qxl: call qemu_spice_display_init_common for secondary devices
[qemu/ar7.git] / hw / i386 / intel_iommu.c
bloba7bf87a19e1e0167322d17729e20efeafddcbdfe
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41 uint64_t wmask, uint64_t w1cmask)
43 stq_le_p(&s->csr[addr], val);
44 stq_le_p(&s->wmask[addr], wmask);
45 stq_le_p(&s->w1cmask[addr], w1cmask);
48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
50 stq_le_p(&s->womask[addr], mask);
53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54 uint32_t wmask, uint32_t w1cmask)
56 stl_le_p(&s->csr[addr], val);
57 stl_le_p(&s->wmask[addr], wmask);
58 stl_le_p(&s->w1cmask[addr], w1cmask);
61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
63 stl_le_p(&s->womask[addr], mask);
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
69 uint64_t oldval = ldq_le_p(&s->csr[addr]);
70 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72 stq_le_p(&s->csr[addr],
73 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
78 uint32_t oldval = ldl_le_p(&s->csr[addr]);
79 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81 stl_le_p(&s->csr[addr],
82 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
87 uint64_t val = ldq_le_p(&s->csr[addr]);
88 uint64_t womask = ldq_le_p(&s->womask[addr]);
89 return val & ~womask;
92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
94 uint32_t val = ldl_le_p(&s->csr[addr]);
95 uint32_t womask = ldl_le_p(&s->womask[addr]);
96 return val & ~womask;
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
102 return ldq_le_p(&s->csr[addr]);
105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
107 return ldl_le_p(&s->csr[addr]);
110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
112 stq_le_p(&s->csr[addr], val);
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116 uint32_t clear, uint32_t mask)
118 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119 stl_le_p(&s->csr[addr], new_val);
120 return new_val;
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124 uint64_t clear, uint64_t mask)
126 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127 stq_le_p(&s->csr[addr], new_val);
128 return new_val;
131 /* GHashTable functions */
132 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
134 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
137 static guint vtd_uint64_hash(gconstpointer v)
139 return (guint)*(const uint64_t *)v;
142 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
143 gpointer user_data)
145 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
146 uint16_t domain_id = *(uint16_t *)user_data;
147 return entry->domain_id == domain_id;
150 /* The shift of an addr for a certain level of paging structure */
151 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
153 assert(level != 0);
154 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
157 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
159 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
162 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
163 gpointer user_data)
165 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
166 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
167 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
168 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
169 return (entry->domain_id == info->domain_id) &&
170 (((entry->gfn & info->mask) == gfn) ||
171 (entry->gfn == gfn_tlb));
174 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
175 * IntelIOMMUState to 1.
177 static void vtd_reset_context_cache(IntelIOMMUState *s)
179 VTDAddressSpace *vtd_as;
180 VTDBus *vtd_bus;
181 GHashTableIter bus_it;
182 uint32_t devfn_it;
184 trace_vtd_context_cache_reset();
186 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
188 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
189 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
190 vtd_as = vtd_bus->dev_as[devfn_it];
191 if (!vtd_as) {
192 continue;
194 vtd_as->context_cache_entry.context_cache_gen = 0;
197 s->context_cache_gen = 1;
200 static void vtd_reset_iotlb(IntelIOMMUState *s)
202 assert(s->iotlb);
203 g_hash_table_remove_all(s->iotlb);
206 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
207 uint32_t level)
209 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
210 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
213 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
215 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
218 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
219 hwaddr addr)
221 VTDIOTLBEntry *entry;
222 uint64_t key;
223 int level;
225 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
226 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
227 source_id, level);
228 entry = g_hash_table_lookup(s->iotlb, &key);
229 if (entry) {
230 goto out;
234 out:
235 return entry;
238 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
239 uint16_t domain_id, hwaddr addr, uint64_t slpte,
240 uint8_t access_flags, uint32_t level)
242 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
243 uint64_t *key = g_malloc(sizeof(*key));
244 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
246 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
247 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
248 trace_vtd_iotlb_reset("iotlb exceeds size limit");
249 vtd_reset_iotlb(s);
252 entry->gfn = gfn;
253 entry->domain_id = domain_id;
254 entry->slpte = slpte;
255 entry->access_flags = access_flags;
256 entry->mask = vtd_slpt_level_page_mask(level);
257 *key = vtd_get_iotlb_key(gfn, source_id, level);
258 g_hash_table_replace(s->iotlb, key, entry);
261 /* Given the reg addr of both the message data and address, generate an
262 * interrupt via MSI.
264 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
265 hwaddr mesg_data_reg)
267 MSIMessage msi;
269 assert(mesg_data_reg < DMAR_REG_SIZE);
270 assert(mesg_addr_reg < DMAR_REG_SIZE);
272 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
273 msi.data = vtd_get_long_raw(s, mesg_data_reg);
275 trace_vtd_irq_generate(msi.address, msi.data);
277 apic_get_class()->send_msi(&msi);
280 /* Generate a fault event to software via MSI if conditions are met.
281 * Notice that the value of FSTS_REG being passed to it should be the one
282 * before any update.
284 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
286 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
287 pre_fsts & VTD_FSTS_IQE) {
288 trace_vtd_err("There are previous interrupt conditions "
289 "to be serviced by software, fault event "
290 "is not generated.");
291 return;
293 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
294 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
295 trace_vtd_err("Interrupt Mask set, irq is not generated.");
296 } else {
297 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
298 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
302 /* Check if the Fault (F) field of the Fault Recording Register referenced by
303 * @index is Set.
305 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
307 /* Each reg is 128-bit */
308 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
309 addr += 8; /* Access the high 64-bit half */
311 assert(index < DMAR_FRCD_REG_NR);
313 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
316 /* Update the PPF field of Fault Status Register.
317 * Should be called whenever change the F field of any fault recording
318 * registers.
320 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
322 uint32_t i;
323 uint32_t ppf_mask = 0;
325 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
326 if (vtd_is_frcd_set(s, i)) {
327 ppf_mask = VTD_FSTS_PPF;
328 break;
331 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
332 trace_vtd_fsts_ppf(!!ppf_mask);
335 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
337 /* Each reg is 128-bit */
338 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
339 addr += 8; /* Access the high 64-bit half */
341 assert(index < DMAR_FRCD_REG_NR);
343 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
344 vtd_update_fsts_ppf(s);
347 /* Must not update F field now, should be done later */
348 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
349 uint16_t source_id, hwaddr addr,
350 VTDFaultReason fault, bool is_write)
352 uint64_t hi = 0, lo;
353 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
355 assert(index < DMAR_FRCD_REG_NR);
357 lo = VTD_FRCD_FI(addr);
358 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
359 if (!is_write) {
360 hi |= VTD_FRCD_T;
362 vtd_set_quad_raw(s, frcd_reg_addr, lo);
363 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
365 trace_vtd_frr_new(index, hi, lo);
368 /* Try to collapse multiple pending faults from the same requester */
369 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
371 uint32_t i;
372 uint64_t frcd_reg;
373 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
375 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
376 frcd_reg = vtd_get_quad_raw(s, addr);
377 if ((frcd_reg & VTD_FRCD_F) &&
378 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
379 return true;
381 addr += 16; /* 128-bit for each */
383 return false;
386 /* Log and report an DMAR (address translation) fault to software */
387 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
388 hwaddr addr, VTDFaultReason fault,
389 bool is_write)
391 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
393 assert(fault < VTD_FR_MAX);
395 if (fault == VTD_FR_RESERVED_ERR) {
396 /* This is not a normal fault reason case. Drop it. */
397 return;
400 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
402 if (fsts_reg & VTD_FSTS_PFO) {
403 trace_vtd_err("New fault is not recorded due to "
404 "Primary Fault Overflow.");
405 return;
408 if (vtd_try_collapse_fault(s, source_id)) {
409 trace_vtd_err("New fault is not recorded due to "
410 "compression of faults.");
411 return;
414 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
415 trace_vtd_err("Next Fault Recording Reg is used, "
416 "new fault is not recorded, set PFO field.");
417 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
418 return;
421 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
423 if (fsts_reg & VTD_FSTS_PPF) {
424 trace_vtd_err("There are pending faults already, "
425 "fault event is not generated.");
426 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
427 s->next_frcd_reg++;
428 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
429 s->next_frcd_reg = 0;
431 } else {
432 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
433 VTD_FSTS_FRI(s->next_frcd_reg));
434 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
435 s->next_frcd_reg++;
436 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
437 s->next_frcd_reg = 0;
439 /* This case actually cause the PPF to be Set.
440 * So generate fault event (interrupt).
442 vtd_generate_fault_event(s, fsts_reg);
446 /* Handle Invalidation Queue Errors of queued invalidation interface error
447 * conditions.
449 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
451 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
453 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
454 vtd_generate_fault_event(s, fsts_reg);
457 /* Set the IWC field and try to generate an invalidation completion interrupt */
458 static void vtd_generate_completion_event(IntelIOMMUState *s)
460 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
461 trace_vtd_inv_desc_wait_irq("One pending, skip current");
462 return;
464 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
465 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
466 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
467 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
468 "new event not generated");
469 return;
470 } else {
471 /* Generate the interrupt event */
472 trace_vtd_inv_desc_wait_irq("Generating complete event");
473 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
474 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
478 static inline bool vtd_root_entry_present(VTDRootEntry *root)
480 return root->val & VTD_ROOT_ENTRY_P;
483 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
484 VTDRootEntry *re)
486 dma_addr_t addr;
488 addr = s->root + index * sizeof(*re);
489 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
490 trace_vtd_re_invalid(re->rsvd, re->val);
491 re->val = 0;
492 return -VTD_FR_ROOT_TABLE_INV;
494 re->val = le64_to_cpu(re->val);
495 return 0;
498 static inline bool vtd_ce_present(VTDContextEntry *context)
500 return context->lo & VTD_CONTEXT_ENTRY_P;
503 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
504 VTDContextEntry *ce)
506 dma_addr_t addr;
508 /* we have checked that root entry is present */
509 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
510 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
511 trace_vtd_re_invalid(root->rsvd, root->val);
512 return -VTD_FR_CONTEXT_TABLE_INV;
514 ce->lo = le64_to_cpu(ce->lo);
515 ce->hi = le64_to_cpu(ce->hi);
516 return 0;
519 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
521 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
524 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
526 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
529 /* Whether the pte indicates the address of the page frame */
530 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
532 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
535 /* Get the content of a spte located in @base_addr[@index] */
536 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
538 uint64_t slpte;
540 assert(index < VTD_SL_PT_ENTRY_NR);
542 if (dma_memory_read(&address_space_memory,
543 base_addr + index * sizeof(slpte), &slpte,
544 sizeof(slpte))) {
545 slpte = (uint64_t)-1;
546 return slpte;
548 slpte = le64_to_cpu(slpte);
549 return slpte;
552 /* Given an iova and the level of paging structure, return the offset
553 * of current level.
555 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
557 return (iova >> vtd_slpt_level_shift(level)) &
558 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
561 /* Check Capability Register to see if the @level of page-table is supported */
562 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
564 return VTD_CAP_SAGAW_MASK & s->cap &
565 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
568 /* Get the page-table level that hardware should use for the second-level
569 * page-table walk from the Address Width field of context-entry.
571 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
573 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
576 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
578 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
581 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
583 return ce->lo & VTD_CONTEXT_ENTRY_TT;
586 /* Return true if check passed, otherwise false */
587 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
588 VTDContextEntry *ce)
590 switch (vtd_ce_get_type(ce)) {
591 case VTD_CONTEXT_TT_MULTI_LEVEL:
592 /* Always supported */
593 break;
594 case VTD_CONTEXT_TT_DEV_IOTLB:
595 if (!x86_iommu->dt_supported) {
596 return false;
598 break;
599 case VTD_CONTEXT_TT_PASS_THROUGH:
600 if (!x86_iommu->pt_supported) {
601 return false;
603 break;
604 default:
605 /* Unknwon type */
606 return false;
608 return true;
611 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce)
613 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
614 return 1ULL << MIN(ce_agaw, VTD_MGAW);
617 /* Return true if IOVA passes range check, otherwise false. */
618 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce)
621 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
622 * in CAP_REG and AW in context-entry.
624 return !(iova & ~(vtd_iova_limit(ce) - 1));
627 static const uint64_t vtd_paging_entry_rsvd_field[] = {
628 [0] = ~0ULL,
629 /* For not large page */
630 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
631 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
632 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
633 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
634 /* For large page */
635 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
636 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
637 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
638 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
641 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
643 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
644 /* Maybe large page */
645 return slpte & vtd_paging_entry_rsvd_field[level + 4];
646 } else {
647 return slpte & vtd_paging_entry_rsvd_field[level];
651 /* Find the VTD address space associated with a given bus number */
652 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
654 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
655 if (!vtd_bus) {
657 * Iterate over the registered buses to find the one which
658 * currently hold this bus number, and update the bus_num
659 * lookup table:
661 GHashTableIter iter;
663 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
664 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
665 if (pci_bus_num(vtd_bus->bus) == bus_num) {
666 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
667 return vtd_bus;
671 return vtd_bus;
674 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
675 * of the translation, can be used for deciding the size of large page.
677 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
678 uint64_t *slptep, uint32_t *slpte_level,
679 bool *reads, bool *writes)
681 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
682 uint32_t level = vtd_ce_get_level(ce);
683 uint32_t offset;
684 uint64_t slpte;
685 uint64_t access_right_check;
687 if (!vtd_iova_range_check(iova, ce)) {
688 trace_vtd_err_dmar_iova_overflow(iova);
689 return -VTD_FR_ADDR_BEYOND_MGAW;
692 /* FIXME: what is the Atomics request here? */
693 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
695 while (true) {
696 offset = vtd_iova_level_offset(iova, level);
697 slpte = vtd_get_slpte(addr, offset);
699 if (slpte == (uint64_t)-1) {
700 trace_vtd_err_dmar_slpte_read_error(iova, level);
701 if (level == vtd_ce_get_level(ce)) {
702 /* Invalid programming of context-entry */
703 return -VTD_FR_CONTEXT_ENTRY_INV;
704 } else {
705 return -VTD_FR_PAGING_ENTRY_INV;
708 *reads = (*reads) && (slpte & VTD_SL_R);
709 *writes = (*writes) && (slpte & VTD_SL_W);
710 if (!(slpte & access_right_check)) {
711 trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
712 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
714 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
715 trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
716 return -VTD_FR_PAGING_ENTRY_RSVD;
719 if (vtd_is_last_slpte(slpte, level)) {
720 *slptep = slpte;
721 *slpte_level = level;
722 return 0;
724 addr = vtd_get_slpte_addr(slpte);
725 level--;
729 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
732 * vtd_page_walk_level - walk over specific level for IOVA range
734 * @addr: base GPA addr to start the walk
735 * @start: IOVA range start address
736 * @end: IOVA range end address (start <= addr < end)
737 * @hook_fn: hook func to be called when detected page
738 * @private: private data to be passed into hook func
739 * @read: whether parent level has read permission
740 * @write: whether parent level has write permission
741 * @notify_unmap: whether we should notify invalid entries
743 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
744 uint64_t end, vtd_page_walk_hook hook_fn,
745 void *private, uint32_t level,
746 bool read, bool write, bool notify_unmap)
748 bool read_cur, write_cur, entry_valid;
749 uint32_t offset;
750 uint64_t slpte;
751 uint64_t subpage_size, subpage_mask;
752 IOMMUTLBEntry entry;
753 uint64_t iova = start;
754 uint64_t iova_next;
755 int ret = 0;
757 trace_vtd_page_walk_level(addr, level, start, end);
759 subpage_size = 1ULL << vtd_slpt_level_shift(level);
760 subpage_mask = vtd_slpt_level_page_mask(level);
762 while (iova < end) {
763 iova_next = (iova & subpage_mask) + subpage_size;
765 offset = vtd_iova_level_offset(iova, level);
766 slpte = vtd_get_slpte(addr, offset);
768 if (slpte == (uint64_t)-1) {
769 trace_vtd_page_walk_skip_read(iova, iova_next);
770 goto next;
773 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
774 trace_vtd_page_walk_skip_reserve(iova, iova_next);
775 goto next;
778 /* Permissions are stacked with parents' */
779 read_cur = read && (slpte & VTD_SL_R);
780 write_cur = write && (slpte & VTD_SL_W);
783 * As long as we have either read/write permission, this is a
784 * valid entry. The rule works for both page entries and page
785 * table entries.
787 entry_valid = read_cur | write_cur;
789 if (vtd_is_last_slpte(slpte, level)) {
790 entry.target_as = &address_space_memory;
791 entry.iova = iova & subpage_mask;
792 /* NOTE: this is only meaningful if entry_valid == true */
793 entry.translated_addr = vtd_get_slpte_addr(slpte);
794 entry.addr_mask = ~subpage_mask;
795 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
796 if (!entry_valid && !notify_unmap) {
797 trace_vtd_page_walk_skip_perm(iova, iova_next);
798 goto next;
800 trace_vtd_page_walk_one(level, entry.iova, entry.translated_addr,
801 entry.addr_mask, entry.perm);
802 if (hook_fn) {
803 ret = hook_fn(&entry, private);
804 if (ret < 0) {
805 return ret;
808 } else {
809 if (!entry_valid) {
810 trace_vtd_page_walk_skip_perm(iova, iova_next);
811 goto next;
813 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte), iova,
814 MIN(iova_next, end), hook_fn, private,
815 level - 1, read_cur, write_cur,
816 notify_unmap);
817 if (ret < 0) {
818 return ret;
822 next:
823 iova = iova_next;
826 return 0;
830 * vtd_page_walk - walk specific IOVA range, and call the hook
832 * @ce: context entry to walk upon
833 * @start: IOVA address to start the walk
834 * @end: IOVA range end address (start <= addr < end)
835 * @hook_fn: the hook that to be called for each detected area
836 * @private: private data for the hook function
838 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
839 vtd_page_walk_hook hook_fn, void *private,
840 bool notify_unmap)
842 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
843 uint32_t level = vtd_ce_get_level(ce);
845 if (!vtd_iova_range_check(start, ce)) {
846 return -VTD_FR_ADDR_BEYOND_MGAW;
849 if (!vtd_iova_range_check(end, ce)) {
850 /* Fix end so that it reaches the maximum */
851 end = vtd_iova_limit(ce);
854 return vtd_page_walk_level(addr, start, end, hook_fn, private,
855 level, true, true, notify_unmap);
858 /* Map a device to its corresponding domain (context-entry) */
859 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
860 uint8_t devfn, VTDContextEntry *ce)
862 VTDRootEntry re;
863 int ret_fr;
864 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
866 ret_fr = vtd_get_root_entry(s, bus_num, &re);
867 if (ret_fr) {
868 return ret_fr;
871 if (!vtd_root_entry_present(&re)) {
872 /* Not error - it's okay we don't have root entry. */
873 trace_vtd_re_not_present(bus_num);
874 return -VTD_FR_ROOT_ENTRY_P;
877 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
878 trace_vtd_re_invalid(re.rsvd, re.val);
879 return -VTD_FR_ROOT_ENTRY_RSVD;
882 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
883 if (ret_fr) {
884 return ret_fr;
887 if (!vtd_ce_present(ce)) {
888 /* Not error - it's okay we don't have context entry. */
889 trace_vtd_ce_not_present(bus_num, devfn);
890 return -VTD_FR_CONTEXT_ENTRY_P;
893 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
894 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
895 trace_vtd_ce_invalid(ce->hi, ce->lo);
896 return -VTD_FR_CONTEXT_ENTRY_RSVD;
899 /* Check if the programming of context-entry is valid */
900 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
901 trace_vtd_ce_invalid(ce->hi, ce->lo);
902 return -VTD_FR_CONTEXT_ENTRY_INV;
905 /* Do translation type check */
906 if (!vtd_ce_type_check(x86_iommu, ce)) {
907 trace_vtd_ce_invalid(ce->hi, ce->lo);
908 return -VTD_FR_CONTEXT_ENTRY_INV;
911 return 0;
915 * Fetch translation type for specific device. Returns <0 if error
916 * happens, otherwise return the shifted type to check against
917 * VTD_CONTEXT_TT_*.
919 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
921 IntelIOMMUState *s;
922 VTDContextEntry ce;
923 int ret;
925 s = as->iommu_state;
927 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
928 as->devfn, &ce);
929 if (ret) {
930 return ret;
933 return vtd_ce_get_type(&ce);
936 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
938 int ret;
940 assert(as);
942 ret = vtd_dev_get_trans_type(as);
943 if (ret < 0) {
945 * Possibly failed to parse the context entry for some reason
946 * (e.g., during init, or any guest configuration errors on
947 * context entries). We should assume PT not enabled for
948 * safety.
950 return false;
953 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
956 /* Return whether the device is using IOMMU translation. */
957 static bool vtd_switch_address_space(VTDAddressSpace *as)
959 bool use_iommu;
961 assert(as);
963 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
965 trace_vtd_switch_address_space(pci_bus_num(as->bus),
966 VTD_PCI_SLOT(as->devfn),
967 VTD_PCI_FUNC(as->devfn),
968 use_iommu);
970 /* Turn off first then on the other */
971 if (use_iommu) {
972 memory_region_set_enabled(&as->sys_alias, false);
973 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
974 } else {
975 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
976 memory_region_set_enabled(&as->sys_alias, true);
979 return use_iommu;
982 static void vtd_switch_address_space_all(IntelIOMMUState *s)
984 GHashTableIter iter;
985 VTDBus *vtd_bus;
986 int i;
988 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
989 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
990 for (i = 0; i < X86_IOMMU_PCI_DEVFN_MAX; i++) {
991 if (!vtd_bus->dev_as[i]) {
992 continue;
994 vtd_switch_address_space(vtd_bus->dev_as[i]);
999 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1001 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1004 static const bool vtd_qualified_faults[] = {
1005 [VTD_FR_RESERVED] = false,
1006 [VTD_FR_ROOT_ENTRY_P] = false,
1007 [VTD_FR_CONTEXT_ENTRY_P] = true,
1008 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1009 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1010 [VTD_FR_WRITE] = true,
1011 [VTD_FR_READ] = true,
1012 [VTD_FR_PAGING_ENTRY_INV] = true,
1013 [VTD_FR_ROOT_TABLE_INV] = false,
1014 [VTD_FR_CONTEXT_TABLE_INV] = false,
1015 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1016 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1017 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1018 [VTD_FR_RESERVED_ERR] = false,
1019 [VTD_FR_MAX] = false,
1022 /* To see if a fault condition is "qualified", which is reported to software
1023 * only if the FPD field in the context-entry used to process the faulting
1024 * request is 0.
1026 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1028 return vtd_qualified_faults[fault];
1031 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1033 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1036 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1038 VTDBus *vtd_bus;
1039 VTDAddressSpace *vtd_as;
1040 bool success = false;
1042 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1043 if (!vtd_bus) {
1044 goto out;
1047 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1048 if (!vtd_as) {
1049 goto out;
1052 if (vtd_switch_address_space(vtd_as) == false) {
1053 /* We switched off IOMMU region successfully. */
1054 success = true;
1057 out:
1058 trace_vtd_pt_enable_fast_path(source_id, success);
1061 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1062 * translation.
1064 * Called from RCU critical section.
1066 * @bus_num: The bus number
1067 * @devfn: The devfn, which is the combined of device and function number
1068 * @is_write: The access is a write operation
1069 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1071 * Returns true if translation is successful, otherwise false.
1073 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1074 uint8_t devfn, hwaddr addr, bool is_write,
1075 IOMMUTLBEntry *entry)
1077 IntelIOMMUState *s = vtd_as->iommu_state;
1078 VTDContextEntry ce;
1079 uint8_t bus_num = pci_bus_num(bus);
1080 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
1081 uint64_t slpte, page_mask;
1082 uint32_t level;
1083 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1084 int ret_fr;
1085 bool is_fpd_set = false;
1086 bool reads = true;
1087 bool writes = true;
1088 uint8_t access_flags;
1089 VTDIOTLBEntry *iotlb_entry;
1092 * We have standalone memory region for interrupt addresses, we
1093 * should never receive translation requests in this region.
1095 assert(!vtd_is_interrupt_addr(addr));
1097 /* Try to fetch slpte form IOTLB */
1098 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1099 if (iotlb_entry) {
1100 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1101 iotlb_entry->domain_id);
1102 slpte = iotlb_entry->slpte;
1103 access_flags = iotlb_entry->access_flags;
1104 page_mask = iotlb_entry->mask;
1105 goto out;
1108 /* Try to fetch context-entry from cache first */
1109 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1110 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1111 cc_entry->context_entry.lo,
1112 cc_entry->context_cache_gen);
1113 ce = cc_entry->context_entry;
1114 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1115 } else {
1116 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1117 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1118 if (ret_fr) {
1119 ret_fr = -ret_fr;
1120 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1121 trace_vtd_fault_disabled();
1122 } else {
1123 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1125 goto error;
1127 /* Update context-cache */
1128 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1129 cc_entry->context_cache_gen,
1130 s->context_cache_gen);
1131 cc_entry->context_entry = ce;
1132 cc_entry->context_cache_gen = s->context_cache_gen;
1136 * We don't need to translate for pass-through context entries.
1137 * Also, let's ignore IOTLB caching as well for PT devices.
1139 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1140 entry->iova = addr & VTD_PAGE_MASK_4K;
1141 entry->translated_addr = entry->iova;
1142 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1143 entry->perm = IOMMU_RW;
1144 trace_vtd_translate_pt(source_id, entry->iova);
1147 * When this happens, it means firstly caching-mode is not
1148 * enabled, and this is the first passthrough translation for
1149 * the device. Let's enable the fast path for passthrough.
1151 * When passthrough is disabled again for the device, we can
1152 * capture it via the context entry invalidation, then the
1153 * IOMMU region can be swapped back.
1155 vtd_pt_enable_fast_path(s, source_id);
1157 return true;
1160 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1161 &reads, &writes);
1162 if (ret_fr) {
1163 ret_fr = -ret_fr;
1164 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1165 trace_vtd_fault_disabled();
1166 } else {
1167 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1169 goto error;
1172 page_mask = vtd_slpt_level_page_mask(level);
1173 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1174 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1175 access_flags, level);
1176 out:
1177 entry->iova = addr & page_mask;
1178 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
1179 entry->addr_mask = ~page_mask;
1180 entry->perm = access_flags;
1181 return true;
1183 error:
1184 entry->iova = 0;
1185 entry->translated_addr = 0;
1186 entry->addr_mask = 0;
1187 entry->perm = IOMMU_NONE;
1188 return false;
1191 static void vtd_root_table_setup(IntelIOMMUState *s)
1193 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1194 s->root_extended = s->root & VTD_RTADDR_RTT;
1195 s->root &= VTD_RTADDR_ADDR_MASK;
1197 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1200 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1201 uint32_t index, uint32_t mask)
1203 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1206 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1208 uint64_t value = 0;
1209 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1210 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1211 s->intr_root = value & VTD_IRTA_ADDR_MASK;
1212 s->intr_eime = value & VTD_IRTA_EIME;
1214 /* Notify global invalidation */
1215 vtd_iec_notify_all(s, true, 0, 0);
1217 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1220 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1222 IntelIOMMUNotifierNode *node;
1224 QLIST_FOREACH(node, &s->notifiers_list, next) {
1225 memory_region_iommu_replay_all(&node->vtd_as->iommu);
1229 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1231 trace_vtd_inv_desc_cc_global();
1232 s->context_cache_gen++;
1233 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1234 vtd_reset_context_cache(s);
1236 vtd_switch_address_space_all(s);
1238 * From VT-d spec 6.5.2.1, a global context entry invalidation
1239 * should be followed by a IOTLB global invalidation, so we should
1240 * be safe even without this. Hoewever, let's replay the region as
1241 * well to be safer, and go back here when we need finer tunes for
1242 * VT-d emulation codes.
1244 vtd_iommu_replay_all(s);
1247 /* Do a context-cache device-selective invalidation.
1248 * @func_mask: FM field after shifting
1250 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1251 uint16_t source_id,
1252 uint16_t func_mask)
1254 uint16_t mask;
1255 VTDBus *vtd_bus;
1256 VTDAddressSpace *vtd_as;
1257 uint8_t bus_n, devfn;
1258 uint16_t devfn_it;
1260 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1262 switch (func_mask & 3) {
1263 case 0:
1264 mask = 0; /* No bits in the SID field masked */
1265 break;
1266 case 1:
1267 mask = 4; /* Mask bit 2 in the SID field */
1268 break;
1269 case 2:
1270 mask = 6; /* Mask bit 2:1 in the SID field */
1271 break;
1272 case 3:
1273 mask = 7; /* Mask bit 2:0 in the SID field */
1274 break;
1276 mask = ~mask;
1278 bus_n = VTD_SID_TO_BUS(source_id);
1279 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1280 if (vtd_bus) {
1281 devfn = VTD_SID_TO_DEVFN(source_id);
1282 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
1283 vtd_as = vtd_bus->dev_as[devfn_it];
1284 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1285 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1286 VTD_PCI_FUNC(devfn_it));
1287 vtd_as->context_cache_entry.context_cache_gen = 0;
1289 * Do switch address space when needed, in case if the
1290 * device passthrough bit is switched.
1292 vtd_switch_address_space(vtd_as);
1294 * So a device is moving out of (or moving into) a
1295 * domain, a replay() suites here to notify all the
1296 * IOMMU_NOTIFIER_MAP registers about this change.
1297 * This won't bring bad even if we have no such
1298 * notifier registered - the IOMMU notification
1299 * framework will skip MAP notifications if that
1300 * happened.
1302 memory_region_iommu_replay_all(&vtd_as->iommu);
1308 /* Context-cache invalidation
1309 * Returns the Context Actual Invalidation Granularity.
1310 * @val: the content of the CCMD_REG
1312 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1314 uint64_t caig;
1315 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1317 switch (type) {
1318 case VTD_CCMD_DOMAIN_INVL:
1319 /* Fall through */
1320 case VTD_CCMD_GLOBAL_INVL:
1321 caig = VTD_CCMD_GLOBAL_INVL_A;
1322 vtd_context_global_invalidate(s);
1323 break;
1325 case VTD_CCMD_DEVICE_INVL:
1326 caig = VTD_CCMD_DEVICE_INVL_A;
1327 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1328 break;
1330 default:
1331 trace_vtd_err("Context cache invalidate type error.");
1332 caig = 0;
1334 return caig;
1337 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1339 trace_vtd_inv_desc_iotlb_global();
1340 vtd_reset_iotlb(s);
1341 vtd_iommu_replay_all(s);
1344 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1346 IntelIOMMUNotifierNode *node;
1347 VTDContextEntry ce;
1348 VTDAddressSpace *vtd_as;
1350 trace_vtd_inv_desc_iotlb_domain(domain_id);
1352 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1353 &domain_id);
1355 QLIST_FOREACH(node, &s->notifiers_list, next) {
1356 vtd_as = node->vtd_as;
1357 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1358 vtd_as->devfn, &ce) &&
1359 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1360 memory_region_iommu_replay_all(&vtd_as->iommu);
1365 static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
1366 void *private)
1368 memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
1369 return 0;
1372 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1373 uint16_t domain_id, hwaddr addr,
1374 uint8_t am)
1376 IntelIOMMUNotifierNode *node;
1377 VTDContextEntry ce;
1378 int ret;
1380 QLIST_FOREACH(node, &(s->notifiers_list), next) {
1381 VTDAddressSpace *vtd_as = node->vtd_as;
1382 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1383 vtd_as->devfn, &ce);
1384 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1385 vtd_page_walk(&ce, addr, addr + (1 << am) * VTD_PAGE_SIZE,
1386 vtd_page_invalidate_notify_hook,
1387 (void *)&vtd_as->iommu, true);
1392 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1393 hwaddr addr, uint8_t am)
1395 VTDIOTLBPageInvInfo info;
1397 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1399 assert(am <= VTD_MAMV);
1400 info.domain_id = domain_id;
1401 info.addr = addr;
1402 info.mask = ~((1 << am) - 1);
1403 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1404 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1407 /* Flush IOTLB
1408 * Returns the IOTLB Actual Invalidation Granularity.
1409 * @val: the content of the IOTLB_REG
1411 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1413 uint64_t iaig;
1414 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1415 uint16_t domain_id;
1416 hwaddr addr;
1417 uint8_t am;
1419 switch (type) {
1420 case VTD_TLB_GLOBAL_FLUSH:
1421 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1422 vtd_iotlb_global_invalidate(s);
1423 break;
1425 case VTD_TLB_DSI_FLUSH:
1426 domain_id = VTD_TLB_DID(val);
1427 iaig = VTD_TLB_DSI_FLUSH_A;
1428 vtd_iotlb_domain_invalidate(s, domain_id);
1429 break;
1431 case VTD_TLB_PSI_FLUSH:
1432 domain_id = VTD_TLB_DID(val);
1433 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1434 am = VTD_IVA_AM(addr);
1435 addr = VTD_IVA_ADDR(addr);
1436 if (am > VTD_MAMV) {
1437 trace_vtd_err("IOTLB PSI flush: address mask overflow.");
1438 iaig = 0;
1439 break;
1441 iaig = VTD_TLB_PSI_FLUSH_A;
1442 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1443 break;
1445 default:
1446 trace_vtd_err("IOTLB flush: invalid granularity.");
1447 iaig = 0;
1449 return iaig;
1452 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1454 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1456 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1457 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1460 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1462 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1464 trace_vtd_inv_qi_enable(en);
1466 if (en) {
1467 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1468 /* 2^(x+8) entries */
1469 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1470 s->qi_enabled = true;
1471 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1472 /* Ok - report back to driver */
1473 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1475 if (s->iq_tail != 0) {
1477 * This is a spec violation but Windows guests are known to set up
1478 * Queued Invalidation this way so we allow the write and process
1479 * Invalidation Descriptors right away.
1481 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1482 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1483 vtd_fetch_inv_desc(s);
1486 } else {
1487 if (vtd_queued_inv_disable_check(s)) {
1488 /* disable Queued Invalidation */
1489 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1490 s->iq_head = 0;
1491 s->qi_enabled = false;
1492 /* Ok - report back to driver */
1493 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1494 } else {
1495 trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1500 /* Set Root Table Pointer */
1501 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1503 vtd_root_table_setup(s);
1504 /* Ok - report back to driver */
1505 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1508 /* Set Interrupt Remap Table Pointer */
1509 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1511 vtd_interrupt_remap_table_setup(s);
1512 /* Ok - report back to driver */
1513 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1516 /* Handle Translation Enable/Disable */
1517 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1519 if (s->dmar_enabled == en) {
1520 return;
1523 trace_vtd_dmar_enable(en);
1525 if (en) {
1526 s->dmar_enabled = true;
1527 /* Ok - report back to driver */
1528 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1529 } else {
1530 s->dmar_enabled = false;
1532 /* Clear the index of Fault Recording Register */
1533 s->next_frcd_reg = 0;
1534 /* Ok - report back to driver */
1535 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1538 vtd_switch_address_space_all(s);
1541 /* Handle Interrupt Remap Enable/Disable */
1542 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1544 trace_vtd_ir_enable(en);
1546 if (en) {
1547 s->intr_enabled = true;
1548 /* Ok - report back to driver */
1549 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1550 } else {
1551 s->intr_enabled = false;
1552 /* Ok - report back to driver */
1553 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1557 /* Handle write to Global Command Register */
1558 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1560 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1561 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1562 uint32_t changed = status ^ val;
1564 trace_vtd_reg_write_gcmd(status, val);
1565 if (changed & VTD_GCMD_TE) {
1566 /* Translation enable/disable */
1567 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1569 if (val & VTD_GCMD_SRTP) {
1570 /* Set/update the root-table pointer */
1571 vtd_handle_gcmd_srtp(s);
1573 if (changed & VTD_GCMD_QIE) {
1574 /* Queued Invalidation Enable */
1575 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1577 if (val & VTD_GCMD_SIRTP) {
1578 /* Set/update the interrupt remapping root-table pointer */
1579 vtd_handle_gcmd_sirtp(s);
1581 if (changed & VTD_GCMD_IRE) {
1582 /* Interrupt remap enable/disable */
1583 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1587 /* Handle write to Context Command Register */
1588 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1590 uint64_t ret;
1591 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1593 /* Context-cache invalidation request */
1594 if (val & VTD_CCMD_ICC) {
1595 if (s->qi_enabled) {
1596 trace_vtd_err("Queued Invalidation enabled, "
1597 "should not use register-based invalidation");
1598 return;
1600 ret = vtd_context_cache_invalidate(s, val);
1601 /* Invalidation completed. Change something to show */
1602 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1603 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1604 ret);
1608 /* Handle write to IOTLB Invalidation Register */
1609 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1611 uint64_t ret;
1612 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1614 /* IOTLB invalidation request */
1615 if (val & VTD_TLB_IVT) {
1616 if (s->qi_enabled) {
1617 trace_vtd_err("Queued Invalidation enabled, "
1618 "should not use register-based invalidation.");
1619 return;
1621 ret = vtd_iotlb_flush(s, val);
1622 /* Invalidation completed. Change something to show */
1623 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1624 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1625 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1629 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1630 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1631 VTDInvDesc *inv_desc)
1633 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1634 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1635 sizeof(*inv_desc))) {
1636 trace_vtd_err("Read INV DESC failed.");
1637 inv_desc->lo = 0;
1638 inv_desc->hi = 0;
1639 return false;
1641 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1642 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1643 return true;
1646 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1648 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1649 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1650 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1651 return false;
1653 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1654 /* Status Write */
1655 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1656 VTD_INV_DESC_WAIT_DATA_SHIFT);
1658 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1660 /* FIXME: need to be masked with HAW? */
1661 dma_addr_t status_addr = inv_desc->hi;
1662 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1663 status_data = cpu_to_le32(status_data);
1664 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1665 sizeof(status_data))) {
1666 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1667 return false;
1669 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1670 /* Interrupt flag */
1671 vtd_generate_completion_event(s);
1672 } else {
1673 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1674 return false;
1676 return true;
1679 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1680 VTDInvDesc *inv_desc)
1682 uint16_t sid, fmask;
1684 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1685 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1686 return false;
1688 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1689 case VTD_INV_DESC_CC_DOMAIN:
1690 trace_vtd_inv_desc_cc_domain(
1691 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1692 /* Fall through */
1693 case VTD_INV_DESC_CC_GLOBAL:
1694 vtd_context_global_invalidate(s);
1695 break;
1697 case VTD_INV_DESC_CC_DEVICE:
1698 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1699 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1700 vtd_context_device_invalidate(s, sid, fmask);
1701 break;
1703 default:
1704 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1705 return false;
1707 return true;
1710 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1712 uint16_t domain_id;
1713 uint8_t am;
1714 hwaddr addr;
1716 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1717 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1718 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1719 return false;
1722 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1723 case VTD_INV_DESC_IOTLB_GLOBAL:
1724 vtd_iotlb_global_invalidate(s);
1725 break;
1727 case VTD_INV_DESC_IOTLB_DOMAIN:
1728 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1729 vtd_iotlb_domain_invalidate(s, domain_id);
1730 break;
1732 case VTD_INV_DESC_IOTLB_PAGE:
1733 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1734 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1735 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1736 if (am > VTD_MAMV) {
1737 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1738 return false;
1740 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1741 break;
1743 default:
1744 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1745 return false;
1747 return true;
1750 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1751 VTDInvDesc *inv_desc)
1753 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1754 inv_desc->iec.index,
1755 inv_desc->iec.index_mask);
1757 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1758 inv_desc->iec.index,
1759 inv_desc->iec.index_mask);
1760 return true;
1763 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1764 VTDInvDesc *inv_desc)
1766 VTDAddressSpace *vtd_dev_as;
1767 IOMMUTLBEntry entry;
1768 struct VTDBus *vtd_bus;
1769 hwaddr addr;
1770 uint64_t sz;
1771 uint16_t sid;
1772 uint8_t devfn;
1773 bool size;
1774 uint8_t bus_num;
1776 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1777 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1778 devfn = sid & 0xff;
1779 bus_num = sid >> 8;
1780 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1782 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1783 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1784 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1785 return false;
1788 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1789 if (!vtd_bus) {
1790 goto done;
1793 vtd_dev_as = vtd_bus->dev_as[devfn];
1794 if (!vtd_dev_as) {
1795 goto done;
1798 /* According to ATS spec table 2.4:
1799 * S = 0, bits 15:12 = xxxx range size: 4K
1800 * S = 1, bits 15:12 = xxx0 range size: 8K
1801 * S = 1, bits 15:12 = xx01 range size: 16K
1802 * S = 1, bits 15:12 = x011 range size: 32K
1803 * S = 1, bits 15:12 = 0111 range size: 64K
1804 * ...
1806 if (size) {
1807 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
1808 addr &= ~(sz - 1);
1809 } else {
1810 sz = VTD_PAGE_SIZE;
1813 entry.target_as = &vtd_dev_as->as;
1814 entry.addr_mask = sz - 1;
1815 entry.iova = addr;
1816 entry.perm = IOMMU_NONE;
1817 entry.translated_addr = 0;
1818 memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
1820 done:
1821 return true;
1824 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1826 VTDInvDesc inv_desc;
1827 uint8_t desc_type;
1829 trace_vtd_inv_qi_head(s->iq_head);
1830 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1831 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1832 return false;
1834 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1835 /* FIXME: should update at first or at last? */
1836 s->iq_last_desc_type = desc_type;
1838 switch (desc_type) {
1839 case VTD_INV_DESC_CC:
1840 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
1841 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1842 return false;
1844 break;
1846 case VTD_INV_DESC_IOTLB:
1847 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
1848 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1849 return false;
1851 break;
1853 case VTD_INV_DESC_WAIT:
1854 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
1855 if (!vtd_process_wait_desc(s, &inv_desc)) {
1856 return false;
1858 break;
1860 case VTD_INV_DESC_IEC:
1861 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
1862 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1863 return false;
1865 break;
1867 case VTD_INV_DESC_DEVICE:
1868 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
1869 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1870 return false;
1872 break;
1874 default:
1875 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
1876 return false;
1878 s->iq_head++;
1879 if (s->iq_head == s->iq_size) {
1880 s->iq_head = 0;
1882 return true;
1885 /* Try to fetch and process more Invalidation Descriptors */
1886 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1888 trace_vtd_inv_qi_fetch();
1890 if (s->iq_tail >= s->iq_size) {
1891 /* Detects an invalid Tail pointer */
1892 trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
1893 vtd_handle_inv_queue_error(s);
1894 return;
1896 while (s->iq_head != s->iq_tail) {
1897 if (!vtd_process_inv_desc(s)) {
1898 /* Invalidation Queue Errors */
1899 vtd_handle_inv_queue_error(s);
1900 break;
1902 /* Must update the IQH_REG in time */
1903 vtd_set_quad_raw(s, DMAR_IQH_REG,
1904 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1905 VTD_IQH_QH_MASK);
1909 /* Handle write to Invalidation Queue Tail Register */
1910 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1912 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1914 s->iq_tail = VTD_IQT_QT(val);
1915 trace_vtd_inv_qi_tail(s->iq_tail);
1917 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1918 /* Process Invalidation Queue here */
1919 vtd_fetch_inv_desc(s);
1923 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1925 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1926 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1927 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1929 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1930 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1931 trace_vtd_fsts_clear_ip();
1933 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1934 * Descriptors if there are any when Queued Invalidation is enabled?
1938 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1940 uint32_t fectl_reg;
1941 /* FIXME: when software clears the IM field, check the IP field. But do we
1942 * need to compare the old value and the new value to conclude that
1943 * software clears the IM field? Or just check if the IM field is zero?
1945 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1947 trace_vtd_reg_write_fectl(fectl_reg);
1949 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1950 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1951 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1955 static void vtd_handle_ics_write(IntelIOMMUState *s)
1957 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1958 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1960 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1961 trace_vtd_reg_ics_clear_ip();
1962 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1966 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1968 uint32_t iectl_reg;
1969 /* FIXME: when software clears the IM field, check the IP field. But do we
1970 * need to compare the old value and the new value to conclude that
1971 * software clears the IM field? Or just check if the IM field is zero?
1973 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1975 trace_vtd_reg_write_iectl(iectl_reg);
1977 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1978 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1979 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1983 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1985 IntelIOMMUState *s = opaque;
1986 uint64_t val;
1988 trace_vtd_reg_read(addr, size);
1990 if (addr + size > DMAR_REG_SIZE) {
1991 trace_vtd_err("Read MMIO over range.");
1992 return (uint64_t)-1;
1995 switch (addr) {
1996 /* Root Table Address Register, 64-bit */
1997 case DMAR_RTADDR_REG:
1998 if (size == 4) {
1999 val = s->root & ((1ULL << 32) - 1);
2000 } else {
2001 val = s->root;
2003 break;
2005 case DMAR_RTADDR_REG_HI:
2006 assert(size == 4);
2007 val = s->root >> 32;
2008 break;
2010 /* Invalidation Queue Address Register, 64-bit */
2011 case DMAR_IQA_REG:
2012 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2013 if (size == 4) {
2014 val = val & ((1ULL << 32) - 1);
2016 break;
2018 case DMAR_IQA_REG_HI:
2019 assert(size == 4);
2020 val = s->iq >> 32;
2021 break;
2023 default:
2024 if (size == 4) {
2025 val = vtd_get_long(s, addr);
2026 } else {
2027 val = vtd_get_quad(s, addr);
2031 return val;
2034 static void vtd_mem_write(void *opaque, hwaddr addr,
2035 uint64_t val, unsigned size)
2037 IntelIOMMUState *s = opaque;
2039 trace_vtd_reg_write(addr, size, val);
2041 if (addr + size > DMAR_REG_SIZE) {
2042 trace_vtd_err("Write MMIO over range.");
2043 return;
2046 switch (addr) {
2047 /* Global Command Register, 32-bit */
2048 case DMAR_GCMD_REG:
2049 vtd_set_long(s, addr, val);
2050 vtd_handle_gcmd_write(s);
2051 break;
2053 /* Context Command Register, 64-bit */
2054 case DMAR_CCMD_REG:
2055 if (size == 4) {
2056 vtd_set_long(s, addr, val);
2057 } else {
2058 vtd_set_quad(s, addr, val);
2059 vtd_handle_ccmd_write(s);
2061 break;
2063 case DMAR_CCMD_REG_HI:
2064 assert(size == 4);
2065 vtd_set_long(s, addr, val);
2066 vtd_handle_ccmd_write(s);
2067 break;
2069 /* IOTLB Invalidation Register, 64-bit */
2070 case DMAR_IOTLB_REG:
2071 if (size == 4) {
2072 vtd_set_long(s, addr, val);
2073 } else {
2074 vtd_set_quad(s, addr, val);
2075 vtd_handle_iotlb_write(s);
2077 break;
2079 case DMAR_IOTLB_REG_HI:
2080 assert(size == 4);
2081 vtd_set_long(s, addr, val);
2082 vtd_handle_iotlb_write(s);
2083 break;
2085 /* Invalidate Address Register, 64-bit */
2086 case DMAR_IVA_REG:
2087 if (size == 4) {
2088 vtd_set_long(s, addr, val);
2089 } else {
2090 vtd_set_quad(s, addr, val);
2092 break;
2094 case DMAR_IVA_REG_HI:
2095 assert(size == 4);
2096 vtd_set_long(s, addr, val);
2097 break;
2099 /* Fault Status Register, 32-bit */
2100 case DMAR_FSTS_REG:
2101 assert(size == 4);
2102 vtd_set_long(s, addr, val);
2103 vtd_handle_fsts_write(s);
2104 break;
2106 /* Fault Event Control Register, 32-bit */
2107 case DMAR_FECTL_REG:
2108 assert(size == 4);
2109 vtd_set_long(s, addr, val);
2110 vtd_handle_fectl_write(s);
2111 break;
2113 /* Fault Event Data Register, 32-bit */
2114 case DMAR_FEDATA_REG:
2115 assert(size == 4);
2116 vtd_set_long(s, addr, val);
2117 break;
2119 /* Fault Event Address Register, 32-bit */
2120 case DMAR_FEADDR_REG:
2121 assert(size == 4);
2122 vtd_set_long(s, addr, val);
2123 break;
2125 /* Fault Event Upper Address Register, 32-bit */
2126 case DMAR_FEUADDR_REG:
2127 assert(size == 4);
2128 vtd_set_long(s, addr, val);
2129 break;
2131 /* Protected Memory Enable Register, 32-bit */
2132 case DMAR_PMEN_REG:
2133 assert(size == 4);
2134 vtd_set_long(s, addr, val);
2135 break;
2137 /* Root Table Address Register, 64-bit */
2138 case DMAR_RTADDR_REG:
2139 if (size == 4) {
2140 vtd_set_long(s, addr, val);
2141 } else {
2142 vtd_set_quad(s, addr, val);
2144 break;
2146 case DMAR_RTADDR_REG_HI:
2147 assert(size == 4);
2148 vtd_set_long(s, addr, val);
2149 break;
2151 /* Invalidation Queue Tail Register, 64-bit */
2152 case DMAR_IQT_REG:
2153 if (size == 4) {
2154 vtd_set_long(s, addr, val);
2155 } else {
2156 vtd_set_quad(s, addr, val);
2158 vtd_handle_iqt_write(s);
2159 break;
2161 case DMAR_IQT_REG_HI:
2162 assert(size == 4);
2163 vtd_set_long(s, addr, val);
2164 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2165 break;
2167 /* Invalidation Queue Address Register, 64-bit */
2168 case DMAR_IQA_REG:
2169 if (size == 4) {
2170 vtd_set_long(s, addr, val);
2171 } else {
2172 vtd_set_quad(s, addr, val);
2174 break;
2176 case DMAR_IQA_REG_HI:
2177 assert(size == 4);
2178 vtd_set_long(s, addr, val);
2179 break;
2181 /* Invalidation Completion Status Register, 32-bit */
2182 case DMAR_ICS_REG:
2183 assert(size == 4);
2184 vtd_set_long(s, addr, val);
2185 vtd_handle_ics_write(s);
2186 break;
2188 /* Invalidation Event Control Register, 32-bit */
2189 case DMAR_IECTL_REG:
2190 assert(size == 4);
2191 vtd_set_long(s, addr, val);
2192 vtd_handle_iectl_write(s);
2193 break;
2195 /* Invalidation Event Data Register, 32-bit */
2196 case DMAR_IEDATA_REG:
2197 assert(size == 4);
2198 vtd_set_long(s, addr, val);
2199 break;
2201 /* Invalidation Event Address Register, 32-bit */
2202 case DMAR_IEADDR_REG:
2203 assert(size == 4);
2204 vtd_set_long(s, addr, val);
2205 break;
2207 /* Invalidation Event Upper Address Register, 32-bit */
2208 case DMAR_IEUADDR_REG:
2209 assert(size == 4);
2210 vtd_set_long(s, addr, val);
2211 break;
2213 /* Fault Recording Registers, 128-bit */
2214 case DMAR_FRCD_REG_0_0:
2215 if (size == 4) {
2216 vtd_set_long(s, addr, val);
2217 } else {
2218 vtd_set_quad(s, addr, val);
2220 break;
2222 case DMAR_FRCD_REG_0_1:
2223 assert(size == 4);
2224 vtd_set_long(s, addr, val);
2225 break;
2227 case DMAR_FRCD_REG_0_2:
2228 if (size == 4) {
2229 vtd_set_long(s, addr, val);
2230 } else {
2231 vtd_set_quad(s, addr, val);
2232 /* May clear bit 127 (Fault), update PPF */
2233 vtd_update_fsts_ppf(s);
2235 break;
2237 case DMAR_FRCD_REG_0_3:
2238 assert(size == 4);
2239 vtd_set_long(s, addr, val);
2240 /* May clear bit 127 (Fault), update PPF */
2241 vtd_update_fsts_ppf(s);
2242 break;
2244 case DMAR_IRTA_REG:
2245 if (size == 4) {
2246 vtd_set_long(s, addr, val);
2247 } else {
2248 vtd_set_quad(s, addr, val);
2250 break;
2252 case DMAR_IRTA_REG_HI:
2253 assert(size == 4);
2254 vtd_set_long(s, addr, val);
2255 break;
2257 default:
2258 if (size == 4) {
2259 vtd_set_long(s, addr, val);
2260 } else {
2261 vtd_set_quad(s, addr, val);
2266 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2267 IOMMUAccessFlags flag)
2269 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2270 IntelIOMMUState *s = vtd_as->iommu_state;
2271 IOMMUTLBEntry iotlb = {
2272 /* We'll fill in the rest later. */
2273 .target_as = &address_space_memory,
2275 bool success;
2277 if (likely(s->dmar_enabled)) {
2278 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2279 addr, flag & IOMMU_WO, &iotlb);
2280 } else {
2281 /* DMAR disabled, passthrough, use 4k-page*/
2282 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2283 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2284 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2285 iotlb.perm = IOMMU_RW;
2286 success = true;
2289 if (likely(success)) {
2290 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2291 VTD_PCI_SLOT(vtd_as->devfn),
2292 VTD_PCI_FUNC(vtd_as->devfn),
2293 iotlb.iova, iotlb.translated_addr,
2294 iotlb.addr_mask);
2295 } else {
2296 trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2297 VTD_PCI_SLOT(vtd_as->devfn),
2298 VTD_PCI_FUNC(vtd_as->devfn),
2299 iotlb.iova);
2302 return iotlb;
2305 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2306 IOMMUNotifierFlag old,
2307 IOMMUNotifierFlag new)
2309 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2310 IntelIOMMUState *s = vtd_as->iommu_state;
2311 IntelIOMMUNotifierNode *node = NULL;
2312 IntelIOMMUNotifierNode *next_node = NULL;
2314 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2315 error_report("We need to set cache_mode=1 for intel-iommu to enable "
2316 "device assignment with IOMMU protection.");
2317 exit(1);
2320 if (old == IOMMU_NOTIFIER_NONE) {
2321 node = g_malloc0(sizeof(*node));
2322 node->vtd_as = vtd_as;
2323 QLIST_INSERT_HEAD(&s->notifiers_list, node, next);
2324 return;
2327 /* update notifier node with new flags */
2328 QLIST_FOREACH_SAFE(node, &s->notifiers_list, next, next_node) {
2329 if (node->vtd_as == vtd_as) {
2330 if (new == IOMMU_NOTIFIER_NONE) {
2331 QLIST_REMOVE(node, next);
2332 g_free(node);
2334 return;
2339 static int vtd_post_load(void *opaque, int version_id)
2341 IntelIOMMUState *iommu = opaque;
2344 * Memory regions are dynamically turned on/off depending on
2345 * context entry configurations from the guest. After migration,
2346 * we need to make sure the memory regions are still correct.
2348 vtd_switch_address_space_all(iommu);
2350 return 0;
2353 static const VMStateDescription vtd_vmstate = {
2354 .name = "iommu-intel",
2355 .version_id = 1,
2356 .minimum_version_id = 1,
2357 .priority = MIG_PRI_IOMMU,
2358 .post_load = vtd_post_load,
2359 .fields = (VMStateField[]) {
2360 VMSTATE_UINT64(root, IntelIOMMUState),
2361 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2362 VMSTATE_UINT64(iq, IntelIOMMUState),
2363 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2364 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2365 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2366 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2367 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2368 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2369 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2370 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2371 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2372 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2373 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2374 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2375 VMSTATE_END_OF_LIST()
2379 static const MemoryRegionOps vtd_mem_ops = {
2380 .read = vtd_mem_read,
2381 .write = vtd_mem_write,
2382 .endianness = DEVICE_LITTLE_ENDIAN,
2383 .impl = {
2384 .min_access_size = 4,
2385 .max_access_size = 8,
2387 .valid = {
2388 .min_access_size = 4,
2389 .max_access_size = 8,
2393 static Property vtd_properties[] = {
2394 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2395 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2396 ON_OFF_AUTO_AUTO),
2397 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2398 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2399 DEFINE_PROP_END_OF_LIST(),
2402 /* Read IRTE entry with specific index */
2403 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2404 VTD_IR_TableEntry *entry, uint16_t sid)
2406 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2407 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2408 dma_addr_t addr = 0x00;
2409 uint16_t mask, source_id;
2410 uint8_t bus, bus_max, bus_min;
2412 addr = iommu->intr_root + index * sizeof(*entry);
2413 if (dma_memory_read(&address_space_memory, addr, entry,
2414 sizeof(*entry))) {
2415 trace_vtd_err("Memory read failed for IRTE.");
2416 return -VTD_FR_IR_ROOT_INVAL;
2419 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2420 le64_to_cpu(entry->data[0]));
2422 if (!entry->irte.present) {
2423 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2424 le64_to_cpu(entry->data[0]));
2425 return -VTD_FR_IR_ENTRY_P;
2428 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2429 entry->irte.__reserved_2) {
2430 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2431 le64_to_cpu(entry->data[0]));
2432 return -VTD_FR_IR_IRTE_RSVD;
2435 if (sid != X86_IOMMU_SID_INVALID) {
2436 /* Validate IRTE SID */
2437 source_id = le32_to_cpu(entry->irte.source_id);
2438 switch (entry->irte.sid_vtype) {
2439 case VTD_SVT_NONE:
2440 break;
2442 case VTD_SVT_ALL:
2443 mask = vtd_svt_mask[entry->irte.sid_q];
2444 if ((source_id & mask) != (sid & mask)) {
2445 trace_vtd_err_irte_sid(index, sid, source_id);
2446 return -VTD_FR_IR_SID_ERR;
2448 break;
2450 case VTD_SVT_BUS:
2451 bus_max = source_id >> 8;
2452 bus_min = source_id & 0xff;
2453 bus = sid >> 8;
2454 if (bus > bus_max || bus < bus_min) {
2455 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2456 return -VTD_FR_IR_SID_ERR;
2458 break;
2460 default:
2461 trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2462 /* Take this as verification failure. */
2463 return -VTD_FR_IR_SID_ERR;
2464 break;
2468 return 0;
2471 /* Fetch IRQ information of specific IR index */
2472 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2473 VTDIrq *irq, uint16_t sid)
2475 VTD_IR_TableEntry irte = {};
2476 int ret = 0;
2478 ret = vtd_irte_get(iommu, index, &irte, sid);
2479 if (ret) {
2480 return ret;
2483 irq->trigger_mode = irte.irte.trigger_mode;
2484 irq->vector = irte.irte.vector;
2485 irq->delivery_mode = irte.irte.delivery_mode;
2486 irq->dest = le32_to_cpu(irte.irte.dest_id);
2487 if (!iommu->intr_eime) {
2488 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2489 #define VTD_IR_APIC_DEST_SHIFT (8)
2490 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2491 VTD_IR_APIC_DEST_SHIFT;
2493 irq->dest_mode = irte.irte.dest_mode;
2494 irq->redir_hint = irte.irte.redir_hint;
2496 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2497 irq->delivery_mode, irq->dest, irq->dest_mode);
2499 return 0;
2502 /* Generate one MSI message from VTDIrq info */
2503 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2505 VTD_MSIMessage msg = {};
2507 /* Generate address bits */
2508 msg.dest_mode = irq->dest_mode;
2509 msg.redir_hint = irq->redir_hint;
2510 msg.dest = irq->dest;
2511 msg.__addr_hi = irq->dest & 0xffffff00;
2512 msg.__addr_head = cpu_to_le32(0xfee);
2513 /* Keep this from original MSI address bits */
2514 msg.__not_used = irq->msi_addr_last_bits;
2516 /* Generate data bits */
2517 msg.vector = irq->vector;
2518 msg.delivery_mode = irq->delivery_mode;
2519 msg.level = 1;
2520 msg.trigger_mode = irq->trigger_mode;
2522 msg_out->address = msg.msi_addr;
2523 msg_out->data = msg.msi_data;
2526 /* Interrupt remapping for MSI/MSI-X entry */
2527 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2528 MSIMessage *origin,
2529 MSIMessage *translated,
2530 uint16_t sid)
2532 int ret = 0;
2533 VTD_IR_MSIAddress addr;
2534 uint16_t index;
2535 VTDIrq irq = {};
2537 assert(origin && translated);
2539 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2541 if (!iommu || !iommu->intr_enabled) {
2542 memcpy(translated, origin, sizeof(*origin));
2543 goto out;
2546 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2547 trace_vtd_err("MSI address high 32 bits non-zero when "
2548 "Interrupt Remapping enabled.");
2549 return -VTD_FR_IR_REQ_RSVD;
2552 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2553 if (addr.addr.__head != 0xfee) {
2554 trace_vtd_err("MSI addr low 32 bit invalid.");
2555 return -VTD_FR_IR_REQ_RSVD;
2558 /* This is compatible mode. */
2559 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2560 memcpy(translated, origin, sizeof(*origin));
2561 goto out;
2564 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2566 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2567 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2569 if (addr.addr.sub_valid) {
2570 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2571 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2574 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2575 if (ret) {
2576 return ret;
2579 if (addr.addr.sub_valid) {
2580 trace_vtd_ir_remap_type("MSI");
2581 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2582 trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2583 return -VTD_FR_IR_REQ_RSVD;
2585 } else {
2586 uint8_t vector = origin->data & 0xff;
2587 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2589 trace_vtd_ir_remap_type("IOAPIC");
2590 /* IOAPIC entry vector should be aligned with IRTE vector
2591 * (see vt-d spec 5.1.5.1). */
2592 if (vector != irq.vector) {
2593 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2596 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2597 * (see vt-d spec 5.1.5.1). */
2598 if (trigger_mode != irq.trigger_mode) {
2599 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2600 irq.trigger_mode);
2605 * We'd better keep the last two bits, assuming that guest OS
2606 * might modify it. Keep it does not hurt after all.
2608 irq.msi_addr_last_bits = addr.addr.__not_care;
2610 /* Translate VTDIrq to MSI message */
2611 vtd_generate_msi_message(&irq, translated);
2613 out:
2614 trace_vtd_ir_remap_msi(origin->address, origin->data,
2615 translated->address, translated->data);
2616 return 0;
2619 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2620 MSIMessage *dst, uint16_t sid)
2622 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2623 src, dst, sid);
2626 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2627 uint64_t *data, unsigned size,
2628 MemTxAttrs attrs)
2630 return MEMTX_OK;
2633 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2634 uint64_t value, unsigned size,
2635 MemTxAttrs attrs)
2637 int ret = 0;
2638 MSIMessage from = {}, to = {};
2639 uint16_t sid = X86_IOMMU_SID_INVALID;
2641 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2642 from.data = (uint32_t) value;
2644 if (!attrs.unspecified) {
2645 /* We have explicit Source ID */
2646 sid = attrs.requester_id;
2649 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2650 if (ret) {
2651 /* TODO: report error */
2652 /* Drop this interrupt */
2653 return MEMTX_ERROR;
2656 apic_get_class()->send_msi(&to);
2658 return MEMTX_OK;
2661 static const MemoryRegionOps vtd_mem_ir_ops = {
2662 .read_with_attrs = vtd_mem_ir_read,
2663 .write_with_attrs = vtd_mem_ir_write,
2664 .endianness = DEVICE_LITTLE_ENDIAN,
2665 .impl = {
2666 .min_access_size = 4,
2667 .max_access_size = 4,
2669 .valid = {
2670 .min_access_size = 4,
2671 .max_access_size = 4,
2675 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2677 uintptr_t key = (uintptr_t)bus;
2678 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2679 VTDAddressSpace *vtd_dev_as;
2680 char name[128];
2682 if (!vtd_bus) {
2683 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2684 *new_key = (uintptr_t)bus;
2685 /* No corresponding free() */
2686 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2687 X86_IOMMU_PCI_DEVFN_MAX);
2688 vtd_bus->bus = bus;
2689 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2692 vtd_dev_as = vtd_bus->dev_as[devfn];
2694 if (!vtd_dev_as) {
2695 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2696 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2698 vtd_dev_as->bus = bus;
2699 vtd_dev_as->devfn = (uint8_t)devfn;
2700 vtd_dev_as->iommu_state = s;
2701 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2704 * Memory region relationships looks like (Address range shows
2705 * only lower 32 bits to make it short in length...):
2707 * |-----------------+-------------------+----------|
2708 * | Name | Address range | Priority |
2709 * |-----------------+-------------------+----------+
2710 * | vtd_root | 00000000-ffffffff | 0 |
2711 * | intel_iommu | 00000000-ffffffff | 1 |
2712 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2713 * | intel_iommu_ir | fee00000-feefffff | 64 |
2714 * |-----------------+-------------------+----------|
2716 * We enable/disable DMAR by switching enablement for
2717 * vtd_sys_alias and intel_iommu regions. IR region is always
2718 * enabled.
2720 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2721 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2722 "intel_iommu_dmar",
2723 UINT64_MAX);
2724 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2725 "vtd_sys_alias", get_system_memory(),
2726 0, memory_region_size(get_system_memory()));
2727 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2728 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2729 VTD_INTERRUPT_ADDR_SIZE);
2730 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2731 "vtd_root", UINT64_MAX);
2732 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2733 VTD_INTERRUPT_ADDR_FIRST,
2734 &vtd_dev_as->iommu_ir, 64);
2735 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2736 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2737 &vtd_dev_as->sys_alias, 1);
2738 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2739 MEMORY_REGION(&vtd_dev_as->iommu),
2741 vtd_switch_address_space(vtd_dev_as);
2743 return vtd_dev_as;
2746 /* Unmap the whole range in the notifier's scope. */
2747 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2749 IOMMUTLBEntry entry;
2750 hwaddr size;
2751 hwaddr start = n->start;
2752 hwaddr end = n->end;
2755 * Note: all the codes in this function has a assumption that IOVA
2756 * bits are no more than VTD_MGAW bits (which is restricted by
2757 * VT-d spec), otherwise we need to consider overflow of 64 bits.
2760 if (end > VTD_ADDRESS_SIZE) {
2762 * Don't need to unmap regions that is bigger than the whole
2763 * VT-d supported address space size
2765 end = VTD_ADDRESS_SIZE;
2768 assert(start <= end);
2769 size = end - start;
2771 if (ctpop64(size) != 1) {
2773 * This size cannot format a correct mask. Let's enlarge it to
2774 * suite the minimum available mask.
2776 int n = 64 - clz64(size);
2777 if (n > VTD_MGAW) {
2778 /* should not happen, but in case it happens, limit it */
2779 n = VTD_MGAW;
2781 size = 1ULL << n;
2784 entry.target_as = &address_space_memory;
2785 /* Adjust iova for the size */
2786 entry.iova = n->start & ~(size - 1);
2787 /* This field is meaningless for unmap */
2788 entry.translated_addr = 0;
2789 entry.perm = IOMMU_NONE;
2790 entry.addr_mask = size - 1;
2792 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2793 VTD_PCI_SLOT(as->devfn),
2794 VTD_PCI_FUNC(as->devfn),
2795 entry.iova, size);
2797 memory_region_notify_one(n, &entry);
2800 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
2802 IntelIOMMUNotifierNode *node;
2803 VTDAddressSpace *vtd_as;
2804 IOMMUNotifier *n;
2806 QLIST_FOREACH(node, &s->notifiers_list, next) {
2807 vtd_as = node->vtd_as;
2808 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
2809 vtd_address_space_unmap(vtd_as, n);
2814 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
2816 memory_region_notify_one((IOMMUNotifier *)private, entry);
2817 return 0;
2820 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
2822 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
2823 IntelIOMMUState *s = vtd_as->iommu_state;
2824 uint8_t bus_n = pci_bus_num(vtd_as->bus);
2825 VTDContextEntry ce;
2828 * The replay can be triggered by either a invalidation or a newly
2829 * created entry. No matter what, we release existing mappings
2830 * (it means flushing caches for UNMAP-only registers).
2832 vtd_address_space_unmap(vtd_as, n);
2834 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
2835 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
2836 PCI_FUNC(vtd_as->devfn),
2837 VTD_CONTEXT_ENTRY_DID(ce.hi),
2838 ce.hi, ce.lo);
2839 vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false);
2840 } else {
2841 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
2842 PCI_FUNC(vtd_as->devfn));
2845 return;
2848 /* Do the initialization. It will also be called when reset, so pay
2849 * attention when adding new initialization stuff.
2851 static void vtd_init(IntelIOMMUState *s)
2853 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2855 memset(s->csr, 0, DMAR_REG_SIZE);
2856 memset(s->wmask, 0, DMAR_REG_SIZE);
2857 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2858 memset(s->womask, 0, DMAR_REG_SIZE);
2860 s->root = 0;
2861 s->root_extended = false;
2862 s->dmar_enabled = false;
2863 s->iq_head = 0;
2864 s->iq_tail = 0;
2865 s->iq = 0;
2866 s->iq_size = 0;
2867 s->qi_enabled = false;
2868 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2869 s->next_frcd_reg = 0;
2870 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2871 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2872 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2874 if (x86_iommu->intr_supported) {
2875 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2876 if (s->intr_eim == ON_OFF_AUTO_ON) {
2877 s->ecap |= VTD_ECAP_EIM;
2879 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2882 if (x86_iommu->dt_supported) {
2883 s->ecap |= VTD_ECAP_DT;
2886 if (x86_iommu->pt_supported) {
2887 s->ecap |= VTD_ECAP_PT;
2890 if (s->caching_mode) {
2891 s->cap |= VTD_CAP_CM;
2894 vtd_reset_context_cache(s);
2895 vtd_reset_iotlb(s);
2897 /* Define registers with default values and bit semantics */
2898 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2899 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2900 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2901 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2902 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2903 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2904 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2905 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2906 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2908 /* Advanced Fault Logging not supported */
2909 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2910 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2911 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2912 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2914 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2915 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2917 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2919 /* Treated as RO for implementations that PLMR and PHMR fields reported
2920 * as Clear in the CAP_REG.
2921 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2923 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2925 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2926 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2927 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2928 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2929 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2930 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2931 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2932 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2933 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2935 /* IOTLB registers */
2936 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2937 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2938 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2940 /* Fault Recording Registers, 128-bit */
2941 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2942 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2945 * Interrupt remapping registers.
2947 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2950 /* Should not reset address_spaces when reset because devices will still use
2951 * the address space they got at first (won't ask the bus again).
2953 static void vtd_reset(DeviceState *dev)
2955 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2957 vtd_init(s);
2960 * When device reset, throw away all mappings and external caches
2962 vtd_address_space_unmap_all(s);
2965 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2967 IntelIOMMUState *s = opaque;
2968 VTDAddressSpace *vtd_as;
2970 assert(0 <= devfn && devfn < X86_IOMMU_PCI_DEVFN_MAX);
2972 vtd_as = vtd_find_add_as(s, bus, devfn);
2973 return &vtd_as->as;
2976 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
2978 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2980 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2981 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2982 !kvm_irqchip_is_split()) {
2983 error_setg(errp, "Intel Interrupt Remapping cannot work with "
2984 "kernel-irqchip=on, please use 'split|off'.");
2985 return false;
2987 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
2988 error_setg(errp, "eim=on cannot be selected without intremap=on");
2989 return false;
2992 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
2993 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
2994 && x86_iommu->intr_supported ?
2995 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2997 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
2998 if (!kvm_irqchip_in_kernel()) {
2999 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3000 return false;
3002 if (!kvm_enable_x2apic()) {
3003 error_setg(errp, "eim=on requires support on the KVM side"
3004 "(X2APIC_API, first shipped in v4.7)");
3005 return false;
3009 return true;
3012 static void vtd_realize(DeviceState *dev, Error **errp)
3014 MachineState *ms = MACHINE(qdev_get_machine());
3015 MachineClass *mc = MACHINE_GET_CLASS(ms);
3016 PCMachineState *pcms =
3017 PC_MACHINE(object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE));
3018 PCIBus *bus;
3019 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3020 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3022 if (!pcms) {
3023 error_setg(errp, "Machine-type '%s' not supported by intel-iommu",
3024 mc->name);
3025 return;
3028 bus = pcms->bus;
3029 x86_iommu->type = TYPE_INTEL;
3031 if (!vtd_decide_config(s, errp)) {
3032 return;
3035 QLIST_INIT(&s->notifiers_list);
3036 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3037 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3038 "intel_iommu", DMAR_REG_SIZE);
3039 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3040 /* No corresponding destroy */
3041 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3042 g_free, g_free);
3043 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3044 g_free, g_free);
3045 vtd_init(s);
3046 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3047 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3048 /* Pseudo address space under root PCI bus. */
3049 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3052 static void vtd_class_init(ObjectClass *klass, void *data)
3054 DeviceClass *dc = DEVICE_CLASS(klass);
3055 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3057 dc->reset = vtd_reset;
3058 dc->vmsd = &vtd_vmstate;
3059 dc->props = vtd_properties;
3060 dc->hotpluggable = false;
3061 x86_class->realize = vtd_realize;
3062 x86_class->int_remap = vtd_int_remap;
3063 /* Supported by the pc-q35-* machine types */
3064 dc->user_creatable = true;
3067 static const TypeInfo vtd_info = {
3068 .name = TYPE_INTEL_IOMMU_DEVICE,
3069 .parent = TYPE_X86_IOMMU_DEVICE,
3070 .instance_size = sizeof(IntelIOMMUState),
3071 .class_init = vtd_class_init,
3074 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3075 void *data)
3077 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3079 imrc->translate = vtd_iommu_translate;
3080 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3081 imrc->replay = vtd_iommu_replay;
3084 static const TypeInfo vtd_iommu_memory_region_info = {
3085 .parent = TYPE_IOMMU_MEMORY_REGION,
3086 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3087 .class_init = vtd_iommu_memory_region_class_init,
3090 static void vtd_register_types(void)
3092 type_register_static(&vtd_info);
3093 type_register_static(&vtd_iommu_memory_region_info);
3096 type_init(vtd_register_types)