ppc/spapr: Move GPRs setup to one place
[qemu/ar7.git] / hw / ppc / spapr.c
blob1038420c4a60bb8eae449ef7217d74237a2930b1
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
85 #include "monitor/monitor.h"
87 #include <libfdt.h>
89 /* SLOF memory layout:
91 * SLOF raw image loaded at 0, copies its romfs right below the flat
92 * device-tree, then position SLOF itself 31M below that
94 * So we set FW_OVERHEAD to 40MB which should account for all of that
95 * and more
97 * We load our kernel at 4M, leaving space for SLOF initial image
99 #define FDT_MAX_SIZE 0x100000
100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE 0x400000
102 #define FW_FILE_NAME "slof.bin"
103 #define FW_OVERHEAD 0x2800000
104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
106 #define MIN_RMA_SLOF (128 * MiB)
108 #define PHANDLE_INTC 0x00001111
110 /* These two functions implement the VCPU id numbering: one to compute them
111 * all and one to identify thread 0 of a VCORE. Any change to the first one
112 * is likely to have an impact on the second one, so let's keep them close.
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
116 MachineState *ms = MACHINE(spapr);
117 unsigned int smp_threads = ms->smp.threads;
119 assert(spapr->vsmt);
120 return
121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124 PowerPCCPU *cpu)
126 assert(spapr->vsmt);
127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
136 return false;
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
164 int spapr_max_server_number(SpaprMachineState *spapr)
166 MachineState *ms = MACHINE(spapr);
168 assert(spapr->vsmt);
169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173 int smt_threads)
175 int i, ret = 0;
176 uint32_t servers_prop[smt_threads];
177 uint32_t gservers_prop[smt_threads * 2];
178 int index = spapr_get_vcpu_id(cpu);
180 if (cpu->compat_pvr) {
181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182 if (ret < 0) {
183 return ret;
187 /* Build interrupt servers and gservers properties */
188 for (i = 0; i < smt_threads; i++) {
189 servers_prop[i] = cpu_to_be32(index + i);
190 /* Hack, direct the group queues back to cpu 0 */
191 gservers_prop[i*2] = cpu_to_be32(index + i);
192 gservers_prop[i*2 + 1] = 0;
194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195 servers_prop, sizeof(servers_prop));
196 if (ret < 0) {
197 return ret;
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200 gservers_prop, sizeof(gservers_prop));
202 return ret;
205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
207 int index = spapr_get_vcpu_id(cpu);
208 uint32_t associativity[] = {cpu_to_be32(0x5),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(0x0),
212 cpu_to_be32(cpu->node_id),
213 cpu_to_be32(index)};
215 /* Advertise NUMA via ibm,associativity */
216 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
217 sizeof(associativity));
220 /* Populate the "ibm,pa-features" property */
221 static void spapr_populate_pa_features(SpaprMachineState *spapr,
222 PowerPCCPU *cpu,
223 void *fdt, int offset)
225 uint8_t pa_features_206[] = { 6, 0,
226 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
227 uint8_t pa_features_207[] = { 24, 0,
228 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
229 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
230 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
232 uint8_t pa_features_300[] = { 66, 0,
233 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
234 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
235 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
236 /* 6: DS207 */
237 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
238 /* 16: Vector */
239 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
240 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
241 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
242 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
244 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
245 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
246 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
248 /* 42: PM, 44: PC RA, 46: SC vec'd */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
250 /* 48: SIMD, 50: QP BFP, 52: String */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
252 /* 54: DecFP, 56: DecI, 58: SHA */
253 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
254 /* 60: NM atomic, 62: RNG */
255 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
257 uint8_t *pa_features = NULL;
258 size_t pa_size;
260 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
261 pa_features = pa_features_206;
262 pa_size = sizeof(pa_features_206);
264 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
265 pa_features = pa_features_207;
266 pa_size = sizeof(pa_features_207);
268 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
269 pa_features = pa_features_300;
270 pa_size = sizeof(pa_features_300);
272 if (!pa_features) {
273 return;
276 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
278 * Note: we keep CI large pages off by default because a 64K capable
279 * guest provisioned with large pages might otherwise try to map a qemu
280 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
281 * even if that qemu runs on a 4k host.
282 * We dd this bit back here if we are confident this is not an issue
284 pa_features[3] |= 0x20;
286 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
287 pa_features[24] |= 0x80; /* Transactional memory support */
289 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
290 /* Workaround for broken kernels that attempt (guest) radix
291 * mode when they can't handle it, if they see the radix bit set
292 * in pa-features. So hide it from them. */
293 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
296 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
299 static hwaddr spapr_node0_size(MachineState *machine)
301 if (machine->numa_state->num_nodes) {
302 int i;
303 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
304 if (machine->numa_state->nodes[i].node_mem) {
305 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
306 machine->ram_size);
310 return machine->ram_size;
313 static void add_str(GString *s, const gchar *s1)
315 g_string_append_len(s, s1, strlen(s1) + 1);
318 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
319 hwaddr size)
321 uint32_t associativity[] = {
322 cpu_to_be32(0x4), /* length */
323 cpu_to_be32(0x0), cpu_to_be32(0x0),
324 cpu_to_be32(0x0), cpu_to_be32(nodeid)
326 char mem_name[32];
327 uint64_t mem_reg_property[2];
328 int off;
330 mem_reg_property[0] = cpu_to_be64(start);
331 mem_reg_property[1] = cpu_to_be64(size);
333 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
334 off = fdt_add_subnode(fdt, 0, mem_name);
335 _FDT(off);
336 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
337 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
338 sizeof(mem_reg_property))));
339 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
340 sizeof(associativity))));
341 return off;
344 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
346 MachineState *machine = MACHINE(spapr);
347 hwaddr mem_start, node_size;
348 int i, nb_nodes = machine->numa_state->num_nodes;
349 NodeInfo *nodes = machine->numa_state->nodes;
351 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
352 if (!nodes[i].node_mem) {
353 continue;
355 if (mem_start >= machine->ram_size) {
356 node_size = 0;
357 } else {
358 node_size = nodes[i].node_mem;
359 if (node_size > machine->ram_size - mem_start) {
360 node_size = machine->ram_size - mem_start;
363 if (!mem_start) {
364 /* spapr_machine_init() checks for rma_size <= node0_size
365 * already */
366 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
367 mem_start += spapr->rma_size;
368 node_size -= spapr->rma_size;
370 for ( ; node_size; ) {
371 hwaddr sizetmp = pow2floor(node_size);
373 /* mem_start != 0 here */
374 if (ctzl(mem_start) < ctzl(sizetmp)) {
375 sizetmp = 1ULL << ctzl(mem_start);
378 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
379 node_size -= sizetmp;
380 mem_start += sizetmp;
384 return 0;
387 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
388 SpaprMachineState *spapr)
390 MachineState *ms = MACHINE(spapr);
391 PowerPCCPU *cpu = POWERPC_CPU(cs);
392 CPUPPCState *env = &cpu->env;
393 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
394 int index = spapr_get_vcpu_id(cpu);
395 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
396 0xffffffff, 0xffffffff};
397 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
398 : SPAPR_TIMEBASE_FREQ;
399 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
400 uint32_t page_sizes_prop[64];
401 size_t page_sizes_prop_size;
402 unsigned int smp_threads = ms->smp.threads;
403 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
404 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
405 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
406 SpaprDrc *drc;
407 int drc_index;
408 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
409 int i;
411 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
412 if (drc) {
413 drc_index = spapr_drc_index(drc);
414 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
417 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
418 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
420 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
421 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
422 env->dcache_line_size)));
423 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
424 env->dcache_line_size)));
425 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
426 env->icache_line_size)));
427 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
428 env->icache_line_size)));
430 if (pcc->l1_dcache_size) {
431 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
432 pcc->l1_dcache_size)));
433 } else {
434 warn_report("Unknown L1 dcache size for cpu");
436 if (pcc->l1_icache_size) {
437 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
438 pcc->l1_icache_size)));
439 } else {
440 warn_report("Unknown L1 icache size for cpu");
443 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
444 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
445 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
446 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
447 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
448 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
450 if (env->spr_cb[SPR_PURR].oea_read) {
451 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
453 if (env->spr_cb[SPR_SPURR].oea_read) {
454 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
457 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
458 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
459 segs, sizeof(segs))));
462 /* Advertise VSX (vector extensions) if available
463 * 1 == VMX / Altivec available
464 * 2 == VSX available
466 * Only CPUs for which we create core types in spapr_cpu_core.c
467 * are possible, and all of those have VMX */
468 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
469 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
470 } else {
471 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
474 /* Advertise DFP (Decimal Floating Point) if available
475 * 0 / no property == no DFP
476 * 1 == DFP available */
477 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
478 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
481 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
482 sizeof(page_sizes_prop));
483 if (page_sizes_prop_size) {
484 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
485 page_sizes_prop, page_sizes_prop_size)));
488 spapr_populate_pa_features(spapr, cpu, fdt, offset);
490 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
491 cs->cpu_index / vcpus_per_socket)));
493 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
494 pft_size_prop, sizeof(pft_size_prop))));
496 if (ms->numa_state->num_nodes > 1) {
497 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
500 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
502 if (pcc->radix_page_info) {
503 for (i = 0; i < pcc->radix_page_info->count; i++) {
504 radix_AP_encodings[i] =
505 cpu_to_be32(pcc->radix_page_info->entries[i]);
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
508 radix_AP_encodings,
509 pcc->radix_page_info->count *
510 sizeof(radix_AP_encodings[0]))));
514 * We set this property to let the guest know that it can use the large
515 * decrementer and its width in bits.
517 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
518 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
519 pcc->lrg_decr_bits)));
522 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
524 CPUState **rev;
525 CPUState *cs;
526 int n_cpus;
527 int cpus_offset;
528 char *nodename;
529 int i;
531 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
532 _FDT(cpus_offset);
533 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
534 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
537 * We walk the CPUs in reverse order to ensure that CPU DT nodes
538 * created by fdt_add_subnode() end up in the right order in FDT
539 * for the guest kernel the enumerate the CPUs correctly.
541 * The CPU list cannot be traversed in reverse order, so we need
542 * to do extra work.
544 n_cpus = 0;
545 rev = NULL;
546 CPU_FOREACH(cs) {
547 rev = g_renew(CPUState *, rev, n_cpus + 1);
548 rev[n_cpus++] = cs;
551 for (i = n_cpus - 1; i >= 0; i--) {
552 CPUState *cs = rev[i];
553 PowerPCCPU *cpu = POWERPC_CPU(cs);
554 int index = spapr_get_vcpu_id(cpu);
555 DeviceClass *dc = DEVICE_GET_CLASS(cs);
556 int offset;
558 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
559 continue;
562 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
563 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
564 g_free(nodename);
565 _FDT(offset);
566 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
569 g_free(rev);
572 static int spapr_rng_populate_dt(void *fdt)
574 int node;
575 int ret;
577 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
578 if (node <= 0) {
579 return -1;
581 ret = fdt_setprop_string(fdt, node, "device_type",
582 "ibm,platform-facilities");
583 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
584 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
586 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
587 if (node <= 0) {
588 return -1;
590 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
592 return ret ? -1 : 0;
595 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
597 MemoryDeviceInfoList *info;
599 for (info = list; info; info = info->next) {
600 MemoryDeviceInfo *value = info->value;
602 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
603 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
605 if (addr >= pcdimm_info->addr &&
606 addr < (pcdimm_info->addr + pcdimm_info->size)) {
607 return pcdimm_info->node;
612 return -1;
615 struct sPAPRDrconfCellV2 {
616 uint32_t seq_lmbs;
617 uint64_t base_addr;
618 uint32_t drc_index;
619 uint32_t aa_index;
620 uint32_t flags;
621 } QEMU_PACKED;
623 typedef struct DrconfCellQueue {
624 struct sPAPRDrconfCellV2 cell;
625 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
626 } DrconfCellQueue;
628 static DrconfCellQueue *
629 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
630 uint32_t drc_index, uint32_t aa_index,
631 uint32_t flags)
633 DrconfCellQueue *elem;
635 elem = g_malloc0(sizeof(*elem));
636 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
637 elem->cell.base_addr = cpu_to_be64(base_addr);
638 elem->cell.drc_index = cpu_to_be32(drc_index);
639 elem->cell.aa_index = cpu_to_be32(aa_index);
640 elem->cell.flags = cpu_to_be32(flags);
642 return elem;
645 /* ibm,dynamic-memory-v2 */
646 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
647 int offset, MemoryDeviceInfoList *dimms)
649 MachineState *machine = MACHINE(spapr);
650 uint8_t *int_buf, *cur_index;
651 int ret;
652 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
653 uint64_t addr, cur_addr, size;
654 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
655 uint64_t mem_end = machine->device_memory->base +
656 memory_region_size(&machine->device_memory->mr);
657 uint32_t node, buf_len, nr_entries = 0;
658 SpaprDrc *drc;
659 DrconfCellQueue *elem, *next;
660 MemoryDeviceInfoList *info;
661 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
662 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
664 /* Entry to cover RAM and the gap area */
665 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
666 SPAPR_LMB_FLAGS_RESERVED |
667 SPAPR_LMB_FLAGS_DRC_INVALID);
668 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
669 nr_entries++;
671 cur_addr = machine->device_memory->base;
672 for (info = dimms; info; info = info->next) {
673 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
675 addr = di->addr;
676 size = di->size;
677 node = di->node;
680 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
681 * area is marked hotpluggable in the next iteration for the bigger
682 * chunk including the NVDIMM occupied area.
684 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
685 continue;
687 /* Entry for hot-pluggable area */
688 if (cur_addr < addr) {
689 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
690 g_assert(drc);
691 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
692 cur_addr, spapr_drc_index(drc), -1, 0);
693 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
694 nr_entries++;
697 /* Entry for DIMM */
698 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
699 g_assert(drc);
700 elem = spapr_get_drconf_cell(size / lmb_size, addr,
701 spapr_drc_index(drc), node,
702 SPAPR_LMB_FLAGS_ASSIGNED);
703 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
704 nr_entries++;
705 cur_addr = addr + size;
708 /* Entry for remaining hotpluggable area */
709 if (cur_addr < mem_end) {
710 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
711 g_assert(drc);
712 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
713 cur_addr, spapr_drc_index(drc), -1, 0);
714 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
715 nr_entries++;
718 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
719 int_buf = cur_index = g_malloc0(buf_len);
720 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
721 cur_index += sizeof(nr_entries);
723 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
724 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
725 cur_index += sizeof(elem->cell);
726 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
727 g_free(elem);
730 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
731 g_free(int_buf);
732 if (ret < 0) {
733 return -1;
735 return 0;
738 /* ibm,dynamic-memory */
739 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
740 int offset, MemoryDeviceInfoList *dimms)
742 MachineState *machine = MACHINE(spapr);
743 int i, ret;
744 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
745 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
746 uint32_t nr_lmbs = (machine->device_memory->base +
747 memory_region_size(&machine->device_memory->mr)) /
748 lmb_size;
749 uint32_t *int_buf, *cur_index, buf_len;
752 * Allocate enough buffer size to fit in ibm,dynamic-memory
754 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
755 cur_index = int_buf = g_malloc0(buf_len);
756 int_buf[0] = cpu_to_be32(nr_lmbs);
757 cur_index++;
758 for (i = 0; i < nr_lmbs; i++) {
759 uint64_t addr = i * lmb_size;
760 uint32_t *dynamic_memory = cur_index;
762 if (i >= device_lmb_start) {
763 SpaprDrc *drc;
765 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
766 g_assert(drc);
768 dynamic_memory[0] = cpu_to_be32(addr >> 32);
769 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
770 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
771 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
772 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
773 if (memory_region_present(get_system_memory(), addr)) {
774 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
775 } else {
776 dynamic_memory[5] = cpu_to_be32(0);
778 } else {
780 * LMB information for RMA, boot time RAM and gap b/n RAM and
781 * device memory region -- all these are marked as reserved
782 * and as having no valid DRC.
784 dynamic_memory[0] = cpu_to_be32(addr >> 32);
785 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
786 dynamic_memory[2] = cpu_to_be32(0);
787 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
788 dynamic_memory[4] = cpu_to_be32(-1);
789 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
790 SPAPR_LMB_FLAGS_DRC_INVALID);
793 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
795 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
796 g_free(int_buf);
797 if (ret < 0) {
798 return -1;
800 return 0;
804 * Adds ibm,dynamic-reconfiguration-memory node.
805 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
806 * of this device tree node.
808 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
810 MachineState *machine = MACHINE(spapr);
811 int nb_numa_nodes = machine->numa_state->num_nodes;
812 int ret, i, offset;
813 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
814 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
815 uint32_t *int_buf, *cur_index, buf_len;
816 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
817 MemoryDeviceInfoList *dimms = NULL;
820 * Don't create the node if there is no device memory
822 if (machine->ram_size == machine->maxram_size) {
823 return 0;
826 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
828 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
829 sizeof(prop_lmb_size));
830 if (ret < 0) {
831 return ret;
834 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
835 if (ret < 0) {
836 return ret;
839 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
840 if (ret < 0) {
841 return ret;
844 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
845 dimms = qmp_memory_device_list();
846 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
847 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
848 } else {
849 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
851 qapi_free_MemoryDeviceInfoList(dimms);
853 if (ret < 0) {
854 return ret;
857 /* ibm,associativity-lookup-arrays */
858 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
859 cur_index = int_buf = g_malloc0(buf_len);
860 int_buf[0] = cpu_to_be32(nr_nodes);
861 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
862 cur_index += 2;
863 for (i = 0; i < nr_nodes; i++) {
864 uint32_t associativity[] = {
865 cpu_to_be32(0x0),
866 cpu_to_be32(0x0),
867 cpu_to_be32(0x0),
868 cpu_to_be32(i)
870 memcpy(cur_index, associativity, sizeof(associativity));
871 cur_index += 4;
873 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
874 (cur_index - int_buf) * sizeof(uint32_t));
875 g_free(int_buf);
877 return ret;
880 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
881 SpaprOptionVector *ov5_updates)
883 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
884 int ret = 0, offset;
886 /* Generate ibm,dynamic-reconfiguration-memory node if required */
887 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
888 g_assert(smc->dr_lmb_enabled);
889 ret = spapr_populate_drconf_memory(spapr, fdt);
890 if (ret) {
891 return ret;
895 offset = fdt_path_offset(fdt, "/chosen");
896 if (offset < 0) {
897 offset = fdt_add_subnode(fdt, 0, "chosen");
898 if (offset < 0) {
899 return offset;
902 return spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
903 "ibm,architecture-vec-5");
906 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
908 MachineState *ms = MACHINE(spapr);
909 int rtas;
910 GString *hypertas = g_string_sized_new(256);
911 GString *qemu_hypertas = g_string_sized_new(256);
912 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
913 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
914 memory_region_size(&MACHINE(spapr)->device_memory->mr);
915 uint32_t lrdr_capacity[] = {
916 cpu_to_be32(max_device_addr >> 32),
917 cpu_to_be32(max_device_addr & 0xffffffff),
918 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
919 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
921 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
922 uint32_t maxdomains[] = {
923 cpu_to_be32(4),
924 maxdomain,
925 maxdomain,
926 maxdomain,
927 cpu_to_be32(spapr->gpu_numa_id),
930 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
932 /* hypertas */
933 add_str(hypertas, "hcall-pft");
934 add_str(hypertas, "hcall-term");
935 add_str(hypertas, "hcall-dabr");
936 add_str(hypertas, "hcall-interrupt");
937 add_str(hypertas, "hcall-tce");
938 add_str(hypertas, "hcall-vio");
939 add_str(hypertas, "hcall-splpar");
940 add_str(hypertas, "hcall-join");
941 add_str(hypertas, "hcall-bulk");
942 add_str(hypertas, "hcall-set-mode");
943 add_str(hypertas, "hcall-sprg0");
944 add_str(hypertas, "hcall-copy");
945 add_str(hypertas, "hcall-debug");
946 add_str(hypertas, "hcall-vphn");
947 add_str(qemu_hypertas, "hcall-memop1");
949 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
950 add_str(hypertas, "hcall-multi-tce");
953 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
954 add_str(hypertas, "hcall-hpt-resize");
957 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
958 hypertas->str, hypertas->len));
959 g_string_free(hypertas, TRUE);
960 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
961 qemu_hypertas->str, qemu_hypertas->len));
962 g_string_free(qemu_hypertas, TRUE);
964 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
965 refpoints, sizeof(refpoints)));
967 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
968 maxdomains, sizeof(maxdomains)));
970 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
971 RTAS_ERROR_LOG_MAX));
972 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
973 RTAS_EVENT_SCAN_RATE));
975 g_assert(msi_nonbroken);
976 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
979 * According to PAPR, rtas ibm,os-term does not guarantee a return
980 * back to the guest cpu.
982 * While an additional ibm,extended-os-term property indicates
983 * that rtas call return will always occur. Set this property.
985 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
987 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
988 lrdr_capacity, sizeof(lrdr_capacity)));
990 spapr_dt_rtas_tokens(fdt, rtas);
994 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
995 * and the XIVE features that the guest may request and thus the valid
996 * values for bytes 23..26 of option vector 5:
998 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
999 int chosen)
1001 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1003 char val[2 * 4] = {
1004 23, 0x00, /* XICS / XIVE mode */
1005 24, 0x00, /* Hash/Radix, filled in below. */
1006 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1007 26, 0x40, /* Radix options: GTSE == yes. */
1010 if (spapr->irq->xics && spapr->irq->xive) {
1011 val[1] = SPAPR_OV5_XIVE_BOTH;
1012 } else if (spapr->irq->xive) {
1013 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1014 } else {
1015 assert(spapr->irq->xics);
1016 val[1] = SPAPR_OV5_XIVE_LEGACY;
1019 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1020 first_ppc_cpu->compat_pvr)) {
1022 * If we're in a pre POWER9 compat mode then the guest should
1023 * do hash and use the legacy interrupt mode
1025 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1026 val[3] = 0x00; /* Hash */
1027 } else if (kvm_enabled()) {
1028 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1029 val[3] = 0x80; /* OV5_MMU_BOTH */
1030 } else if (kvmppc_has_cap_mmu_radix()) {
1031 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1032 } else {
1033 val[3] = 0x00; /* Hash */
1035 } else {
1036 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1037 val[3] = 0xC0;
1039 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1040 val, sizeof(val)));
1043 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1045 MachineState *machine = MACHINE(spapr);
1046 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1047 int chosen;
1048 const char *boot_device = machine->boot_order;
1049 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1050 size_t cb = 0;
1051 char *bootlist = get_boot_devices_list(&cb);
1053 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1055 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1056 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1057 machine->kernel_cmdline));
1059 if (spapr->initrd_size) {
1060 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1061 spapr->initrd_base));
1062 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1063 spapr->initrd_base + spapr->initrd_size));
1066 if (spapr->kernel_size) {
1067 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1068 cpu_to_be64(spapr->kernel_size) };
1070 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1071 &kprop, sizeof(kprop)));
1072 if (spapr->kernel_le) {
1073 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1076 if (boot_menu) {
1077 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1079 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1080 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1081 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1083 if (cb && bootlist) {
1084 int i;
1086 for (i = 0; i < cb; i++) {
1087 if (bootlist[i] == '\n') {
1088 bootlist[i] = ' ';
1091 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1094 if (boot_device && strlen(boot_device)) {
1095 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1098 if (!spapr->has_graphics && stdout_path) {
1100 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1101 * kernel. New platforms should only use the "stdout-path" property. Set
1102 * the new property and continue using older property to remain
1103 * compatible with the existing firmware.
1105 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1106 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1109 /* We can deal with BAR reallocation just fine, advertise it to the guest */
1110 if (smc->linux_pci_probe) {
1111 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1114 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1116 g_free(stdout_path);
1117 g_free(bootlist);
1120 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1122 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1123 * KVM to work under pHyp with some guest co-operation */
1124 int hypervisor;
1125 uint8_t hypercall[16];
1127 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1128 /* indicate KVM hypercall interface */
1129 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1130 if (kvmppc_has_cap_fixup_hcalls()) {
1132 * Older KVM versions with older guest kernels were broken
1133 * with the magic page, don't allow the guest to map it.
1135 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1136 sizeof(hypercall))) {
1137 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1138 hypercall, sizeof(hypercall)));
1143 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1145 MachineState *machine = MACHINE(spapr);
1146 MachineClass *mc = MACHINE_GET_CLASS(machine);
1147 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1148 int ret;
1149 void *fdt;
1150 SpaprPhbState *phb;
1151 char *buf;
1153 fdt = g_malloc0(space);
1154 _FDT((fdt_create_empty_tree(fdt, space)));
1156 /* Root node */
1157 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1158 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1159 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1161 /* Guest UUID & Name*/
1162 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1163 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1164 if (qemu_uuid_set) {
1165 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1167 g_free(buf);
1169 if (qemu_get_vm_name()) {
1170 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1171 qemu_get_vm_name()));
1174 /* Host Model & Serial Number */
1175 if (spapr->host_model) {
1176 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1177 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1178 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1179 g_free(buf);
1182 if (spapr->host_serial) {
1183 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1184 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1185 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1186 g_free(buf);
1189 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1190 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1192 /* /interrupt controller */
1193 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1195 ret = spapr_populate_memory(spapr, fdt);
1196 if (ret < 0) {
1197 error_report("couldn't setup memory nodes in fdt");
1198 exit(1);
1201 /* /vdevice */
1202 spapr_dt_vdevice(spapr->vio_bus, fdt);
1204 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1205 ret = spapr_rng_populate_dt(fdt);
1206 if (ret < 0) {
1207 error_report("could not set up rng device in the fdt");
1208 exit(1);
1212 QLIST_FOREACH(phb, &spapr->phbs, list) {
1213 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1214 if (ret < 0) {
1215 error_report("couldn't setup PCI devices in fdt");
1216 exit(1);
1220 /* cpus */
1221 spapr_populate_cpus_dt_node(fdt, spapr);
1223 if (smc->dr_lmb_enabled) {
1224 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1227 if (mc->has_hotpluggable_cpus) {
1228 int offset = fdt_path_offset(fdt, "/cpus");
1229 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1230 if (ret < 0) {
1231 error_report("Couldn't set up CPU DR device tree properties");
1232 exit(1);
1236 /* /event-sources */
1237 spapr_dt_events(spapr, fdt);
1239 /* /rtas */
1240 spapr_dt_rtas(spapr, fdt);
1242 /* /chosen */
1243 if (reset) {
1244 spapr_dt_chosen(spapr, fdt);
1247 /* /hypervisor */
1248 if (kvm_enabled()) {
1249 spapr_dt_hypervisor(spapr, fdt);
1252 /* Build memory reserve map */
1253 if (reset) {
1254 if (spapr->kernel_size) {
1255 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1256 spapr->kernel_size)));
1258 if (spapr->initrd_size) {
1259 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1260 spapr->initrd_size)));
1264 /* ibm,client-architecture-support updates */
1265 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1266 if (ret < 0) {
1267 error_report("couldn't setup CAS properties fdt");
1268 exit(1);
1271 if (smc->dr_phb_enabled) {
1272 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1273 if (ret < 0) {
1274 error_report("Couldn't set up PHB DR device tree properties");
1275 exit(1);
1279 /* NVDIMM devices */
1280 if (mc->nvdimm_supported) {
1281 spapr_dt_persistent_memory(fdt);
1284 return fdt;
1287 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1289 SpaprMachineState *spapr = opaque;
1291 return (addr & 0x0fffffff) + spapr->kernel_addr;
1294 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1295 PowerPCCPU *cpu)
1297 CPUPPCState *env = &cpu->env;
1299 /* The TCG path should also be holding the BQL at this point */
1300 g_assert(qemu_mutex_iothread_locked());
1302 if (msr_pr) {
1303 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1304 env->gpr[3] = H_PRIVILEGE;
1305 } else {
1306 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1310 struct LPCRSyncState {
1311 target_ulong value;
1312 target_ulong mask;
1315 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1317 struct LPCRSyncState *s = arg.host_ptr;
1318 PowerPCCPU *cpu = POWERPC_CPU(cs);
1319 CPUPPCState *env = &cpu->env;
1320 target_ulong lpcr;
1322 cpu_synchronize_state(cs);
1323 lpcr = env->spr[SPR_LPCR];
1324 lpcr &= ~s->mask;
1325 lpcr |= s->value;
1326 ppc_store_lpcr(cpu, lpcr);
1329 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1331 CPUState *cs;
1332 struct LPCRSyncState s = {
1333 .value = value,
1334 .mask = mask
1336 CPU_FOREACH(cs) {
1337 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1341 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1343 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1345 /* Copy PATE1:GR into PATE0:HR */
1346 entry->dw0 = spapr->patb_entry & PATE0_HR;
1347 entry->dw1 = spapr->patb_entry;
1350 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1351 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1352 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1353 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1354 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1357 * Get the fd to access the kernel htab, re-opening it if necessary
1359 static int get_htab_fd(SpaprMachineState *spapr)
1361 Error *local_err = NULL;
1363 if (spapr->htab_fd >= 0) {
1364 return spapr->htab_fd;
1367 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1368 if (spapr->htab_fd < 0) {
1369 error_report_err(local_err);
1372 return spapr->htab_fd;
1375 void close_htab_fd(SpaprMachineState *spapr)
1377 if (spapr->htab_fd >= 0) {
1378 close(spapr->htab_fd);
1380 spapr->htab_fd = -1;
1383 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1385 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1387 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1390 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1392 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1394 assert(kvm_enabled());
1396 if (!spapr->htab) {
1397 return 0;
1400 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1403 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1404 hwaddr ptex, int n)
1406 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1407 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1409 if (!spapr->htab) {
1411 * HTAB is controlled by KVM. Fetch into temporary buffer
1413 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1414 kvmppc_read_hptes(hptes, ptex, n);
1415 return hptes;
1419 * HTAB is controlled by QEMU. Just point to the internally
1420 * accessible PTEG.
1422 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1425 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1426 const ppc_hash_pte64_t *hptes,
1427 hwaddr ptex, int n)
1429 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1431 if (!spapr->htab) {
1432 g_free((void *)hptes);
1435 /* Nothing to do for qemu managed HPT */
1438 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1439 uint64_t pte0, uint64_t pte1)
1441 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1442 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1444 if (!spapr->htab) {
1445 kvmppc_write_hpte(ptex, pte0, pte1);
1446 } else {
1447 if (pte0 & HPTE64_V_VALID) {
1448 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1450 * When setting valid, we write PTE1 first. This ensures
1451 * proper synchronization with the reading code in
1452 * ppc_hash64_pteg_search()
1454 smp_wmb();
1455 stq_p(spapr->htab + offset, pte0);
1456 } else {
1457 stq_p(spapr->htab + offset, pte0);
1459 * When clearing it we set PTE0 first. This ensures proper
1460 * synchronization with the reading code in
1461 * ppc_hash64_pteg_search()
1463 smp_wmb();
1464 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1469 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1470 uint64_t pte1)
1472 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1473 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1475 if (!spapr->htab) {
1476 /* There should always be a hash table when this is called */
1477 error_report("spapr_hpte_set_c called with no hash table !");
1478 return;
1481 /* The HW performs a non-atomic byte update */
1482 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1485 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1486 uint64_t pte1)
1488 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1489 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1491 if (!spapr->htab) {
1492 /* There should always be a hash table when this is called */
1493 error_report("spapr_hpte_set_r called with no hash table !");
1494 return;
1497 /* The HW performs a non-atomic byte update */
1498 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1501 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1503 int shift;
1505 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1506 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1507 * that's much more than is needed for Linux guests */
1508 shift = ctz64(pow2ceil(ramsize)) - 7;
1509 shift = MAX(shift, 18); /* Minimum architected size */
1510 shift = MIN(shift, 46); /* Maximum architected size */
1511 return shift;
1514 void spapr_free_hpt(SpaprMachineState *spapr)
1516 g_free(spapr->htab);
1517 spapr->htab = NULL;
1518 spapr->htab_shift = 0;
1519 close_htab_fd(spapr);
1522 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1523 Error **errp)
1525 long rc;
1527 /* Clean up any HPT info from a previous boot */
1528 spapr_free_hpt(spapr);
1530 rc = kvmppc_reset_htab(shift);
1531 if (rc < 0) {
1532 /* kernel-side HPT needed, but couldn't allocate one */
1533 error_setg_errno(errp, errno,
1534 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1535 shift);
1536 /* This is almost certainly fatal, but if the caller really
1537 * wants to carry on with shift == 0, it's welcome to try */
1538 } else if (rc > 0) {
1539 /* kernel-side HPT allocated */
1540 if (rc != shift) {
1541 error_setg(errp,
1542 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1543 shift, rc);
1546 spapr->htab_shift = shift;
1547 spapr->htab = NULL;
1548 } else {
1549 /* kernel-side HPT not needed, allocate in userspace instead */
1550 size_t size = 1ULL << shift;
1551 int i;
1553 spapr->htab = qemu_memalign(size, size);
1554 if (!spapr->htab) {
1555 error_setg_errno(errp, errno,
1556 "Could not allocate HPT of order %d", shift);
1557 return;
1560 memset(spapr->htab, 0, size);
1561 spapr->htab_shift = shift;
1563 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1564 DIRTY_HPTE(HPTE(spapr->htab, i));
1567 /* We're setting up a hash table, so that means we're not radix */
1568 spapr->patb_entry = 0;
1569 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1572 void spapr_setup_hpt(SpaprMachineState *spapr)
1574 int hpt_shift;
1576 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1577 || (spapr->cas_reboot
1578 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1579 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1580 } else {
1581 uint64_t current_ram_size;
1583 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1584 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1586 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1588 if (kvm_enabled()) {
1589 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1591 /* Check our RMA fits in the possible VRMA */
1592 if (vrma_limit < spapr->rma_size) {
1593 error_report("Unable to create %" HWADDR_PRIu
1594 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1595 spapr->rma_size / MiB, vrma_limit / MiB);
1596 exit(EXIT_FAILURE);
1601 static int spapr_reset_drcs(Object *child, void *opaque)
1603 SpaprDrc *drc =
1604 (SpaprDrc *) object_dynamic_cast(child,
1605 TYPE_SPAPR_DR_CONNECTOR);
1607 if (drc) {
1608 spapr_drc_reset(drc);
1611 return 0;
1614 static void spapr_machine_reset(MachineState *machine)
1616 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1617 PowerPCCPU *first_ppc_cpu;
1618 hwaddr fdt_addr;
1619 void *fdt;
1620 int rc;
1622 kvmppc_svm_off(&error_fatal);
1623 spapr_caps_apply(spapr);
1625 first_ppc_cpu = POWERPC_CPU(first_cpu);
1626 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1627 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1628 spapr->max_compat_pvr)) {
1630 * If using KVM with radix mode available, VCPUs can be started
1631 * without a HPT because KVM will start them in radix mode.
1632 * Set the GR bit in PATE so that we know there is no HPT.
1634 spapr->patb_entry = PATE1_GR;
1635 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1636 } else {
1637 spapr_setup_hpt(spapr);
1640 qemu_devices_reset();
1643 * If this reset wasn't generated by CAS, we should reset our
1644 * negotiated options and start from scratch
1646 if (!spapr->cas_reboot) {
1647 spapr_ovec_cleanup(spapr->ov5_cas);
1648 spapr->ov5_cas = spapr_ovec_new();
1650 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1654 * This is fixing some of the default configuration of the XIVE
1655 * devices. To be called after the reset of the machine devices.
1657 spapr_irq_reset(spapr, &error_fatal);
1660 * There is no CAS under qtest. Simulate one to please the code that
1661 * depends on spapr->ov5_cas. This is especially needed to test device
1662 * unplug, so we do that before resetting the DRCs.
1664 if (qtest_enabled()) {
1665 spapr_ovec_cleanup(spapr->ov5_cas);
1666 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1669 /* DRC reset may cause a device to be unplugged. This will cause troubles
1670 * if this device is used by another device (eg, a running vhost backend
1671 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1672 * situations, we reset DRCs after all devices have been reset.
1674 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1676 spapr_clear_pending_events(spapr);
1679 * We place the device tree and RTAS just below either the top of the RMA,
1680 * or just below 2GB, whichever is lower, so that it can be
1681 * processed with 32-bit real mode code if necessary
1683 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1685 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1687 rc = fdt_pack(fdt);
1689 /* Should only fail if we've built a corrupted tree */
1690 assert(rc == 0);
1692 /* Load the fdt */
1693 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1694 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1695 g_free(spapr->fdt_blob);
1696 spapr->fdt_size = fdt_totalsize(fdt);
1697 spapr->fdt_initial_size = spapr->fdt_size;
1698 spapr->fdt_blob = fdt;
1700 /* Set up the entry state */
1701 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1702 first_ppc_cpu->env.gpr[5] = 0;
1704 spapr->cas_reboot = false;
1706 spapr->mc_status = -1;
1707 spapr->guest_machine_check_addr = -1;
1709 /* Signal all vCPUs waiting on this condition */
1710 qemu_cond_broadcast(&spapr->mc_delivery_cond);
1712 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1715 static void spapr_create_nvram(SpaprMachineState *spapr)
1717 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1718 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1720 if (dinfo) {
1721 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1722 &error_fatal);
1725 qdev_init_nofail(dev);
1727 spapr->nvram = (struct SpaprNvram *)dev;
1730 static void spapr_rtc_create(SpaprMachineState *spapr)
1732 object_initialize_child(OBJECT(spapr), "rtc",
1733 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1734 &error_fatal, NULL);
1735 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1736 &error_fatal);
1737 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1738 "date", &error_fatal);
1741 /* Returns whether we want to use VGA or not */
1742 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1744 switch (vga_interface_type) {
1745 case VGA_NONE:
1746 return false;
1747 case VGA_DEVICE:
1748 return true;
1749 case VGA_STD:
1750 case VGA_VIRTIO:
1751 case VGA_CIRRUS:
1752 return pci_vga_init(pci_bus) != NULL;
1753 default:
1754 error_setg(errp,
1755 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1756 return false;
1760 static int spapr_pre_load(void *opaque)
1762 int rc;
1764 rc = spapr_caps_pre_load(opaque);
1765 if (rc) {
1766 return rc;
1769 return 0;
1772 static int spapr_post_load(void *opaque, int version_id)
1774 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1775 int err = 0;
1777 err = spapr_caps_post_migration(spapr);
1778 if (err) {
1779 return err;
1783 * In earlier versions, there was no separate qdev for the PAPR
1784 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1785 * So when migrating from those versions, poke the incoming offset
1786 * value into the RTC device
1788 if (version_id < 3) {
1789 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1790 if (err) {
1791 return err;
1795 if (kvm_enabled() && spapr->patb_entry) {
1796 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1797 bool radix = !!(spapr->patb_entry & PATE1_GR);
1798 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1801 * Update LPCR:HR and UPRT as they may not be set properly in
1802 * the stream
1804 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1805 LPCR_HR | LPCR_UPRT);
1807 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1808 if (err) {
1809 error_report("Process table config unsupported by the host");
1810 return -EINVAL;
1814 err = spapr_irq_post_load(spapr, version_id);
1815 if (err) {
1816 return err;
1819 return err;
1822 static int spapr_pre_save(void *opaque)
1824 int rc;
1826 rc = spapr_caps_pre_save(opaque);
1827 if (rc) {
1828 return rc;
1831 return 0;
1834 static bool version_before_3(void *opaque, int version_id)
1836 return version_id < 3;
1839 static bool spapr_pending_events_needed(void *opaque)
1841 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1842 return !QTAILQ_EMPTY(&spapr->pending_events);
1845 static const VMStateDescription vmstate_spapr_event_entry = {
1846 .name = "spapr_event_log_entry",
1847 .version_id = 1,
1848 .minimum_version_id = 1,
1849 .fields = (VMStateField[]) {
1850 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1851 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1852 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1853 NULL, extended_length),
1854 VMSTATE_END_OF_LIST()
1858 static const VMStateDescription vmstate_spapr_pending_events = {
1859 .name = "spapr_pending_events",
1860 .version_id = 1,
1861 .minimum_version_id = 1,
1862 .needed = spapr_pending_events_needed,
1863 .fields = (VMStateField[]) {
1864 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1865 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1866 VMSTATE_END_OF_LIST()
1870 static bool spapr_ov5_cas_needed(void *opaque)
1872 SpaprMachineState *spapr = opaque;
1873 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1874 bool cas_needed;
1876 /* Prior to the introduction of SpaprOptionVector, we had two option
1877 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1878 * Both of these options encode machine topology into the device-tree
1879 * in such a way that the now-booted OS should still be able to interact
1880 * appropriately with QEMU regardless of what options were actually
1881 * negotiatied on the source side.
1883 * As such, we can avoid migrating the CAS-negotiated options if these
1884 * are the only options available on the current machine/platform.
1885 * Since these are the only options available for pseries-2.7 and
1886 * earlier, this allows us to maintain old->new/new->old migration
1887 * compatibility.
1889 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1890 * via default pseries-2.8 machines and explicit command-line parameters.
1891 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1892 * of the actual CAS-negotiated values to continue working properly. For
1893 * example, availability of memory unplug depends on knowing whether
1894 * OV5_HP_EVT was negotiated via CAS.
1896 * Thus, for any cases where the set of available CAS-negotiatable
1897 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1898 * include the CAS-negotiated options in the migration stream, unless
1899 * if they affect boot time behaviour only.
1901 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1902 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1903 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1905 /* We need extra information if we have any bits outside the mask
1906 * defined above */
1907 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1909 spapr_ovec_cleanup(ov5_mask);
1911 return cas_needed;
1914 static const VMStateDescription vmstate_spapr_ov5_cas = {
1915 .name = "spapr_option_vector_ov5_cas",
1916 .version_id = 1,
1917 .minimum_version_id = 1,
1918 .needed = spapr_ov5_cas_needed,
1919 .fields = (VMStateField[]) {
1920 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1921 vmstate_spapr_ovec, SpaprOptionVector),
1922 VMSTATE_END_OF_LIST()
1926 static bool spapr_patb_entry_needed(void *opaque)
1928 SpaprMachineState *spapr = opaque;
1930 return !!spapr->patb_entry;
1933 static const VMStateDescription vmstate_spapr_patb_entry = {
1934 .name = "spapr_patb_entry",
1935 .version_id = 1,
1936 .minimum_version_id = 1,
1937 .needed = spapr_patb_entry_needed,
1938 .fields = (VMStateField[]) {
1939 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1940 VMSTATE_END_OF_LIST()
1944 static bool spapr_irq_map_needed(void *opaque)
1946 SpaprMachineState *spapr = opaque;
1948 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1951 static const VMStateDescription vmstate_spapr_irq_map = {
1952 .name = "spapr_irq_map",
1953 .version_id = 1,
1954 .minimum_version_id = 1,
1955 .needed = spapr_irq_map_needed,
1956 .fields = (VMStateField[]) {
1957 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1958 VMSTATE_END_OF_LIST()
1962 static bool spapr_dtb_needed(void *opaque)
1964 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1966 return smc->update_dt_enabled;
1969 static int spapr_dtb_pre_load(void *opaque)
1971 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1973 g_free(spapr->fdt_blob);
1974 spapr->fdt_blob = NULL;
1975 spapr->fdt_size = 0;
1977 return 0;
1980 static const VMStateDescription vmstate_spapr_dtb = {
1981 .name = "spapr_dtb",
1982 .version_id = 1,
1983 .minimum_version_id = 1,
1984 .needed = spapr_dtb_needed,
1985 .pre_load = spapr_dtb_pre_load,
1986 .fields = (VMStateField[]) {
1987 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1988 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1989 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1990 fdt_size),
1991 VMSTATE_END_OF_LIST()
1995 static bool spapr_fwnmi_needed(void *opaque)
1997 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1999 return spapr->guest_machine_check_addr != -1;
2002 static int spapr_fwnmi_pre_save(void *opaque)
2004 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2007 * Check if machine check handling is in progress and print a
2008 * warning message.
2010 if (spapr->mc_status != -1) {
2011 warn_report("A machine check is being handled during migration. The"
2012 "handler may run and log hardware error on the destination");
2015 return 0;
2018 static const VMStateDescription vmstate_spapr_machine_check = {
2019 .name = "spapr_machine_check",
2020 .version_id = 1,
2021 .minimum_version_id = 1,
2022 .needed = spapr_fwnmi_needed,
2023 .pre_save = spapr_fwnmi_pre_save,
2024 .fields = (VMStateField[]) {
2025 VMSTATE_UINT64(guest_machine_check_addr, SpaprMachineState),
2026 VMSTATE_INT32(mc_status, SpaprMachineState),
2027 VMSTATE_END_OF_LIST()
2031 static const VMStateDescription vmstate_spapr = {
2032 .name = "spapr",
2033 .version_id = 3,
2034 .minimum_version_id = 1,
2035 .pre_load = spapr_pre_load,
2036 .post_load = spapr_post_load,
2037 .pre_save = spapr_pre_save,
2038 .fields = (VMStateField[]) {
2039 /* used to be @next_irq */
2040 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2042 /* RTC offset */
2043 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2045 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2046 VMSTATE_END_OF_LIST()
2048 .subsections = (const VMStateDescription*[]) {
2049 &vmstate_spapr_ov5_cas,
2050 &vmstate_spapr_patb_entry,
2051 &vmstate_spapr_pending_events,
2052 &vmstate_spapr_cap_htm,
2053 &vmstate_spapr_cap_vsx,
2054 &vmstate_spapr_cap_dfp,
2055 &vmstate_spapr_cap_cfpc,
2056 &vmstate_spapr_cap_sbbc,
2057 &vmstate_spapr_cap_ibs,
2058 &vmstate_spapr_cap_hpt_maxpagesize,
2059 &vmstate_spapr_irq_map,
2060 &vmstate_spapr_cap_nested_kvm_hv,
2061 &vmstate_spapr_dtb,
2062 &vmstate_spapr_cap_large_decr,
2063 &vmstate_spapr_cap_ccf_assist,
2064 &vmstate_spapr_cap_fwnmi,
2065 &vmstate_spapr_machine_check,
2066 NULL
2070 static int htab_save_setup(QEMUFile *f, void *opaque)
2072 SpaprMachineState *spapr = opaque;
2074 /* "Iteration" header */
2075 if (!spapr->htab_shift) {
2076 qemu_put_be32(f, -1);
2077 } else {
2078 qemu_put_be32(f, spapr->htab_shift);
2081 if (spapr->htab) {
2082 spapr->htab_save_index = 0;
2083 spapr->htab_first_pass = true;
2084 } else {
2085 if (spapr->htab_shift) {
2086 assert(kvm_enabled());
2091 return 0;
2094 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2095 int chunkstart, int n_valid, int n_invalid)
2097 qemu_put_be32(f, chunkstart);
2098 qemu_put_be16(f, n_valid);
2099 qemu_put_be16(f, n_invalid);
2100 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2101 HASH_PTE_SIZE_64 * n_valid);
2104 static void htab_save_end_marker(QEMUFile *f)
2106 qemu_put_be32(f, 0);
2107 qemu_put_be16(f, 0);
2108 qemu_put_be16(f, 0);
2111 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2112 int64_t max_ns)
2114 bool has_timeout = max_ns != -1;
2115 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2116 int index = spapr->htab_save_index;
2117 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2119 assert(spapr->htab_first_pass);
2121 do {
2122 int chunkstart;
2124 /* Consume invalid HPTEs */
2125 while ((index < htabslots)
2126 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2127 CLEAN_HPTE(HPTE(spapr->htab, index));
2128 index++;
2131 /* Consume valid HPTEs */
2132 chunkstart = index;
2133 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2134 && HPTE_VALID(HPTE(spapr->htab, index))) {
2135 CLEAN_HPTE(HPTE(spapr->htab, index));
2136 index++;
2139 if (index > chunkstart) {
2140 int n_valid = index - chunkstart;
2142 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2144 if (has_timeout &&
2145 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2146 break;
2149 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2151 if (index >= htabslots) {
2152 assert(index == htabslots);
2153 index = 0;
2154 spapr->htab_first_pass = false;
2156 spapr->htab_save_index = index;
2159 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2160 int64_t max_ns)
2162 bool final = max_ns < 0;
2163 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2164 int examined = 0, sent = 0;
2165 int index = spapr->htab_save_index;
2166 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2168 assert(!spapr->htab_first_pass);
2170 do {
2171 int chunkstart, invalidstart;
2173 /* Consume non-dirty HPTEs */
2174 while ((index < htabslots)
2175 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2176 index++;
2177 examined++;
2180 chunkstart = index;
2181 /* Consume valid dirty HPTEs */
2182 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2183 && HPTE_DIRTY(HPTE(spapr->htab, index))
2184 && HPTE_VALID(HPTE(spapr->htab, index))) {
2185 CLEAN_HPTE(HPTE(spapr->htab, index));
2186 index++;
2187 examined++;
2190 invalidstart = index;
2191 /* Consume invalid dirty HPTEs */
2192 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2193 && HPTE_DIRTY(HPTE(spapr->htab, index))
2194 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2195 CLEAN_HPTE(HPTE(spapr->htab, index));
2196 index++;
2197 examined++;
2200 if (index > chunkstart) {
2201 int n_valid = invalidstart - chunkstart;
2202 int n_invalid = index - invalidstart;
2204 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2205 sent += index - chunkstart;
2207 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2208 break;
2212 if (examined >= htabslots) {
2213 break;
2216 if (index >= htabslots) {
2217 assert(index == htabslots);
2218 index = 0;
2220 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2222 if (index >= htabslots) {
2223 assert(index == htabslots);
2224 index = 0;
2227 spapr->htab_save_index = index;
2229 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2232 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2233 #define MAX_KVM_BUF_SIZE 2048
2235 static int htab_save_iterate(QEMUFile *f, void *opaque)
2237 SpaprMachineState *spapr = opaque;
2238 int fd;
2239 int rc = 0;
2241 /* Iteration header */
2242 if (!spapr->htab_shift) {
2243 qemu_put_be32(f, -1);
2244 return 1;
2245 } else {
2246 qemu_put_be32(f, 0);
2249 if (!spapr->htab) {
2250 assert(kvm_enabled());
2252 fd = get_htab_fd(spapr);
2253 if (fd < 0) {
2254 return fd;
2257 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2258 if (rc < 0) {
2259 return rc;
2261 } else if (spapr->htab_first_pass) {
2262 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2263 } else {
2264 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2267 htab_save_end_marker(f);
2269 return rc;
2272 static int htab_save_complete(QEMUFile *f, void *opaque)
2274 SpaprMachineState *spapr = opaque;
2275 int fd;
2277 /* Iteration header */
2278 if (!spapr->htab_shift) {
2279 qemu_put_be32(f, -1);
2280 return 0;
2281 } else {
2282 qemu_put_be32(f, 0);
2285 if (!spapr->htab) {
2286 int rc;
2288 assert(kvm_enabled());
2290 fd = get_htab_fd(spapr);
2291 if (fd < 0) {
2292 return fd;
2295 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2296 if (rc < 0) {
2297 return rc;
2299 } else {
2300 if (spapr->htab_first_pass) {
2301 htab_save_first_pass(f, spapr, -1);
2303 htab_save_later_pass(f, spapr, -1);
2306 /* End marker */
2307 htab_save_end_marker(f);
2309 return 0;
2312 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2314 SpaprMachineState *spapr = opaque;
2315 uint32_t section_hdr;
2316 int fd = -1;
2317 Error *local_err = NULL;
2319 if (version_id < 1 || version_id > 1) {
2320 error_report("htab_load() bad version");
2321 return -EINVAL;
2324 section_hdr = qemu_get_be32(f);
2326 if (section_hdr == -1) {
2327 spapr_free_hpt(spapr);
2328 return 0;
2331 if (section_hdr) {
2332 /* First section gives the htab size */
2333 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2334 if (local_err) {
2335 error_report_err(local_err);
2336 return -EINVAL;
2338 return 0;
2341 if (!spapr->htab) {
2342 assert(kvm_enabled());
2344 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2345 if (fd < 0) {
2346 error_report_err(local_err);
2347 return fd;
2351 while (true) {
2352 uint32_t index;
2353 uint16_t n_valid, n_invalid;
2355 index = qemu_get_be32(f);
2356 n_valid = qemu_get_be16(f);
2357 n_invalid = qemu_get_be16(f);
2359 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2360 /* End of Stream */
2361 break;
2364 if ((index + n_valid + n_invalid) >
2365 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2366 /* Bad index in stream */
2367 error_report(
2368 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2369 index, n_valid, n_invalid, spapr->htab_shift);
2370 return -EINVAL;
2373 if (spapr->htab) {
2374 if (n_valid) {
2375 qemu_get_buffer(f, HPTE(spapr->htab, index),
2376 HASH_PTE_SIZE_64 * n_valid);
2378 if (n_invalid) {
2379 memset(HPTE(spapr->htab, index + n_valid), 0,
2380 HASH_PTE_SIZE_64 * n_invalid);
2382 } else {
2383 int rc;
2385 assert(fd >= 0);
2387 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2388 if (rc < 0) {
2389 return rc;
2394 if (!spapr->htab) {
2395 assert(fd >= 0);
2396 close(fd);
2399 return 0;
2402 static void htab_save_cleanup(void *opaque)
2404 SpaprMachineState *spapr = opaque;
2406 close_htab_fd(spapr);
2409 static SaveVMHandlers savevm_htab_handlers = {
2410 .save_setup = htab_save_setup,
2411 .save_live_iterate = htab_save_iterate,
2412 .save_live_complete_precopy = htab_save_complete,
2413 .save_cleanup = htab_save_cleanup,
2414 .load_state = htab_load,
2417 static void spapr_boot_set(void *opaque, const char *boot_device,
2418 Error **errp)
2420 MachineState *machine = MACHINE(opaque);
2421 machine->boot_order = g_strdup(boot_device);
2424 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2426 MachineState *machine = MACHINE(spapr);
2427 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2428 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2429 int i;
2431 for (i = 0; i < nr_lmbs; i++) {
2432 uint64_t addr;
2434 addr = i * lmb_size + machine->device_memory->base;
2435 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2436 addr / lmb_size);
2441 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2442 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2443 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2445 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2447 int i;
2449 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2450 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2451 " is not aligned to %" PRIu64 " MiB",
2452 machine->ram_size,
2453 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2454 return;
2457 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2458 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2459 " is not aligned to %" PRIu64 " MiB",
2460 machine->ram_size,
2461 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2462 return;
2465 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2466 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2467 error_setg(errp,
2468 "Node %d memory size 0x%" PRIx64
2469 " is not aligned to %" PRIu64 " MiB",
2470 i, machine->numa_state->nodes[i].node_mem,
2471 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2472 return;
2477 /* find cpu slot in machine->possible_cpus by core_id */
2478 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2480 int index = id / ms->smp.threads;
2482 if (index >= ms->possible_cpus->len) {
2483 return NULL;
2485 if (idx) {
2486 *idx = index;
2488 return &ms->possible_cpus->cpus[index];
2491 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2493 MachineState *ms = MACHINE(spapr);
2494 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2495 Error *local_err = NULL;
2496 bool vsmt_user = !!spapr->vsmt;
2497 int kvm_smt = kvmppc_smt_threads();
2498 int ret;
2499 unsigned int smp_threads = ms->smp.threads;
2501 if (!kvm_enabled() && (smp_threads > 1)) {
2502 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2503 "on a pseries machine");
2504 goto out;
2506 if (!is_power_of_2(smp_threads)) {
2507 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2508 "machine because it must be a power of 2", smp_threads);
2509 goto out;
2512 /* Detemine the VSMT mode to use: */
2513 if (vsmt_user) {
2514 if (spapr->vsmt < smp_threads) {
2515 error_setg(&local_err, "Cannot support VSMT mode %d"
2516 " because it must be >= threads/core (%d)",
2517 spapr->vsmt, smp_threads);
2518 goto out;
2520 /* In this case, spapr->vsmt has been set by the command line */
2521 } else if (!smc->smp_threads_vsmt) {
2523 * Default VSMT value is tricky, because we need it to be as
2524 * consistent as possible (for migration), but this requires
2525 * changing it for at least some existing cases. We pick 8 as
2526 * the value that we'd get with KVM on POWER8, the
2527 * overwhelmingly common case in production systems.
2529 spapr->vsmt = MAX(8, smp_threads);
2530 } else {
2531 spapr->vsmt = smp_threads;
2534 /* KVM: If necessary, set the SMT mode: */
2535 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2536 ret = kvmppc_set_smt_threads(spapr->vsmt);
2537 if (ret) {
2538 /* Looks like KVM isn't able to change VSMT mode */
2539 error_setg(&local_err,
2540 "Failed to set KVM's VSMT mode to %d (errno %d)",
2541 spapr->vsmt, ret);
2542 /* We can live with that if the default one is big enough
2543 * for the number of threads, and a submultiple of the one
2544 * we want. In this case we'll waste some vcpu ids, but
2545 * behaviour will be correct */
2546 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2547 warn_report_err(local_err);
2548 local_err = NULL;
2549 goto out;
2550 } else {
2551 if (!vsmt_user) {
2552 error_append_hint(&local_err,
2553 "On PPC, a VM with %d threads/core"
2554 " on a host with %d threads/core"
2555 " requires the use of VSMT mode %d.\n",
2556 smp_threads, kvm_smt, spapr->vsmt);
2558 kvmppc_error_append_smt_possible_hint(&local_err);
2559 goto out;
2563 /* else TCG: nothing to do currently */
2564 out:
2565 error_propagate(errp, local_err);
2568 static void spapr_init_cpus(SpaprMachineState *spapr)
2570 MachineState *machine = MACHINE(spapr);
2571 MachineClass *mc = MACHINE_GET_CLASS(machine);
2572 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2573 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2574 const CPUArchIdList *possible_cpus;
2575 unsigned int smp_cpus = machine->smp.cpus;
2576 unsigned int smp_threads = machine->smp.threads;
2577 unsigned int max_cpus = machine->smp.max_cpus;
2578 int boot_cores_nr = smp_cpus / smp_threads;
2579 int i;
2581 possible_cpus = mc->possible_cpu_arch_ids(machine);
2582 if (mc->has_hotpluggable_cpus) {
2583 if (smp_cpus % smp_threads) {
2584 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2585 smp_cpus, smp_threads);
2586 exit(1);
2588 if (max_cpus % smp_threads) {
2589 error_report("max_cpus (%u) must be multiple of threads (%u)",
2590 max_cpus, smp_threads);
2591 exit(1);
2593 } else {
2594 if (max_cpus != smp_cpus) {
2595 error_report("This machine version does not support CPU hotplug");
2596 exit(1);
2598 boot_cores_nr = possible_cpus->len;
2601 if (smc->pre_2_10_has_unused_icps) {
2602 int i;
2604 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2605 /* Dummy entries get deregistered when real ICPState objects
2606 * are registered during CPU core hotplug.
2608 pre_2_10_vmstate_register_dummy_icp(i);
2612 for (i = 0; i < possible_cpus->len; i++) {
2613 int core_id = i * smp_threads;
2615 if (mc->has_hotpluggable_cpus) {
2616 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2617 spapr_vcpu_id(spapr, core_id));
2620 if (i < boot_cores_nr) {
2621 Object *core = object_new(type);
2622 int nr_threads = smp_threads;
2624 /* Handle the partially filled core for older machine types */
2625 if ((i + 1) * smp_threads >= smp_cpus) {
2626 nr_threads = smp_cpus - i * smp_threads;
2629 object_property_set_int(core, nr_threads, "nr-threads",
2630 &error_fatal);
2631 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2632 &error_fatal);
2633 object_property_set_bool(core, true, "realized", &error_fatal);
2635 object_unref(core);
2640 static PCIHostState *spapr_create_default_phb(void)
2642 DeviceState *dev;
2644 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2645 qdev_prop_set_uint32(dev, "index", 0);
2646 qdev_init_nofail(dev);
2648 return PCI_HOST_BRIDGE(dev);
2651 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2653 MachineState *machine = MACHINE(spapr);
2654 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2655 hwaddr rma_size = machine->ram_size;
2656 hwaddr node0_size = spapr_node0_size(machine);
2658 /* RMA has to fit in the first NUMA node */
2659 rma_size = MIN(rma_size, node0_size);
2662 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2663 * never exceed that
2665 rma_size = MIN(rma_size, 1 * TiB);
2668 * Clamp the RMA size based on machine type. This is for
2669 * migration compatibility with older qemu versions, which limited
2670 * the RMA size for complicated and mostly bad reasons.
2672 if (smc->rma_limit) {
2673 rma_size = MIN(rma_size, smc->rma_limit);
2676 if (rma_size < MIN_RMA_SLOF) {
2677 error_setg(errp,
2678 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2679 "ldMiB guest RMA (Real Mode Area memory)",
2680 MIN_RMA_SLOF / MiB);
2681 return 0;
2684 return rma_size;
2687 /* pSeries LPAR / sPAPR hardware init */
2688 static void spapr_machine_init(MachineState *machine)
2690 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2691 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2692 MachineClass *mc = MACHINE_GET_CLASS(machine);
2693 const char *kernel_filename = machine->kernel_filename;
2694 const char *initrd_filename = machine->initrd_filename;
2695 PCIHostState *phb;
2696 int i;
2697 MemoryRegion *sysmem = get_system_memory();
2698 long load_limit, fw_size;
2699 char *filename;
2700 Error *resize_hpt_err = NULL;
2702 msi_nonbroken = true;
2704 QLIST_INIT(&spapr->phbs);
2705 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2707 /* Determine capabilities to run with */
2708 spapr_caps_init(spapr);
2710 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2711 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2713 * If the user explicitly requested a mode we should either
2714 * supply it, or fail completely (which we do below). But if
2715 * it's not set explicitly, we reset our mode to something
2716 * that works
2718 if (resize_hpt_err) {
2719 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2720 error_free(resize_hpt_err);
2721 resize_hpt_err = NULL;
2722 } else {
2723 spapr->resize_hpt = smc->resize_hpt_default;
2727 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2729 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2731 * User requested HPT resize, but this host can't supply it. Bail out
2733 error_report_err(resize_hpt_err);
2734 exit(1);
2737 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2739 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2740 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2743 * VSMT must be set in order to be able to compute VCPU ids, ie to
2744 * call spapr_max_server_number() or spapr_vcpu_id().
2746 spapr_set_vsmt_mode(spapr, &error_fatal);
2748 /* Set up Interrupt Controller before we create the VCPUs */
2749 spapr_irq_init(spapr, &error_fatal);
2751 /* Set up containers for ibm,client-architecture-support negotiated options
2753 spapr->ov5 = spapr_ovec_new();
2754 spapr->ov5_cas = spapr_ovec_new();
2756 if (smc->dr_lmb_enabled) {
2757 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2758 spapr_validate_node_memory(machine, &error_fatal);
2761 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2763 /* advertise support for dedicated HP event source to guests */
2764 if (spapr->use_hotplug_event_source) {
2765 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2768 /* advertise support for HPT resizing */
2769 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2770 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2773 /* advertise support for ibm,dyamic-memory-v2 */
2774 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2776 /* advertise XIVE on POWER9 machines */
2777 if (spapr->irq->xive) {
2778 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2781 /* init CPUs */
2782 spapr_init_cpus(spapr);
2785 * check we don't have a memory-less/cpu-less NUMA node
2786 * Firmware relies on the existing memory/cpu topology to provide the
2787 * NUMA topology to the kernel.
2788 * And the linux kernel needs to know the NUMA topology at start
2789 * to be able to hotplug CPUs later.
2791 if (machine->numa_state->num_nodes) {
2792 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2793 /* check for memory-less node */
2794 if (machine->numa_state->nodes[i].node_mem == 0) {
2795 CPUState *cs;
2796 int found = 0;
2797 /* check for cpu-less node */
2798 CPU_FOREACH(cs) {
2799 PowerPCCPU *cpu = POWERPC_CPU(cs);
2800 if (cpu->node_id == i) {
2801 found = 1;
2802 break;
2805 /* memory-less and cpu-less node */
2806 if (!found) {
2807 error_report(
2808 "Memory-less/cpu-less nodes are not supported (node %d)",
2810 exit(1);
2818 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2819 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2820 * called from vPHB reset handler so we initialize the counter here.
2821 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2822 * must be equally distant from any other node.
2823 * The final value of spapr->gpu_numa_id is going to be written to
2824 * max-associativity-domains in spapr_build_fdt().
2826 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2828 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2829 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2830 spapr->max_compat_pvr)) {
2831 /* KVM and TCG always allow GTSE with radix... */
2832 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2834 /* ... but not with hash (currently). */
2836 if (kvm_enabled()) {
2837 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2838 kvmppc_enable_logical_ci_hcalls();
2839 kvmppc_enable_set_mode_hcall();
2841 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2842 kvmppc_enable_clear_ref_mod_hcalls();
2844 /* Enable H_PAGE_INIT */
2845 kvmppc_enable_h_page_init();
2848 /* map RAM */
2849 memory_region_add_subregion(sysmem, 0, machine->ram);
2851 /* always allocate the device memory information */
2852 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2854 /* initialize hotplug memory address space */
2855 if (machine->ram_size < machine->maxram_size) {
2856 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2858 * Limit the number of hotpluggable memory slots to half the number
2859 * slots that KVM supports, leaving the other half for PCI and other
2860 * devices. However ensure that number of slots doesn't drop below 32.
2862 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2863 SPAPR_MAX_RAM_SLOTS;
2865 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2866 max_memslots = SPAPR_MAX_RAM_SLOTS;
2868 if (machine->ram_slots > max_memslots) {
2869 error_report("Specified number of memory slots %"
2870 PRIu64" exceeds max supported %d",
2871 machine->ram_slots, max_memslots);
2872 exit(1);
2875 machine->device_memory->base = ROUND_UP(machine->ram_size,
2876 SPAPR_DEVICE_MEM_ALIGN);
2877 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2878 "device-memory", device_mem_size);
2879 memory_region_add_subregion(sysmem, machine->device_memory->base,
2880 &machine->device_memory->mr);
2883 if (smc->dr_lmb_enabled) {
2884 spapr_create_lmb_dr_connectors(spapr);
2887 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI_MCE) == SPAPR_CAP_ON) {
2888 /* Create the error string for live migration blocker */
2889 error_setg(&spapr->fwnmi_migration_blocker,
2890 "A machine check is being handled during migration. The handler"
2891 "may run and log hardware error on the destination");
2894 if (mc->nvdimm_supported) {
2895 spapr_create_nvdimm_dr_connectors(spapr);
2898 /* Set up RTAS event infrastructure */
2899 spapr_events_init(spapr);
2901 /* Set up the RTC RTAS interfaces */
2902 spapr_rtc_create(spapr);
2904 /* Set up VIO bus */
2905 spapr->vio_bus = spapr_vio_bus_init();
2907 for (i = 0; i < serial_max_hds(); i++) {
2908 if (serial_hd(i)) {
2909 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2913 /* We always have at least the nvram device on VIO */
2914 spapr_create_nvram(spapr);
2917 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2918 * connectors (described in root DT node's "ibm,drc-types" property)
2919 * are pre-initialized here. additional child connectors (such as
2920 * connectors for a PHBs PCI slots) are added as needed during their
2921 * parent's realization.
2923 if (smc->dr_phb_enabled) {
2924 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2925 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2929 /* Set up PCI */
2930 spapr_pci_rtas_init();
2932 phb = spapr_create_default_phb();
2934 for (i = 0; i < nb_nics; i++) {
2935 NICInfo *nd = &nd_table[i];
2937 if (!nd->model) {
2938 nd->model = g_strdup("spapr-vlan");
2941 if (g_str_equal(nd->model, "spapr-vlan") ||
2942 g_str_equal(nd->model, "ibmveth")) {
2943 spapr_vlan_create(spapr->vio_bus, nd);
2944 } else {
2945 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2949 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2950 spapr_vscsi_create(spapr->vio_bus);
2953 /* Graphics */
2954 if (spapr_vga_init(phb->bus, &error_fatal)) {
2955 spapr->has_graphics = true;
2956 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2959 if (machine->usb) {
2960 if (smc->use_ohci_by_default) {
2961 pci_create_simple(phb->bus, -1, "pci-ohci");
2962 } else {
2963 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2966 if (spapr->has_graphics) {
2967 USBBus *usb_bus = usb_bus_find(-1);
2969 usb_create_simple(usb_bus, "usb-kbd");
2970 usb_create_simple(usb_bus, "usb-mouse");
2974 if (kernel_filename) {
2975 uint64_t lowaddr = 0;
2977 spapr->kernel_size = load_elf(kernel_filename, NULL,
2978 translate_kernel_address, spapr,
2979 NULL, &lowaddr, NULL, NULL, 1,
2980 PPC_ELF_MACHINE, 0, 0);
2981 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2982 spapr->kernel_size = load_elf(kernel_filename, NULL,
2983 translate_kernel_address, spapr, NULL,
2984 &lowaddr, NULL, NULL, 0,
2985 PPC_ELF_MACHINE,
2986 0, 0);
2987 spapr->kernel_le = spapr->kernel_size > 0;
2989 if (spapr->kernel_size < 0) {
2990 error_report("error loading %s: %s", kernel_filename,
2991 load_elf_strerror(spapr->kernel_size));
2992 exit(1);
2995 /* load initrd */
2996 if (initrd_filename) {
2997 /* Try to locate the initrd in the gap between the kernel
2998 * and the firmware. Add a bit of space just in case
3000 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3001 + 0x1ffff) & ~0xffff;
3002 spapr->initrd_size = load_image_targphys(initrd_filename,
3003 spapr->initrd_base,
3004 load_limit
3005 - spapr->initrd_base);
3006 if (spapr->initrd_size < 0) {
3007 error_report("could not load initial ram disk '%s'",
3008 initrd_filename);
3009 exit(1);
3014 if (bios_name == NULL) {
3015 bios_name = FW_FILE_NAME;
3017 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3018 if (!filename) {
3019 error_report("Could not find LPAR firmware '%s'", bios_name);
3020 exit(1);
3022 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3023 if (fw_size <= 0) {
3024 error_report("Could not load LPAR firmware '%s'", filename);
3025 exit(1);
3027 g_free(filename);
3029 /* FIXME: Should register things through the MachineState's qdev
3030 * interface, this is a legacy from the sPAPREnvironment structure
3031 * which predated MachineState but had a similar function */
3032 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3033 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3034 &savevm_htab_handlers, spapr);
3036 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3037 &error_fatal);
3039 qemu_register_boot_set(spapr_boot_set, spapr);
3042 * Nothing needs to be done to resume a suspended guest because
3043 * suspending does not change the machine state, so no need for
3044 * a ->wakeup method.
3046 qemu_register_wakeup_support();
3048 if (kvm_enabled()) {
3049 /* to stop and start vmclock */
3050 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3051 &spapr->tb);
3053 kvmppc_spapr_enable_inkernel_multitce();
3056 qemu_cond_init(&spapr->mc_delivery_cond);
3059 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3061 if (!vm_type) {
3062 return 0;
3065 if (!strcmp(vm_type, "HV")) {
3066 return 1;
3069 if (!strcmp(vm_type, "PR")) {
3070 return 2;
3073 error_report("Unknown kvm-type specified '%s'", vm_type);
3074 exit(1);
3078 * Implementation of an interface to adjust firmware path
3079 * for the bootindex property handling.
3081 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3082 DeviceState *dev)
3084 #define CAST(type, obj, name) \
3085 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3086 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3087 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3088 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3090 if (d) {
3091 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3092 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3093 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3095 if (spapr) {
3097 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3098 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3099 * 0x8000 | (target << 8) | (bus << 5) | lun
3100 * (see the "Logical unit addressing format" table in SAM5)
3102 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3103 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3104 (uint64_t)id << 48);
3105 } else if (virtio) {
3107 * We use SRP luns of the form 01000000 | (target << 8) | lun
3108 * in the top 32 bits of the 64-bit LUN
3109 * Note: the quote above is from SLOF and it is wrong,
3110 * the actual binding is:
3111 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3113 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3114 if (d->lun >= 256) {
3115 /* Use the LUN "flat space addressing method" */
3116 id |= 0x4000;
3118 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3119 (uint64_t)id << 32);
3120 } else if (usb) {
3122 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3123 * in the top 32 bits of the 64-bit LUN
3125 unsigned usb_port = atoi(usb->port->path);
3126 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3127 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3128 (uint64_t)id << 32);
3133 * SLOF probes the USB devices, and if it recognizes that the device is a
3134 * storage device, it changes its name to "storage" instead of "usb-host",
3135 * and additionally adds a child node for the SCSI LUN, so the correct
3136 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3138 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3139 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3140 if (usb_host_dev_is_scsi_storage(usbdev)) {
3141 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3145 if (phb) {
3146 /* Replace "pci" with "pci@800000020000000" */
3147 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3150 if (vsc) {
3151 /* Same logic as virtio above */
3152 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3153 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3156 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3157 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3158 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3159 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3162 return NULL;
3165 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3167 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3169 return g_strdup(spapr->kvm_type);
3172 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3174 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3176 g_free(spapr->kvm_type);
3177 spapr->kvm_type = g_strdup(value);
3180 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3182 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3184 return spapr->use_hotplug_event_source;
3187 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3188 Error **errp)
3190 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3192 spapr->use_hotplug_event_source = value;
3195 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3197 return true;
3200 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3202 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3204 switch (spapr->resize_hpt) {
3205 case SPAPR_RESIZE_HPT_DEFAULT:
3206 return g_strdup("default");
3207 case SPAPR_RESIZE_HPT_DISABLED:
3208 return g_strdup("disabled");
3209 case SPAPR_RESIZE_HPT_ENABLED:
3210 return g_strdup("enabled");
3211 case SPAPR_RESIZE_HPT_REQUIRED:
3212 return g_strdup("required");
3214 g_assert_not_reached();
3217 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3219 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3221 if (strcmp(value, "default") == 0) {
3222 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3223 } else if (strcmp(value, "disabled") == 0) {
3224 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3225 } else if (strcmp(value, "enabled") == 0) {
3226 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3227 } else if (strcmp(value, "required") == 0) {
3228 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3229 } else {
3230 error_setg(errp, "Bad value for \"resize-hpt\" property");
3234 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3235 void *opaque, Error **errp)
3237 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3240 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3241 void *opaque, Error **errp)
3243 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3246 static void spapr_get_kernel_addr(Object *obj, Visitor *v, const char *name,
3247 void *opaque, Error **errp)
3249 visit_type_uint64(v, name, (uint64_t *)opaque, errp);
3252 static void spapr_set_kernel_addr(Object *obj, Visitor *v, const char *name,
3253 void *opaque, Error **errp)
3255 visit_type_uint64(v, name, (uint64_t *)opaque, errp);
3258 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3260 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3262 if (spapr->irq == &spapr_irq_xics_legacy) {
3263 return g_strdup("legacy");
3264 } else if (spapr->irq == &spapr_irq_xics) {
3265 return g_strdup("xics");
3266 } else if (spapr->irq == &spapr_irq_xive) {
3267 return g_strdup("xive");
3268 } else if (spapr->irq == &spapr_irq_dual) {
3269 return g_strdup("dual");
3271 g_assert_not_reached();
3274 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3276 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3278 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3279 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3280 return;
3283 /* The legacy IRQ backend can not be set */
3284 if (strcmp(value, "xics") == 0) {
3285 spapr->irq = &spapr_irq_xics;
3286 } else if (strcmp(value, "xive") == 0) {
3287 spapr->irq = &spapr_irq_xive;
3288 } else if (strcmp(value, "dual") == 0) {
3289 spapr->irq = &spapr_irq_dual;
3290 } else {
3291 error_setg(errp, "Bad value for \"ic-mode\" property");
3295 static char *spapr_get_host_model(Object *obj, Error **errp)
3297 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299 return g_strdup(spapr->host_model);
3302 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3304 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3306 g_free(spapr->host_model);
3307 spapr->host_model = g_strdup(value);
3310 static char *spapr_get_host_serial(Object *obj, Error **errp)
3312 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3314 return g_strdup(spapr->host_serial);
3317 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3319 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3321 g_free(spapr->host_serial);
3322 spapr->host_serial = g_strdup(value);
3325 static void spapr_instance_init(Object *obj)
3327 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3328 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3330 spapr->htab_fd = -1;
3331 spapr->use_hotplug_event_source = true;
3332 object_property_add_str(obj, "kvm-type",
3333 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3334 object_property_set_description(obj, "kvm-type",
3335 "Specifies the KVM virtualization mode (HV, PR)",
3336 NULL);
3337 object_property_add_bool(obj, "modern-hotplug-events",
3338 spapr_get_modern_hotplug_events,
3339 spapr_set_modern_hotplug_events,
3340 NULL);
3341 object_property_set_description(obj, "modern-hotplug-events",
3342 "Use dedicated hotplug event mechanism in"
3343 " place of standard EPOW events when possible"
3344 " (required for memory hot-unplug support)",
3345 NULL);
3346 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3347 "Maximum permitted CPU compatibility mode",
3348 &error_fatal);
3350 object_property_add_str(obj, "resize-hpt",
3351 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3352 object_property_set_description(obj, "resize-hpt",
3353 "Resizing of the Hash Page Table (enabled, disabled, required)",
3354 NULL);
3355 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3356 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3357 object_property_set_description(obj, "vsmt",
3358 "Virtual SMT: KVM behaves as if this were"
3359 " the host's SMT mode", &error_abort);
3360 object_property_add_bool(obj, "vfio-no-msix-emulation",
3361 spapr_get_msix_emulation, NULL, NULL);
3363 object_property_add(obj, "kernel-addr", "uint64", spapr_get_kernel_addr,
3364 spapr_set_kernel_addr, NULL, &spapr->kernel_addr,
3365 &error_abort);
3366 object_property_set_description(obj, "kernel-addr",
3367 stringify(KERNEL_LOAD_ADDR)
3368 " for -kernel is the default",
3369 NULL);
3370 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3371 /* The machine class defines the default interrupt controller mode */
3372 spapr->irq = smc->irq;
3373 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3374 spapr_set_ic_mode, NULL);
3375 object_property_set_description(obj, "ic-mode",
3376 "Specifies the interrupt controller mode (xics, xive, dual)",
3377 NULL);
3379 object_property_add_str(obj, "host-model",
3380 spapr_get_host_model, spapr_set_host_model,
3381 &error_abort);
3382 object_property_set_description(obj, "host-model",
3383 "Host model to advertise in guest device tree", &error_abort);
3384 object_property_add_str(obj, "host-serial",
3385 spapr_get_host_serial, spapr_set_host_serial,
3386 &error_abort);
3387 object_property_set_description(obj, "host-serial",
3388 "Host serial number to advertise in guest device tree", &error_abort);
3391 static void spapr_machine_finalizefn(Object *obj)
3393 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3395 g_free(spapr->kvm_type);
3398 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3400 cpu_synchronize_state(cs);
3401 ppc_cpu_do_system_reset(cs);
3404 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3406 CPUState *cs;
3408 CPU_FOREACH(cs) {
3409 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3413 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3414 void *fdt, int *fdt_start_offset, Error **errp)
3416 uint64_t addr;
3417 uint32_t node;
3419 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3420 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3421 &error_abort);
3422 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3423 SPAPR_MEMORY_BLOCK_SIZE);
3424 return 0;
3427 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3428 bool dedicated_hp_event_source, Error **errp)
3430 SpaprDrc *drc;
3431 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3432 int i;
3433 uint64_t addr = addr_start;
3434 bool hotplugged = spapr_drc_hotplugged(dev);
3435 Error *local_err = NULL;
3437 for (i = 0; i < nr_lmbs; i++) {
3438 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3439 addr / SPAPR_MEMORY_BLOCK_SIZE);
3440 g_assert(drc);
3442 spapr_drc_attach(drc, dev, &local_err);
3443 if (local_err) {
3444 while (addr > addr_start) {
3445 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3446 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3447 addr / SPAPR_MEMORY_BLOCK_SIZE);
3448 spapr_drc_detach(drc);
3450 error_propagate(errp, local_err);
3451 return;
3453 if (!hotplugged) {
3454 spapr_drc_reset(drc);
3456 addr += SPAPR_MEMORY_BLOCK_SIZE;
3458 /* send hotplug notification to the
3459 * guest only in case of hotplugged memory
3461 if (hotplugged) {
3462 if (dedicated_hp_event_source) {
3463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3464 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3465 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3466 nr_lmbs,
3467 spapr_drc_index(drc));
3468 } else {
3469 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3470 nr_lmbs);
3475 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3476 Error **errp)
3478 Error *local_err = NULL;
3479 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3480 PCDIMMDevice *dimm = PC_DIMM(dev);
3481 uint64_t size, addr, slot;
3482 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3484 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3486 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3487 if (local_err) {
3488 goto out;
3491 if (!is_nvdimm) {
3492 addr = object_property_get_uint(OBJECT(dimm),
3493 PC_DIMM_ADDR_PROP, &local_err);
3494 if (local_err) {
3495 goto out_unplug;
3497 spapr_add_lmbs(dev, addr, size,
3498 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3499 &local_err);
3500 } else {
3501 slot = object_property_get_uint(OBJECT(dimm),
3502 PC_DIMM_SLOT_PROP, &local_err);
3503 if (local_err) {
3504 goto out_unplug;
3506 spapr_add_nvdimm(dev, slot, &local_err);
3509 if (local_err) {
3510 goto out_unplug;
3513 return;
3515 out_unplug:
3516 pc_dimm_unplug(dimm, MACHINE(ms));
3517 out:
3518 error_propagate(errp, local_err);
3521 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3522 Error **errp)
3524 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3525 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3526 const MachineClass *mc = MACHINE_CLASS(smc);
3527 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3528 PCDIMMDevice *dimm = PC_DIMM(dev);
3529 Error *local_err = NULL;
3530 uint64_t size;
3531 Object *memdev;
3532 hwaddr pagesize;
3534 if (!smc->dr_lmb_enabled) {
3535 error_setg(errp, "Memory hotplug not supported for this machine");
3536 return;
3539 if (is_nvdimm && !mc->nvdimm_supported) {
3540 error_setg(errp, "NVDIMM hotplug not supported for this machine");
3541 return;
3544 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3545 if (local_err) {
3546 error_propagate(errp, local_err);
3547 return;
3550 if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
3551 error_setg(errp, "Hotplugged memory size must be a multiple of "
3552 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3553 return;
3554 } else if (is_nvdimm) {
3555 spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
3556 if (local_err) {
3557 error_propagate(errp, local_err);
3558 return;
3562 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3563 &error_abort);
3564 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3565 spapr_check_pagesize(spapr, pagesize, &local_err);
3566 if (local_err) {
3567 error_propagate(errp, local_err);
3568 return;
3571 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3574 struct SpaprDimmState {
3575 PCDIMMDevice *dimm;
3576 uint32_t nr_lmbs;
3577 QTAILQ_ENTRY(SpaprDimmState) next;
3580 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3581 PCDIMMDevice *dimm)
3583 SpaprDimmState *dimm_state = NULL;
3585 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3586 if (dimm_state->dimm == dimm) {
3587 break;
3590 return dimm_state;
3593 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3594 uint32_t nr_lmbs,
3595 PCDIMMDevice *dimm)
3597 SpaprDimmState *ds = NULL;
3600 * If this request is for a DIMM whose removal had failed earlier
3601 * (due to guest's refusal to remove the LMBs), we would have this
3602 * dimm already in the pending_dimm_unplugs list. In that
3603 * case don't add again.
3605 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3606 if (!ds) {
3607 ds = g_malloc0(sizeof(SpaprDimmState));
3608 ds->nr_lmbs = nr_lmbs;
3609 ds->dimm = dimm;
3610 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3612 return ds;
3615 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3616 SpaprDimmState *dimm_state)
3618 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3619 g_free(dimm_state);
3622 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3623 PCDIMMDevice *dimm)
3625 SpaprDrc *drc;
3626 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3627 &error_abort);
3628 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3629 uint32_t avail_lmbs = 0;
3630 uint64_t addr_start, addr;
3631 int i;
3633 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3634 &error_abort);
3636 addr = addr_start;
3637 for (i = 0; i < nr_lmbs; i++) {
3638 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3639 addr / SPAPR_MEMORY_BLOCK_SIZE);
3640 g_assert(drc);
3641 if (drc->dev) {
3642 avail_lmbs++;
3644 addr += SPAPR_MEMORY_BLOCK_SIZE;
3647 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3650 /* Callback to be called during DRC release. */
3651 void spapr_lmb_release(DeviceState *dev)
3653 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3654 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3655 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3657 /* This information will get lost if a migration occurs
3658 * during the unplug process. In this case recover it. */
3659 if (ds == NULL) {
3660 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3661 g_assert(ds);
3662 /* The DRC being examined by the caller at least must be counted */
3663 g_assert(ds->nr_lmbs);
3666 if (--ds->nr_lmbs) {
3667 return;
3671 * Now that all the LMBs have been removed by the guest, call the
3672 * unplug handler chain. This can never fail.
3674 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3675 object_unparent(OBJECT(dev));
3678 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3680 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3681 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3683 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3684 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3685 spapr_pending_dimm_unplugs_remove(spapr, ds);
3688 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3689 DeviceState *dev, Error **errp)
3691 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3692 Error *local_err = NULL;
3693 PCDIMMDevice *dimm = PC_DIMM(dev);
3694 uint32_t nr_lmbs;
3695 uint64_t size, addr_start, addr;
3696 int i;
3697 SpaprDrc *drc;
3699 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3700 error_setg(&local_err,
3701 "nvdimm device hot unplug is not supported yet.");
3702 goto out;
3705 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3706 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3708 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3709 &local_err);
3710 if (local_err) {
3711 goto out;
3715 * An existing pending dimm state for this DIMM means that there is an
3716 * unplug operation in progress, waiting for the spapr_lmb_release
3717 * callback to complete the job (BQL can't cover that far). In this case,
3718 * bail out to avoid detaching DRCs that were already released.
3720 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3721 error_setg(&local_err,
3722 "Memory unplug already in progress for device %s",
3723 dev->id);
3724 goto out;
3727 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3729 addr = addr_start;
3730 for (i = 0; i < nr_lmbs; i++) {
3731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3732 addr / SPAPR_MEMORY_BLOCK_SIZE);
3733 g_assert(drc);
3735 spapr_drc_detach(drc);
3736 addr += SPAPR_MEMORY_BLOCK_SIZE;
3739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3740 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3741 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3742 nr_lmbs, spapr_drc_index(drc));
3743 out:
3744 error_propagate(errp, local_err);
3747 /* Callback to be called during DRC release. */
3748 void spapr_core_release(DeviceState *dev)
3750 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3752 /* Call the unplug handler chain. This can never fail. */
3753 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3754 object_unparent(OBJECT(dev));
3757 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3759 MachineState *ms = MACHINE(hotplug_dev);
3760 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3761 CPUCore *cc = CPU_CORE(dev);
3762 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3764 if (smc->pre_2_10_has_unused_icps) {
3765 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3766 int i;
3768 for (i = 0; i < cc->nr_threads; i++) {
3769 CPUState *cs = CPU(sc->threads[i]);
3771 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3775 assert(core_slot);
3776 core_slot->cpu = NULL;
3777 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3780 static
3781 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3782 Error **errp)
3784 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3785 int index;
3786 SpaprDrc *drc;
3787 CPUCore *cc = CPU_CORE(dev);
3789 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3790 error_setg(errp, "Unable to find CPU core with core-id: %d",
3791 cc->core_id);
3792 return;
3794 if (index == 0) {
3795 error_setg(errp, "Boot CPU core may not be unplugged");
3796 return;
3799 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3800 spapr_vcpu_id(spapr, cc->core_id));
3801 g_assert(drc);
3803 if (!spapr_drc_unplug_requested(drc)) {
3804 spapr_drc_detach(drc);
3805 spapr_hotplug_req_remove_by_index(drc);
3809 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3810 void *fdt, int *fdt_start_offset, Error **errp)
3812 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3813 CPUState *cs = CPU(core->threads[0]);
3814 PowerPCCPU *cpu = POWERPC_CPU(cs);
3815 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3816 int id = spapr_get_vcpu_id(cpu);
3817 char *nodename;
3818 int offset;
3820 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3821 offset = fdt_add_subnode(fdt, 0, nodename);
3822 g_free(nodename);
3824 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3826 *fdt_start_offset = offset;
3827 return 0;
3830 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3831 Error **errp)
3833 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3834 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3835 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3836 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3837 CPUCore *cc = CPU_CORE(dev);
3838 CPUState *cs;
3839 SpaprDrc *drc;
3840 Error *local_err = NULL;
3841 CPUArchId *core_slot;
3842 int index;
3843 bool hotplugged = spapr_drc_hotplugged(dev);
3844 int i;
3846 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3847 if (!core_slot) {
3848 error_setg(errp, "Unable to find CPU core with core-id: %d",
3849 cc->core_id);
3850 return;
3852 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3853 spapr_vcpu_id(spapr, cc->core_id));
3855 g_assert(drc || !mc->has_hotpluggable_cpus);
3857 if (drc) {
3858 spapr_drc_attach(drc, dev, &local_err);
3859 if (local_err) {
3860 error_propagate(errp, local_err);
3861 return;
3864 if (hotplugged) {
3866 * Send hotplug notification interrupt to the guest only
3867 * in case of hotplugged CPUs.
3869 spapr_hotplug_req_add_by_index(drc);
3870 } else {
3871 spapr_drc_reset(drc);
3875 core_slot->cpu = OBJECT(dev);
3877 if (smc->pre_2_10_has_unused_icps) {
3878 for (i = 0; i < cc->nr_threads; i++) {
3879 cs = CPU(core->threads[i]);
3880 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3885 * Set compatibility mode to match the boot CPU, which was either set
3886 * by the machine reset code or by CAS.
3888 if (hotplugged) {
3889 for (i = 0; i < cc->nr_threads; i++) {
3890 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3891 &local_err);
3892 if (local_err) {
3893 error_propagate(errp, local_err);
3894 return;
3900 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3901 Error **errp)
3903 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3904 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3905 Error *local_err = NULL;
3906 CPUCore *cc = CPU_CORE(dev);
3907 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3908 const char *type = object_get_typename(OBJECT(dev));
3909 CPUArchId *core_slot;
3910 int index;
3911 unsigned int smp_threads = machine->smp.threads;
3913 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3914 error_setg(&local_err, "CPU hotplug not supported for this machine");
3915 goto out;
3918 if (strcmp(base_core_type, type)) {
3919 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3920 goto out;
3923 if (cc->core_id % smp_threads) {
3924 error_setg(&local_err, "invalid core id %d", cc->core_id);
3925 goto out;
3929 * In general we should have homogeneous threads-per-core, but old
3930 * (pre hotplug support) machine types allow the last core to have
3931 * reduced threads as a compatibility hack for when we allowed
3932 * total vcpus not a multiple of threads-per-core.
3934 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3935 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3936 cc->nr_threads, smp_threads);
3937 goto out;
3940 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3941 if (!core_slot) {
3942 error_setg(&local_err, "core id %d out of range", cc->core_id);
3943 goto out;
3946 if (core_slot->cpu) {
3947 error_setg(&local_err, "core %d already populated", cc->core_id);
3948 goto out;
3951 numa_cpu_pre_plug(core_slot, dev, &local_err);
3953 out:
3954 error_propagate(errp, local_err);
3957 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3958 void *fdt, int *fdt_start_offset, Error **errp)
3960 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3961 int intc_phandle;
3963 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3964 if (intc_phandle <= 0) {
3965 return -1;
3968 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3969 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3970 return -1;
3973 /* generally SLOF creates these, for hotplug it's up to QEMU */
3974 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3976 return 0;
3979 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3980 Error **errp)
3982 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3983 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3984 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3985 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3987 if (dev->hotplugged && !smc->dr_phb_enabled) {
3988 error_setg(errp, "PHB hotplug not supported for this machine");
3989 return;
3992 if (sphb->index == (uint32_t)-1) {
3993 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3994 return;
3998 * This will check that sphb->index doesn't exceed the maximum number of
3999 * PHBs for the current machine type.
4001 smc->phb_placement(spapr, sphb->index,
4002 &sphb->buid, &sphb->io_win_addr,
4003 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4004 windows_supported, sphb->dma_liobn,
4005 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4006 errp);
4009 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4010 Error **errp)
4012 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4013 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4014 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4015 SpaprDrc *drc;
4016 bool hotplugged = spapr_drc_hotplugged(dev);
4017 Error *local_err = NULL;
4019 if (!smc->dr_phb_enabled) {
4020 return;
4023 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4024 /* hotplug hooks should check it's enabled before getting this far */
4025 assert(drc);
4027 spapr_drc_attach(drc, DEVICE(dev), &local_err);
4028 if (local_err) {
4029 error_propagate(errp, local_err);
4030 return;
4033 if (hotplugged) {
4034 spapr_hotplug_req_add_by_index(drc);
4035 } else {
4036 spapr_drc_reset(drc);
4040 void spapr_phb_release(DeviceState *dev)
4042 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4044 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4045 object_unparent(OBJECT(dev));
4048 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4050 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4053 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4054 DeviceState *dev, Error **errp)
4056 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4057 SpaprDrc *drc;
4059 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4060 assert(drc);
4062 if (!spapr_drc_unplug_requested(drc)) {
4063 spapr_drc_detach(drc);
4064 spapr_hotplug_req_remove_by_index(drc);
4068 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4069 Error **errp)
4071 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4072 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4074 if (spapr->tpm_proxy != NULL) {
4075 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4076 return;
4079 spapr->tpm_proxy = tpm_proxy;
4082 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4084 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4086 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4087 object_unparent(OBJECT(dev));
4088 spapr->tpm_proxy = NULL;
4091 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4092 DeviceState *dev, Error **errp)
4094 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4095 spapr_memory_plug(hotplug_dev, dev, errp);
4096 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4097 spapr_core_plug(hotplug_dev, dev, errp);
4098 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4099 spapr_phb_plug(hotplug_dev, dev, errp);
4100 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4101 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4105 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4106 DeviceState *dev, Error **errp)
4108 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4109 spapr_memory_unplug(hotplug_dev, dev);
4110 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4111 spapr_core_unplug(hotplug_dev, dev);
4112 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4113 spapr_phb_unplug(hotplug_dev, dev);
4114 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4115 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4119 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4120 DeviceState *dev, Error **errp)
4122 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4123 MachineClass *mc = MACHINE_GET_CLASS(sms);
4124 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4126 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4127 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4128 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4129 } else {
4130 /* NOTE: this means there is a window after guest reset, prior to
4131 * CAS negotiation, where unplug requests will fail due to the
4132 * capability not being detected yet. This is a bit different than
4133 * the case with PCI unplug, where the events will be queued and
4134 * eventually handled by the guest after boot
4136 error_setg(errp, "Memory hot unplug not supported for this guest");
4138 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4139 if (!mc->has_hotpluggable_cpus) {
4140 error_setg(errp, "CPU hot unplug not supported on this machine");
4141 return;
4143 spapr_core_unplug_request(hotplug_dev, dev, errp);
4144 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4145 if (!smc->dr_phb_enabled) {
4146 error_setg(errp, "PHB hot unplug not supported on this machine");
4147 return;
4149 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4150 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4151 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4155 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4156 DeviceState *dev, Error **errp)
4158 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4159 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4160 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4161 spapr_core_pre_plug(hotplug_dev, dev, errp);
4162 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4163 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4167 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4168 DeviceState *dev)
4170 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4171 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4172 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4173 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4174 return HOTPLUG_HANDLER(machine);
4176 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4177 PCIDevice *pcidev = PCI_DEVICE(dev);
4178 PCIBus *root = pci_device_root_bus(pcidev);
4179 SpaprPhbState *phb =
4180 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4181 TYPE_SPAPR_PCI_HOST_BRIDGE);
4183 if (phb) {
4184 return HOTPLUG_HANDLER(phb);
4187 return NULL;
4190 static CpuInstanceProperties
4191 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4193 CPUArchId *core_slot;
4194 MachineClass *mc = MACHINE_GET_CLASS(machine);
4196 /* make sure possible_cpu are intialized */
4197 mc->possible_cpu_arch_ids(machine);
4198 /* get CPU core slot containing thread that matches cpu_index */
4199 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4200 assert(core_slot);
4201 return core_slot->props;
4204 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4206 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4209 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4211 int i;
4212 unsigned int smp_threads = machine->smp.threads;
4213 unsigned int smp_cpus = machine->smp.cpus;
4214 const char *core_type;
4215 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4216 MachineClass *mc = MACHINE_GET_CLASS(machine);
4218 if (!mc->has_hotpluggable_cpus) {
4219 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4221 if (machine->possible_cpus) {
4222 assert(machine->possible_cpus->len == spapr_max_cores);
4223 return machine->possible_cpus;
4226 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4227 if (!core_type) {
4228 error_report("Unable to find sPAPR CPU Core definition");
4229 exit(1);
4232 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4233 sizeof(CPUArchId) * spapr_max_cores);
4234 machine->possible_cpus->len = spapr_max_cores;
4235 for (i = 0; i < machine->possible_cpus->len; i++) {
4236 int core_id = i * smp_threads;
4238 machine->possible_cpus->cpus[i].type = core_type;
4239 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4240 machine->possible_cpus->cpus[i].arch_id = core_id;
4241 machine->possible_cpus->cpus[i].props.has_core_id = true;
4242 machine->possible_cpus->cpus[i].props.core_id = core_id;
4244 return machine->possible_cpus;
4247 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4248 uint64_t *buid, hwaddr *pio,
4249 hwaddr *mmio32, hwaddr *mmio64,
4250 unsigned n_dma, uint32_t *liobns,
4251 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4254 * New-style PHB window placement.
4256 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4257 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4258 * windows.
4260 * Some guest kernels can't work with MMIO windows above 1<<46
4261 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4263 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4264 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4265 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4266 * 1TiB 64-bit MMIO windows for each PHB.
4268 const uint64_t base_buid = 0x800000020000000ULL;
4269 int i;
4271 /* Sanity check natural alignments */
4272 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4273 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4274 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4275 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4276 /* Sanity check bounds */
4277 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4278 SPAPR_PCI_MEM32_WIN_SIZE);
4279 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4280 SPAPR_PCI_MEM64_WIN_SIZE);
4282 if (index >= SPAPR_MAX_PHBS) {
4283 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4284 SPAPR_MAX_PHBS - 1);
4285 return;
4288 *buid = base_buid + index;
4289 for (i = 0; i < n_dma; ++i) {
4290 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4293 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4294 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4295 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4297 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4298 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4301 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4303 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4305 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4308 static void spapr_ics_resend(XICSFabric *dev)
4310 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4312 ics_resend(spapr->ics);
4315 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4317 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4319 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4322 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4323 Monitor *mon)
4325 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4327 spapr_irq_print_info(spapr, mon);
4328 monitor_printf(mon, "irqchip: %s\n",
4329 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4333 * This is a XIVE only operation
4335 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4336 uint8_t nvt_blk, uint32_t nvt_idx,
4337 bool cam_ignore, uint8_t priority,
4338 uint32_t logic_serv, XiveTCTXMatch *match)
4340 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4341 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4342 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4343 int count;
4345 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4346 priority, logic_serv, match);
4347 if (count < 0) {
4348 return count;
4352 * When we implement the save and restore of the thread interrupt
4353 * contexts in the enter/exit CPU handlers of the machine and the
4354 * escalations in QEMU, we should be able to handle non dispatched
4355 * vCPUs.
4357 * Until this is done, the sPAPR machine should find at least one
4358 * matching context always.
4360 if (count == 0) {
4361 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4362 nvt_blk, nvt_idx);
4365 return count;
4368 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4370 return cpu->vcpu_id;
4373 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4375 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4376 MachineState *ms = MACHINE(spapr);
4377 int vcpu_id;
4379 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4381 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4382 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4383 error_append_hint(errp, "Adjust the number of cpus to %d "
4384 "or try to raise the number of threads per core\n",
4385 vcpu_id * ms->smp.threads / spapr->vsmt);
4386 return;
4389 cpu->vcpu_id = vcpu_id;
4392 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4394 CPUState *cs;
4396 CPU_FOREACH(cs) {
4397 PowerPCCPU *cpu = POWERPC_CPU(cs);
4399 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4400 return cpu;
4404 return NULL;
4407 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4409 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4411 /* These are only called by TCG, KVM maintains dispatch state */
4413 spapr_cpu->prod = false;
4414 if (spapr_cpu->vpa_addr) {
4415 CPUState *cs = CPU(cpu);
4416 uint32_t dispatch;
4418 dispatch = ldl_be_phys(cs->as,
4419 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4420 dispatch++;
4421 if ((dispatch & 1) != 0) {
4422 qemu_log_mask(LOG_GUEST_ERROR,
4423 "VPA: incorrect dispatch counter value for "
4424 "dispatched partition %u, correcting.\n", dispatch);
4425 dispatch++;
4427 stl_be_phys(cs->as,
4428 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4432 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4434 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4436 if (spapr_cpu->vpa_addr) {
4437 CPUState *cs = CPU(cpu);
4438 uint32_t dispatch;
4440 dispatch = ldl_be_phys(cs->as,
4441 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4442 dispatch++;
4443 if ((dispatch & 1) != 1) {
4444 qemu_log_mask(LOG_GUEST_ERROR,
4445 "VPA: incorrect dispatch counter value for "
4446 "preempted partition %u, correcting.\n", dispatch);
4447 dispatch++;
4449 stl_be_phys(cs->as,
4450 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4454 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4456 MachineClass *mc = MACHINE_CLASS(oc);
4457 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4458 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4459 NMIClass *nc = NMI_CLASS(oc);
4460 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4461 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4462 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4463 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4464 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4466 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4467 mc->ignore_boot_device_suffixes = true;
4470 * We set up the default / latest behaviour here. The class_init
4471 * functions for the specific versioned machine types can override
4472 * these details for backwards compatibility
4474 mc->init = spapr_machine_init;
4475 mc->reset = spapr_machine_reset;
4476 mc->block_default_type = IF_SCSI;
4477 mc->max_cpus = 1024;
4478 mc->no_parallel = 1;
4479 mc->default_boot_order = "";
4480 mc->default_ram_size = 512 * MiB;
4481 mc->default_ram_id = "ppc_spapr.ram";
4482 mc->default_display = "std";
4483 mc->kvm_type = spapr_kvm_type;
4484 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4485 mc->pci_allow_0_address = true;
4486 assert(!mc->get_hotplug_handler);
4487 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4488 hc->pre_plug = spapr_machine_device_pre_plug;
4489 hc->plug = spapr_machine_device_plug;
4490 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4491 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4492 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4493 hc->unplug_request = spapr_machine_device_unplug_request;
4494 hc->unplug = spapr_machine_device_unplug;
4496 smc->dr_lmb_enabled = true;
4497 smc->update_dt_enabled = true;
4498 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4499 mc->has_hotpluggable_cpus = true;
4500 mc->nvdimm_supported = true;
4501 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4502 fwc->get_dev_path = spapr_get_fw_dev_path;
4503 nc->nmi_monitor_handler = spapr_nmi;
4504 smc->phb_placement = spapr_phb_placement;
4505 vhc->hypercall = emulate_spapr_hypercall;
4506 vhc->hpt_mask = spapr_hpt_mask;
4507 vhc->map_hptes = spapr_map_hptes;
4508 vhc->unmap_hptes = spapr_unmap_hptes;
4509 vhc->hpte_set_c = spapr_hpte_set_c;
4510 vhc->hpte_set_r = spapr_hpte_set_r;
4511 vhc->get_pate = spapr_get_pate;
4512 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4513 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4514 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4515 xic->ics_get = spapr_ics_get;
4516 xic->ics_resend = spapr_ics_resend;
4517 xic->icp_get = spapr_icp_get;
4518 ispc->print_info = spapr_pic_print_info;
4519 /* Force NUMA node memory size to be a multiple of
4520 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4521 * in which LMBs are represented and hot-added
4523 mc->numa_mem_align_shift = 28;
4524 mc->numa_mem_supported = true;
4525 mc->auto_enable_numa = true;
4527 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4528 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4529 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4530 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4531 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4532 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4533 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4534 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4535 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4536 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4537 smc->default_caps.caps[SPAPR_CAP_FWNMI_MCE] = SPAPR_CAP_ON;
4538 spapr_caps_add_properties(smc, &error_abort);
4539 smc->irq = &spapr_irq_dual;
4540 smc->dr_phb_enabled = true;
4541 smc->linux_pci_probe = true;
4542 smc->smp_threads_vsmt = true;
4543 smc->nr_xirqs = SPAPR_NR_XIRQS;
4544 xfc->match_nvt = spapr_match_nvt;
4547 static const TypeInfo spapr_machine_info = {
4548 .name = TYPE_SPAPR_MACHINE,
4549 .parent = TYPE_MACHINE,
4550 .abstract = true,
4551 .instance_size = sizeof(SpaprMachineState),
4552 .instance_init = spapr_instance_init,
4553 .instance_finalize = spapr_machine_finalizefn,
4554 .class_size = sizeof(SpaprMachineClass),
4555 .class_init = spapr_machine_class_init,
4556 .interfaces = (InterfaceInfo[]) {
4557 { TYPE_FW_PATH_PROVIDER },
4558 { TYPE_NMI },
4559 { TYPE_HOTPLUG_HANDLER },
4560 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4561 { TYPE_XICS_FABRIC },
4562 { TYPE_INTERRUPT_STATS_PROVIDER },
4563 { TYPE_XIVE_FABRIC },
4568 static void spapr_machine_latest_class_options(MachineClass *mc)
4570 mc->alias = "pseries";
4571 mc->is_default = true;
4574 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4575 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4576 void *data) \
4578 MachineClass *mc = MACHINE_CLASS(oc); \
4579 spapr_machine_##suffix##_class_options(mc); \
4580 if (latest) { \
4581 spapr_machine_latest_class_options(mc); \
4584 static const TypeInfo spapr_machine_##suffix##_info = { \
4585 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4586 .parent = TYPE_SPAPR_MACHINE, \
4587 .class_init = spapr_machine_##suffix##_class_init, \
4588 }; \
4589 static void spapr_machine_register_##suffix(void) \
4591 type_register(&spapr_machine_##suffix##_info); \
4593 type_init(spapr_machine_register_##suffix)
4596 * pseries-5.0
4598 static void spapr_machine_5_0_class_options(MachineClass *mc)
4600 /* Defaults for the latest behaviour inherited from the base class */
4603 DEFINE_SPAPR_MACHINE(5_0, "5.0", true);
4606 * pseries-4.2
4608 static void spapr_machine_4_2_class_options(MachineClass *mc)
4610 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4612 spapr_machine_5_0_class_options(mc);
4613 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4614 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4615 smc->default_caps.caps[SPAPR_CAP_FWNMI_MCE] = SPAPR_CAP_OFF;
4616 smc->rma_limit = 16 * GiB;
4617 mc->nvdimm_supported = false;
4620 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4623 * pseries-4.1
4625 static void spapr_machine_4_1_class_options(MachineClass *mc)
4627 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4628 static GlobalProperty compat[] = {
4629 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4630 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4633 spapr_machine_4_2_class_options(mc);
4634 smc->linux_pci_probe = false;
4635 smc->smp_threads_vsmt = false;
4636 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4637 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4640 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4643 * pseries-4.0
4645 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4646 uint64_t *buid, hwaddr *pio,
4647 hwaddr *mmio32, hwaddr *mmio64,
4648 unsigned n_dma, uint32_t *liobns,
4649 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4651 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4652 nv2gpa, nv2atsd, errp);
4653 *nv2gpa = 0;
4654 *nv2atsd = 0;
4657 static void spapr_machine_4_0_class_options(MachineClass *mc)
4659 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4661 spapr_machine_4_1_class_options(mc);
4662 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4663 smc->phb_placement = phb_placement_4_0;
4664 smc->irq = &spapr_irq_xics;
4665 smc->pre_4_1_migration = true;
4668 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4671 * pseries-3.1
4673 static void spapr_machine_3_1_class_options(MachineClass *mc)
4675 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4677 spapr_machine_4_0_class_options(mc);
4678 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4680 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4681 smc->update_dt_enabled = false;
4682 smc->dr_phb_enabled = false;
4683 smc->broken_host_serial_model = true;
4684 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4685 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4686 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4687 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4690 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4693 * pseries-3.0
4696 static void spapr_machine_3_0_class_options(MachineClass *mc)
4698 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4700 spapr_machine_3_1_class_options(mc);
4701 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4703 smc->legacy_irq_allocation = true;
4704 smc->nr_xirqs = 0x400;
4705 smc->irq = &spapr_irq_xics_legacy;
4708 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4711 * pseries-2.12
4713 static void spapr_machine_2_12_class_options(MachineClass *mc)
4715 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4716 static GlobalProperty compat[] = {
4717 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4718 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4721 spapr_machine_3_0_class_options(mc);
4722 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4723 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4725 /* We depend on kvm_enabled() to choose a default value for the
4726 * hpt-max-page-size capability. Of course we can't do it here
4727 * because this is too early and the HW accelerator isn't initialzed
4728 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4730 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4733 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4735 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4737 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4739 spapr_machine_2_12_class_options(mc);
4740 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4741 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4742 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4745 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4748 * pseries-2.11
4751 static void spapr_machine_2_11_class_options(MachineClass *mc)
4753 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4755 spapr_machine_2_12_class_options(mc);
4756 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4757 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4760 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4763 * pseries-2.10
4766 static void spapr_machine_2_10_class_options(MachineClass *mc)
4768 spapr_machine_2_11_class_options(mc);
4769 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4772 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4775 * pseries-2.9
4778 static void spapr_machine_2_9_class_options(MachineClass *mc)
4780 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4781 static GlobalProperty compat[] = {
4782 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4785 spapr_machine_2_10_class_options(mc);
4786 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4787 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4788 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4789 smc->pre_2_10_has_unused_icps = true;
4790 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4793 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4796 * pseries-2.8
4799 static void spapr_machine_2_8_class_options(MachineClass *mc)
4801 static GlobalProperty compat[] = {
4802 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4805 spapr_machine_2_9_class_options(mc);
4806 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4807 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4808 mc->numa_mem_align_shift = 23;
4811 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4814 * pseries-2.7
4817 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4818 uint64_t *buid, hwaddr *pio,
4819 hwaddr *mmio32, hwaddr *mmio64,
4820 unsigned n_dma, uint32_t *liobns,
4821 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4823 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4824 const uint64_t base_buid = 0x800000020000000ULL;
4825 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4826 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4827 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4828 const uint32_t max_index = 255;
4829 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4831 uint64_t ram_top = MACHINE(spapr)->ram_size;
4832 hwaddr phb0_base, phb_base;
4833 int i;
4835 /* Do we have device memory? */
4836 if (MACHINE(spapr)->maxram_size > ram_top) {
4837 /* Can't just use maxram_size, because there may be an
4838 * alignment gap between normal and device memory regions
4840 ram_top = MACHINE(spapr)->device_memory->base +
4841 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4844 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4846 if (index > max_index) {
4847 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4848 max_index);
4849 return;
4852 *buid = base_buid + index;
4853 for (i = 0; i < n_dma; ++i) {
4854 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4857 phb_base = phb0_base + index * phb_spacing;
4858 *pio = phb_base + pio_offset;
4859 *mmio32 = phb_base + mmio_offset;
4861 * We don't set the 64-bit MMIO window, relying on the PHB's
4862 * fallback behaviour of automatically splitting a large "32-bit"
4863 * window into contiguous 32-bit and 64-bit windows
4866 *nv2gpa = 0;
4867 *nv2atsd = 0;
4870 static void spapr_machine_2_7_class_options(MachineClass *mc)
4872 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4873 static GlobalProperty compat[] = {
4874 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4875 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4876 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4877 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4880 spapr_machine_2_8_class_options(mc);
4881 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4882 mc->default_machine_opts = "modern-hotplug-events=off";
4883 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4884 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4885 smc->phb_placement = phb_placement_2_7;
4888 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4891 * pseries-2.6
4894 static void spapr_machine_2_6_class_options(MachineClass *mc)
4896 static GlobalProperty compat[] = {
4897 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4900 spapr_machine_2_7_class_options(mc);
4901 mc->has_hotpluggable_cpus = false;
4902 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4903 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4906 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4909 * pseries-2.5
4912 static void spapr_machine_2_5_class_options(MachineClass *mc)
4914 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4915 static GlobalProperty compat[] = {
4916 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4919 spapr_machine_2_6_class_options(mc);
4920 smc->use_ohci_by_default = true;
4921 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4922 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4925 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4928 * pseries-2.4
4931 static void spapr_machine_2_4_class_options(MachineClass *mc)
4933 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4935 spapr_machine_2_5_class_options(mc);
4936 smc->dr_lmb_enabled = false;
4937 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4940 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4943 * pseries-2.3
4946 static void spapr_machine_2_3_class_options(MachineClass *mc)
4948 static GlobalProperty compat[] = {
4949 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4951 spapr_machine_2_4_class_options(mc);
4952 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4953 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4955 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4958 * pseries-2.2
4961 static void spapr_machine_2_2_class_options(MachineClass *mc)
4963 static GlobalProperty compat[] = {
4964 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4967 spapr_machine_2_3_class_options(mc);
4968 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4969 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4970 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4972 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4975 * pseries-2.1
4978 static void spapr_machine_2_1_class_options(MachineClass *mc)
4980 spapr_machine_2_2_class_options(mc);
4981 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4983 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4985 static void spapr_machine_register_types(void)
4987 type_register_static(&spapr_machine_info);
4990 type_init(spapr_machine_register_types)