memory: unify loops to sync dirty log bitmap
[qemu/ar7.git] / target / ppc / machine.c
blobe475206c6a6deb142bdb93b14cdec91930aa935e
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
16 PowerPCCPU *cpu = opaque;
17 CPUPPCState *env = &cpu->env;
18 unsigned int i, j;
19 target_ulong sdr1;
20 uint32_t fpscr;
21 target_ulong xer;
23 for (i = 0; i < 32; i++)
24 qemu_get_betls(f, &env->gpr[i]);
25 #if !defined(TARGET_PPC64)
26 for (i = 0; i < 32; i++)
27 qemu_get_betls(f, &env->gprh[i]);
28 #endif
29 qemu_get_betls(f, &env->lr);
30 qemu_get_betls(f, &env->ctr);
31 for (i = 0; i < 8; i++)
32 qemu_get_be32s(f, &env->crf[i]);
33 qemu_get_betls(f, &xer);
34 cpu_write_xer(env, xer);
35 qemu_get_betls(f, &env->reserve_addr);
36 qemu_get_betls(f, &env->msr);
37 for (i = 0; i < 4; i++)
38 qemu_get_betls(f, &env->tgpr[i]);
39 for (i = 0; i < 32; i++) {
40 union {
41 float64 d;
42 uint64_t l;
43 } u;
44 u.l = qemu_get_be64(f);
45 env->fpr[i] = u.d;
47 qemu_get_be32s(f, &fpscr);
48 env->fpscr = fpscr;
49 qemu_get_sbe32s(f, &env->access_type);
50 #if defined(TARGET_PPC64)
51 qemu_get_betls(f, &env->spr[SPR_ASR]);
52 qemu_get_sbe32s(f, &env->slb_nr);
53 #endif
54 qemu_get_betls(f, &sdr1);
55 for (i = 0; i < 32; i++)
56 qemu_get_betls(f, &env->sr[i]);
57 for (i = 0; i < 2; i++)
58 for (j = 0; j < 8; j++)
59 qemu_get_betls(f, &env->DBAT[i][j]);
60 for (i = 0; i < 2; i++)
61 for (j = 0; j < 8; j++)
62 qemu_get_betls(f, &env->IBAT[i][j]);
63 qemu_get_sbe32s(f, &env->nb_tlb);
64 qemu_get_sbe32s(f, &env->tlb_per_way);
65 qemu_get_sbe32s(f, &env->nb_ways);
66 qemu_get_sbe32s(f, &env->last_way);
67 qemu_get_sbe32s(f, &env->id_tlbs);
68 qemu_get_sbe32s(f, &env->nb_pids);
69 if (env->tlb.tlb6) {
70 // XXX assumes 6xx
71 for (i = 0; i < env->nb_tlb; i++) {
72 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
73 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
74 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
77 for (i = 0; i < 4; i++)
78 qemu_get_betls(f, &env->pb[i]);
79 for (i = 0; i < 1024; i++)
80 qemu_get_betls(f, &env->spr[i]);
81 if (!cpu->vhyp) {
82 ppc_store_sdr1(env, sdr1);
84 qemu_get_be32s(f, &env->vscr);
85 qemu_get_be64s(f, &env->spe_acc);
86 qemu_get_be32s(f, &env->spe_fscr);
87 qemu_get_betls(f, &env->msr_mask);
88 qemu_get_be32s(f, &env->flags);
89 qemu_get_sbe32s(f, &env->error_code);
90 qemu_get_be32s(f, &env->pending_interrupts);
91 qemu_get_be32s(f, &env->irq_input_state);
92 for (i = 0; i < POWERPC_EXCP_NB; i++)
93 qemu_get_betls(f, &env->excp_vectors[i]);
94 qemu_get_betls(f, &env->excp_prefix);
95 qemu_get_betls(f, &env->ivor_mask);
96 qemu_get_betls(f, &env->ivpr_mask);
97 qemu_get_betls(f, &env->hreset_vector);
98 qemu_get_betls(f, &env->nip);
99 qemu_get_betls(f, &env->hflags);
100 qemu_get_betls(f, &env->hflags_nmsr);
101 qemu_get_sbe32(f); /* Discard unused mmu_idx */
102 qemu_get_sbe32(f); /* Discard unused power_mode */
104 /* Recompute mmu indices */
105 hreg_compute_mem_idx(env);
107 return 0;
110 static int get_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field)
112 ppc_avr_t *v = pv;
114 v->u64[0] = qemu_get_be64(f);
115 v->u64[1] = qemu_get_be64(f);
117 return 0;
120 static int put_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field,
121 QJSON *vmdesc)
123 ppc_avr_t *v = pv;
125 qemu_put_be64(f, v->u64[0]);
126 qemu_put_be64(f, v->u64[1]);
127 return 0;
130 static const VMStateInfo vmstate_info_avr = {
131 .name = "avr",
132 .get = get_avr,
133 .put = put_avr,
136 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
137 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
139 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
140 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
142 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
144 PowerPCCPU *cpu = opaque;
146 return cpu->pre_2_8_migration;
149 static int cpu_pre_save(void *opaque)
151 PowerPCCPU *cpu = opaque;
152 CPUPPCState *env = &cpu->env;
153 int i;
154 uint64_t insns_compat_mask =
155 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
156 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
157 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
158 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
159 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
160 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
161 | PPC_64B | PPC_64BX | PPC_ALTIVEC
162 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
163 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
164 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
165 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
166 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
167 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
168 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
170 env->spr[SPR_LR] = env->lr;
171 env->spr[SPR_CTR] = env->ctr;
172 env->spr[SPR_XER] = cpu_read_xer(env);
173 #if defined(TARGET_PPC64)
174 env->spr[SPR_CFAR] = env->cfar;
175 #endif
176 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
178 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
179 env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
180 env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
181 env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
182 env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
184 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
185 env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
186 env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
187 env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
188 env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
191 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
192 if (cpu->pre_2_8_migration) {
193 cpu->mig_msr_mask = env->msr_mask;
194 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
195 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
196 cpu->mig_nb_BATs = env->nb_BATs;
199 return 0;
203 * Determine if a given PVR is a "close enough" match to the CPU
204 * object. For TCG and KVM PR it would probably be sufficient to
205 * require an exact PVR match. However for KVM HV the user is
206 * restricted to a PVR exactly matching the host CPU. The correct way
207 * to handle this is to put the guest into an architected
208 * compatibility mode. However, to allow a more forgiving transition
209 * and migration from before this was widely done, we allow migration
210 * between sufficiently similar PVRs, as determined by the CPU class's
211 * pvr_match() hook.
213 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
215 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
217 if (pvr == pcc->pvr) {
218 return true;
220 return pcc->pvr_match(pcc, pvr);
223 static int cpu_post_load(void *opaque, int version_id)
225 PowerPCCPU *cpu = opaque;
226 CPUPPCState *env = &cpu->env;
227 int i;
228 target_ulong msr;
231 * If we're operating in compat mode, we should be ok as long as
232 * the destination supports the same compatiblity mode.
234 * Otherwise, however, we require that the destination has exactly
235 * the same CPU model as the source.
238 #if defined(TARGET_PPC64)
239 if (cpu->compat_pvr) {
240 uint32_t compat_pvr = cpu->compat_pvr;
241 Error *local_err = NULL;
243 cpu->compat_pvr = 0;
244 ppc_set_compat(cpu, compat_pvr, &local_err);
245 if (local_err) {
246 error_report_err(local_err);
247 return -1;
249 } else
250 #endif
252 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
253 return -1;
258 * If we're running with KVM HV, there is a chance that the guest
259 * is running with KVM HV and its kernel does not have the
260 * capability of dealing with a different PVR other than this
261 * exact host PVR in KVM_SET_SREGS. If that happens, the
262 * guest freezes after migration.
264 * The function kvmppc_pvr_workaround_required does this verification
265 * by first checking if the kernel has the cap, returning true immediately
266 * if that is the case. Otherwise, it checks if we're running in KVM PR.
267 * If the guest kernel does not have the cap and we're not running KVM-PR
268 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
269 * receive the PVR it expects as a workaround.
272 #if defined(CONFIG_KVM)
273 if (kvmppc_pvr_workaround_required(cpu)) {
274 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
276 #endif
278 env->lr = env->spr[SPR_LR];
279 env->ctr = env->spr[SPR_CTR];
280 cpu_write_xer(env, env->spr[SPR_XER]);
281 #if defined(TARGET_PPC64)
282 env->cfar = env->spr[SPR_CFAR];
283 #endif
284 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
286 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
287 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
288 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
289 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
290 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
292 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
293 env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
294 env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
295 env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
296 env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
299 if (!cpu->vhyp) {
300 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
303 /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
304 msr = env->msr;
305 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
306 ppc_store_msr(env, msr);
308 hreg_compute_mem_idx(env);
310 return 0;
313 static bool fpu_needed(void *opaque)
315 PowerPCCPU *cpu = opaque;
317 return (cpu->env.insns_flags & PPC_FLOAT);
320 static const VMStateDescription vmstate_fpu = {
321 .name = "cpu/fpu",
322 .version_id = 1,
323 .minimum_version_id = 1,
324 .needed = fpu_needed,
325 .fields = (VMStateField[]) {
326 VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
327 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
328 VMSTATE_END_OF_LIST()
332 static bool altivec_needed(void *opaque)
334 PowerPCCPU *cpu = opaque;
336 return (cpu->env.insns_flags & PPC_ALTIVEC);
339 static const VMStateDescription vmstate_altivec = {
340 .name = "cpu/altivec",
341 .version_id = 1,
342 .minimum_version_id = 1,
343 .needed = altivec_needed,
344 .fields = (VMStateField[]) {
345 VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
346 VMSTATE_UINT32(env.vscr, PowerPCCPU),
347 VMSTATE_END_OF_LIST()
351 static bool vsx_needed(void *opaque)
353 PowerPCCPU *cpu = opaque;
355 return (cpu->env.insns_flags2 & PPC2_VSX);
358 static const VMStateDescription vmstate_vsx = {
359 .name = "cpu/vsx",
360 .version_id = 1,
361 .minimum_version_id = 1,
362 .needed = vsx_needed,
363 .fields = (VMStateField[]) {
364 VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
365 VMSTATE_END_OF_LIST()
369 #ifdef TARGET_PPC64
370 /* Transactional memory state */
371 static bool tm_needed(void *opaque)
373 PowerPCCPU *cpu = opaque;
374 CPUPPCState *env = &cpu->env;
375 return msr_ts;
378 static const VMStateDescription vmstate_tm = {
379 .name = "cpu/tm",
380 .version_id = 1,
381 .minimum_version_id = 1,
382 .minimum_version_id_old = 1,
383 .needed = tm_needed,
384 .fields = (VMStateField []) {
385 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
386 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
387 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
388 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
389 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
390 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
391 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
392 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
393 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
394 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
395 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
396 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
397 VMSTATE_END_OF_LIST()
400 #endif
402 static bool sr_needed(void *opaque)
404 #ifdef TARGET_PPC64
405 PowerPCCPU *cpu = opaque;
407 return !(cpu->env.mmu_model & POWERPC_MMU_64);
408 #else
409 return true;
410 #endif
413 static const VMStateDescription vmstate_sr = {
414 .name = "cpu/sr",
415 .version_id = 1,
416 .minimum_version_id = 1,
417 .needed = sr_needed,
418 .fields = (VMStateField[]) {
419 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
420 VMSTATE_END_OF_LIST()
424 #ifdef TARGET_PPC64
425 static int get_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field)
427 ppc_slb_t *v = pv;
429 v->esid = qemu_get_be64(f);
430 v->vsid = qemu_get_be64(f);
432 return 0;
435 static int put_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field,
436 QJSON *vmdesc)
438 ppc_slb_t *v = pv;
440 qemu_put_be64(f, v->esid);
441 qemu_put_be64(f, v->vsid);
442 return 0;
445 static const VMStateInfo vmstate_info_slbe = {
446 .name = "slbe",
447 .get = get_slbe,
448 .put = put_slbe,
451 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
452 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
454 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
455 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
457 static bool slb_needed(void *opaque)
459 PowerPCCPU *cpu = opaque;
461 /* We don't support any of the old segment table based 64-bit CPUs */
462 return (cpu->env.mmu_model & POWERPC_MMU_64);
465 static int slb_post_load(void *opaque, int version_id)
467 PowerPCCPU *cpu = opaque;
468 CPUPPCState *env = &cpu->env;
469 int i;
471 /* We've pulled in the raw esid and vsid values from the migration
472 * stream, but we need to recompute the page size pointers */
473 for (i = 0; i < env->slb_nr; i++) {
474 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
475 /* Migration source had bad values in its SLB */
476 return -1;
480 return 0;
483 static const VMStateDescription vmstate_slb = {
484 .name = "cpu/slb",
485 .version_id = 1,
486 .minimum_version_id = 1,
487 .needed = slb_needed,
488 .post_load = slb_post_load,
489 .fields = (VMStateField[]) {
490 VMSTATE_INT32_EQUAL(env.slb_nr, PowerPCCPU, NULL),
491 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
492 VMSTATE_END_OF_LIST()
495 #endif /* TARGET_PPC64 */
497 static const VMStateDescription vmstate_tlb6xx_entry = {
498 .name = "cpu/tlb6xx_entry",
499 .version_id = 1,
500 .minimum_version_id = 1,
501 .fields = (VMStateField[]) {
502 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
503 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
504 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
505 VMSTATE_END_OF_LIST()
509 static bool tlb6xx_needed(void *opaque)
511 PowerPCCPU *cpu = opaque;
512 CPUPPCState *env = &cpu->env;
514 return env->nb_tlb && (env->tlb_type == TLB_6XX);
517 static const VMStateDescription vmstate_tlb6xx = {
518 .name = "cpu/tlb6xx",
519 .version_id = 1,
520 .minimum_version_id = 1,
521 .needed = tlb6xx_needed,
522 .fields = (VMStateField[]) {
523 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
524 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
525 env.nb_tlb,
526 vmstate_tlb6xx_entry,
527 ppc6xx_tlb_t),
528 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
529 VMSTATE_END_OF_LIST()
533 static const VMStateDescription vmstate_tlbemb_entry = {
534 .name = "cpu/tlbemb_entry",
535 .version_id = 1,
536 .minimum_version_id = 1,
537 .fields = (VMStateField[]) {
538 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
539 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
540 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
541 VMSTATE_UINTTL(size, ppcemb_tlb_t),
542 VMSTATE_UINT32(prot, ppcemb_tlb_t),
543 VMSTATE_UINT32(attr, ppcemb_tlb_t),
544 VMSTATE_END_OF_LIST()
548 static bool tlbemb_needed(void *opaque)
550 PowerPCCPU *cpu = opaque;
551 CPUPPCState *env = &cpu->env;
553 return env->nb_tlb && (env->tlb_type == TLB_EMB);
556 static bool pbr403_needed(void *opaque)
558 PowerPCCPU *cpu = opaque;
559 uint32_t pvr = cpu->env.spr[SPR_PVR];
561 return (pvr & 0xffff0000) == 0x00200000;
564 static const VMStateDescription vmstate_pbr403 = {
565 .name = "cpu/pbr403",
566 .version_id = 1,
567 .minimum_version_id = 1,
568 .needed = pbr403_needed,
569 .fields = (VMStateField[]) {
570 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
571 VMSTATE_END_OF_LIST()
575 static const VMStateDescription vmstate_tlbemb = {
576 .name = "cpu/tlb6xx",
577 .version_id = 1,
578 .minimum_version_id = 1,
579 .needed = tlbemb_needed,
580 .fields = (VMStateField[]) {
581 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
582 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
583 env.nb_tlb,
584 vmstate_tlbemb_entry,
585 ppcemb_tlb_t),
586 /* 403 protection registers */
587 VMSTATE_END_OF_LIST()
589 .subsections = (const VMStateDescription*[]) {
590 &vmstate_pbr403,
591 NULL
595 static const VMStateDescription vmstate_tlbmas_entry = {
596 .name = "cpu/tlbmas_entry",
597 .version_id = 1,
598 .minimum_version_id = 1,
599 .fields = (VMStateField[]) {
600 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
601 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
602 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
603 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
604 VMSTATE_END_OF_LIST()
608 static bool tlbmas_needed(void *opaque)
610 PowerPCCPU *cpu = opaque;
611 CPUPPCState *env = &cpu->env;
613 return env->nb_tlb && (env->tlb_type == TLB_MAS);
616 static const VMStateDescription vmstate_tlbmas = {
617 .name = "cpu/tlbmas",
618 .version_id = 1,
619 .minimum_version_id = 1,
620 .needed = tlbmas_needed,
621 .fields = (VMStateField[]) {
622 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
623 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
624 env.nb_tlb,
625 vmstate_tlbmas_entry,
626 ppcmas_tlb_t),
627 VMSTATE_END_OF_LIST()
631 static bool compat_needed(void *opaque)
633 PowerPCCPU *cpu = opaque;
635 assert(!(cpu->compat_pvr && !cpu->vhyp));
636 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
639 static const VMStateDescription vmstate_compat = {
640 .name = "cpu/compat",
641 .version_id = 1,
642 .minimum_version_id = 1,
643 .needed = compat_needed,
644 .fields = (VMStateField[]) {
645 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
646 VMSTATE_END_OF_LIST()
650 const VMStateDescription vmstate_ppc_cpu = {
651 .name = "cpu",
652 .version_id = 5,
653 .minimum_version_id = 5,
654 .minimum_version_id_old = 4,
655 .load_state_old = cpu_load_old,
656 .pre_save = cpu_pre_save,
657 .post_load = cpu_post_load,
658 .fields = (VMStateField[]) {
659 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
661 /* User mode architected state */
662 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
663 #if !defined(TARGET_PPC64)
664 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
665 #endif
666 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
667 VMSTATE_UINTTL(env.nip, PowerPCCPU),
669 /* SPRs */
670 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
671 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
673 /* Reservation */
674 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
676 /* Supervisor mode architected state */
677 VMSTATE_UINTTL(env.msr, PowerPCCPU),
679 /* Internal state */
680 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
681 /* FIXME: access_type? */
683 /* Sanity checking */
684 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
685 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
686 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
687 cpu_pre_2_8_migration),
688 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
689 VMSTATE_END_OF_LIST()
691 .subsections = (const VMStateDescription*[]) {
692 &vmstate_fpu,
693 &vmstate_altivec,
694 &vmstate_vsx,
695 &vmstate_sr,
696 #ifdef TARGET_PPC64
697 &vmstate_tm,
698 &vmstate_slb,
699 #endif /* TARGET_PPC64 */
700 &vmstate_tlb6xx,
701 &vmstate_tlbemb,
702 &vmstate_tlbmas,
703 &vmstate_compat,
704 NULL