU *cpu, int sreg, uint8_t *mem_buf)
135 CPUX86State *env = &cpu->env;
136 uint16_t selector = ldl_p(mem_buf);
138 if (selector != env->segs[sreg].selector) {
139 #if defined(CONFIG_USER_ONLY)
140 cpu_x86_load_seg(env, sreg, selector);
141 #else
142 unsigned int limit, flags;
143 target_ulong base;
145 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
146 int dpl = (env->eflags & VM_MASK) ? 3 : 0;
147 base = selector << 4;
148 limit = 0xffff;
149 flags = DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
150 DESC_A_MASK | (dpl << DESC_DPL_SHIFT);
151 } else {
152 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit,
153 &flags)) {
154 return 4;
157 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
158 #endif
160 return 4;
163 int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
165 X86CPU *cpu = X86_CPU(cs);
166 CPUX86State *env = &cpu->env;
167 uint32_t tmp;
169 /* N.B. GDB can't deal with changes in registers or sizes in the middle
170 of a session. So if we're in 32-bit mode on a 64-bit cpu, still act
171 as if we're on a 64-bit cpu. */
173 if (n < CPU_NB_REGS) {
174 if (TARGET_LONG_BITS == 64) {
175 if (env->hflags & HF_CS64_MASK) {
176 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
177 } else if (n < CPU_NB_REGS32) {
178 env->regs[gpr_map[n]] = ldtul_p(mem_buf) & 0xffffffffUL;
180 return sizeof(target_ulong);
181 } else if (n < CPU_NB_REGS32) {
182 n = gpr_map32[n];
183 env->regs[n] &= ~0xffffffffUL;
184 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
185 return 4;
187 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
188 #ifdef USE_X86LDOUBLE
189 /* FIXME: byteswap float values - after fixing fpregs layout. */
190 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
191 #endif
192 return 10;
193 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
194 n -= IDX_XMM_REGS;
195 if (n < CPU_NB_REGS32 || TARGET_LONG_BITS == 64) {
196 env->xmm_regs[n].ZMM_Q(0) = ldq_p(mem_buf);
197 env->xmm_regs[n].ZMM_Q(1) = ldq_p(mem_buf + 8);
198 return 16;
200 } else {
201 switch (n) {
202 case IDX_IP_REG:
203 if (TARGET_LONG_BITS == 64) {
204 if (env->hflags & HF_CS64_MASK) {
205 env->eip = ldq_p(mem_buf);
206 } else {
207 env->eip = ldq_p(mem_buf) & 0xffffffffUL;
209 return 8;
210 } else {
211 env->eip &= ~0xffffffffUL;
212 env->eip |= (uint32_t)ldl_p(mem_buf);
213 return 4;
215 case IDX_FLAGS_REG:
216 env->eflags = ldl_p(mem_buf);
217 return 4;
219 case IDX_SEG_REGS:
220 return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf);
221 case IDX_SEG_REGS + 1:
222 return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf);
223 case IDX_SEG_REGS + 2:
224 return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf);
225 case IDX_SEG_REGS + 3:
226 return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf);
227 case IDX_SEG_REGS + 4:
228 return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf);
229 case IDX_SEG_REGS + 5:
230 return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf);
232 case IDX_FP_REGS + 8:
233 cpu_set_fpuc(env, ldl_p(mem_buf));
234 return 4;
235 case IDX_FP_REGS + 9:
236 tmp = ldl_p(mem_buf);
237 env->fpstt = (tmp >> 11) & 7;
238 env->fpus = tmp & ~0x3800;
239 return 4;
240 case IDX_FP_REGS + 10: /* ftag */
241 return 4;
242 case IDX_FP_REGS + 11: /* fiseg */
243 return 4;
244 case IDX_FP_REGS + 12: /* fioff */
245 return 4;
246 case IDX_FP_REGS + 13: /* foseg */
247 return 4;
248 case IDX_FP_REGS + 14: /* fooff */
249 return 4;
250 case IDX_FP_REGS + 15: /* fop */
251 return 4;
253 case IDX_MXCSR_REG:
254 cpu_set_mxcsr(env, ldl_p(mem_buf));
255 return 4;
258 /* Unrecognised register. */
259 return 0;