qxl: call qemu_spice_display_init_common for secondary devices
[qemu/ar7.git] / target / arm / arm-powerctl.c
blob25207cb850c2d9464e7b2da3dd3b415f936a317a
1 /*
2 * QEMU support -- ARM Power Control specific functions.
4 * Copyright (c) 2016 Jean-Christophe Dubois
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "cpu-qom.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
16 #include "qemu/log.h"
17 #include "qemu/main-loop.h"
18 #include "exec/exec-all.h"
20 #ifndef DEBUG_ARM_POWERCTL
21 #define DEBUG_ARM_POWERCTL 0
22 #endif
24 #define DPRINTF(fmt, args...) \
25 do { \
26 if (DEBUG_ARM_POWERCTL) { \
27 fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
28 } \
29 } while (0)
31 CPUState *arm_get_cpu_by_id(uint64_t id)
33 CPUState *cpu;
35 DPRINTF("cpu %" PRId64 "\n", id);
37 CPU_FOREACH(cpu) {
38 ARMCPU *armcpu = ARM_CPU(cpu);
40 if (armcpu->mp_affinity == id) {
41 return cpu;
45 qemu_log_mask(LOG_GUEST_ERROR,
46 "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
47 __func__, id);
49 return NULL;
52 struct CpuOnInfo {
53 uint64_t entry;
54 uint64_t context_id;
55 uint32_t target_el;
56 bool target_aa64;
60 static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
61 run_on_cpu_data data)
63 ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
64 struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
66 /* Initialize the cpu we are turning on */
67 cpu_reset(target_cpu_state);
68 target_cpu_state->halted = 0;
70 if (info->target_aa64) {
71 if ((info->target_el < 3) && arm_feature(&target_cpu->env,
72 ARM_FEATURE_EL3)) {
74 * As target mode is AArch64, we need to set lower
75 * exception level (the requested level 2) to AArch64
77 target_cpu->env.cp15.scr_el3 |= SCR_RW;
80 if ((info->target_el < 2) && arm_feature(&target_cpu->env,
81 ARM_FEATURE_EL2)) {
83 * As target mode is AArch64, we need to set lower
84 * exception level (the requested level 1) to AArch64
86 target_cpu->env.cp15.hcr_el2 |= HCR_RW;
89 target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
90 } else {
91 /* We are requested to boot in AArch32 mode */
92 static const uint32_t mode_for_el[] = { 0,
93 ARM_CPU_MODE_SVC,
94 ARM_CPU_MODE_HYP,
95 ARM_CPU_MODE_SVC };
97 cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
98 CPSRWriteRaw);
101 if (info->target_el == 3) {
102 /* Processor is in secure mode */
103 target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
104 } else {
105 /* Processor is not in secure mode */
106 target_cpu->env.cp15.scr_el3 |= SCR_NS;
109 /* We check if the started CPU is now at the correct level */
110 assert(info->target_el == arm_current_el(&target_cpu->env));
112 if (info->target_aa64) {
113 target_cpu->env.xregs[0] = info->context_id;
114 target_cpu->env.thumb = false;
115 } else {
116 target_cpu->env.regs[0] = info->context_id;
117 target_cpu->env.thumb = info->entry & 1;
118 info->entry &= 0xfffffffe;
121 /* Start the new CPU at the requested address */
122 cpu_set_pc(target_cpu_state, info->entry);
124 g_free(info);
126 /* Finally set the power status */
127 assert(qemu_mutex_iothread_locked());
128 target_cpu->power_state = PSCI_ON;
131 int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
132 uint32_t target_el, bool target_aa64)
134 CPUState *target_cpu_state;
135 ARMCPU *target_cpu;
136 struct CpuOnInfo *info;
138 assert(qemu_mutex_iothread_locked());
140 DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
141 "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
142 context_id);
144 /* requested EL level need to be in the 1 to 3 range */
145 assert((target_el > 0) && (target_el < 4));
147 if (target_aa64 && (entry & 3)) {
149 * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
150 * aligned.
152 return QEMU_ARM_POWERCTL_INVALID_PARAM;
155 /* Retrieve the cpu we are powering up */
156 target_cpu_state = arm_get_cpu_by_id(cpuid);
157 if (!target_cpu_state) {
158 /* The cpu was not found */
159 return QEMU_ARM_POWERCTL_INVALID_PARAM;
162 target_cpu = ARM_CPU(target_cpu_state);
163 if (target_cpu->power_state == PSCI_ON) {
164 qemu_log_mask(LOG_GUEST_ERROR,
165 "[ARM]%s: CPU %" PRId64 " is already on\n",
166 __func__, cpuid);
167 return QEMU_ARM_POWERCTL_ALREADY_ON;
171 * The newly brought CPU is requested to enter the exception level
172 * "target_el" and be in the requested mode (AArch64 or AArch32).
175 if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
176 ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
178 * The CPU does not support requested level
180 return QEMU_ARM_POWERCTL_INVALID_PARAM;
183 if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
185 * For now we don't support booting an AArch64 CPU in AArch32 mode
186 * TODO: We should add this support later
188 qemu_log_mask(LOG_UNIMP,
189 "[ARM]%s: Starting AArch64 CPU %" PRId64
190 " in AArch32 mode is not supported yet\n",
191 __func__, cpuid);
192 return QEMU_ARM_POWERCTL_INVALID_PARAM;
196 * If another CPU has powered the target on we are in the state
197 * ON_PENDING and additional attempts to power on the CPU should
198 * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
199 * spec)
201 if (target_cpu->power_state == PSCI_ON_PENDING) {
202 qemu_log_mask(LOG_GUEST_ERROR,
203 "[ARM]%s: CPU %" PRId64 " is already powering on\n",
204 __func__, cpuid);
205 return QEMU_ARM_POWERCTL_ON_PENDING;
208 /* To avoid racing with a CPU we are just kicking off we do the
209 * final bit of preparation for the work in the target CPUs
210 * context.
212 info = g_new(struct CpuOnInfo, 1);
213 info->entry = entry;
214 info->context_id = context_id;
215 info->target_el = target_el;
216 info->target_aa64 = target_aa64;
218 async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
219 RUN_ON_CPU_HOST_PTR(info));
221 /* We are good to go */
222 return QEMU_ARM_POWERCTL_RET_SUCCESS;
225 static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
226 run_on_cpu_data data)
228 ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
230 assert(qemu_mutex_iothread_locked());
231 target_cpu->power_state = PSCI_OFF;
232 target_cpu_state->halted = 1;
233 target_cpu_state->exception_index = EXCP_HLT;
236 int arm_set_cpu_off(uint64_t cpuid)
238 CPUState *target_cpu_state;
239 ARMCPU *target_cpu;
241 assert(qemu_mutex_iothread_locked());
243 DPRINTF("cpu %" PRId64 "\n", cpuid);
245 /* change to the cpu we are powering up */
246 target_cpu_state = arm_get_cpu_by_id(cpuid);
247 if (!target_cpu_state) {
248 return QEMU_ARM_POWERCTL_INVALID_PARAM;
250 target_cpu = ARM_CPU(target_cpu_state);
251 if (target_cpu->power_state == PSCI_OFF) {
252 qemu_log_mask(LOG_GUEST_ERROR,
253 "[ARM]%s: CPU %" PRId64 " is already off\n",
254 __func__, cpuid);
255 return QEMU_ARM_POWERCTL_IS_OFF;
258 /* Queue work to run under the target vCPUs context */
259 async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
260 RUN_ON_CPU_NULL);
262 return QEMU_ARM_POWERCTL_RET_SUCCESS;
265 static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
266 run_on_cpu_data data)
268 /* Reset the cpu */
269 cpu_reset(target_cpu_state);
272 int arm_reset_cpu(uint64_t cpuid)
274 CPUState *target_cpu_state;
275 ARMCPU *target_cpu;
277 assert(qemu_mutex_iothread_locked());
279 DPRINTF("cpu %" PRId64 "\n", cpuid);
281 /* change to the cpu we are resetting */
282 target_cpu_state = arm_get_cpu_by_id(cpuid);
283 if (!target_cpu_state) {
284 return QEMU_ARM_POWERCTL_INVALID_PARAM;
286 target_cpu = ARM_CPU(target_cpu_state);
288 if (target_cpu->power_state == PSCI_OFF) {
289 qemu_log_mask(LOG_GUEST_ERROR,
290 "[ARM]%s: CPU %" PRId64 " is off\n",
291 __func__, cpuid);
292 return QEMU_ARM_POWERCTL_IS_OFF;
295 /* Queue work to run under the target vCPUs context */
296 async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
297 RUN_ON_CPU_NULL);
299 return QEMU_ARM_POWERCTL_RET_SUCCESS;