dec: convert to realize()
[qemu/ar7.git] / util / throttle.c
blob2f9b23d925df070b68323be8f53d91de05a038c1
1 /*
2 * QEMU throttling infrastructure
4 * Copyright (C) Nodalink, EURL. 2013-2014
5 * Copyright (C) Igalia, S.L. 2015
7 * Authors:
8 * BenoƮt Canet <benoit.canet@nodalink.com>
9 * Alberto Garcia <berto@igalia.com>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; either version 2 or
14 * (at your option) version 3 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
25 #include "qemu/osdep.h"
26 #include "qemu/throttle.h"
27 #include "qemu/timer.h"
28 #include "block/aio.h"
30 /* This function make a bucket leak
32 * @bkt: the bucket to make leak
33 * @delta_ns: the time delta
35 void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
37 double leak;
39 /* compute how much to leak */
40 leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
42 /* make the bucket leak */
43 bkt->level = MAX(bkt->level - leak, 0);
46 /* Calculate the time delta since last leak and make proportionals leaks
48 * @now: the current timestamp in ns
50 static void throttle_do_leak(ThrottleState *ts, int64_t now)
52 /* compute the time elapsed since the last leak */
53 int64_t delta_ns = now - ts->previous_leak;
54 int i;
56 ts->previous_leak = now;
58 if (delta_ns <= 0) {
59 return;
62 /* make each bucket leak */
63 for (i = 0; i < BUCKETS_COUNT; i++) {
64 throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
68 /* do the real job of computing the time to wait
70 * @limit: the throttling limit
71 * @extra: the number of operation to delay
72 * @ret: the time to wait in ns
74 static int64_t throttle_do_compute_wait(double limit, double extra)
76 double wait = extra * NANOSECONDS_PER_SECOND;
77 wait /= limit;
78 return wait;
81 /* This function compute the wait time in ns that a leaky bucket should trigger
83 * @bkt: the leaky bucket we operate on
84 * @ret: the resulting wait time in ns or 0 if the operation can go through
86 int64_t throttle_compute_wait(LeakyBucket *bkt)
88 double extra; /* the number of extra units blocking the io */
90 if (!bkt->avg) {
91 return 0;
94 extra = bkt->level - bkt->max;
96 if (extra <= 0) {
97 return 0;
100 return throttle_do_compute_wait(bkt->avg, extra);
103 /* This function compute the time that must be waited while this IO
105 * @is_write: true if the current IO is a write, false if it's a read
106 * @ret: time to wait
108 static int64_t throttle_compute_wait_for(ThrottleState *ts,
109 bool is_write)
111 BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
112 THROTTLE_OPS_TOTAL,
113 THROTTLE_BPS_READ,
114 THROTTLE_OPS_READ},
115 {THROTTLE_BPS_TOTAL,
116 THROTTLE_OPS_TOTAL,
117 THROTTLE_BPS_WRITE,
118 THROTTLE_OPS_WRITE}, };
119 int64_t wait, max_wait = 0;
120 int i;
122 for (i = 0; i < 4; i++) {
123 BucketType index = to_check[is_write][i];
124 wait = throttle_compute_wait(&ts->cfg.buckets[index]);
125 if (wait > max_wait) {
126 max_wait = wait;
130 return max_wait;
133 /* compute the timer for this type of operation
135 * @is_write: the type of operation
136 * @now: the current clock timestamp
137 * @next_timestamp: the resulting timer
138 * @ret: true if a timer must be set
140 bool throttle_compute_timer(ThrottleState *ts,
141 bool is_write,
142 int64_t now,
143 int64_t *next_timestamp)
145 int64_t wait;
147 /* leak proportionally to the time elapsed */
148 throttle_do_leak(ts, now);
150 /* compute the wait time if any */
151 wait = throttle_compute_wait_for(ts, is_write);
153 /* if the code must wait compute when the next timer should fire */
154 if (wait) {
155 *next_timestamp = now + wait;
156 return true;
159 /* else no need to wait at all */
160 *next_timestamp = now;
161 return false;
164 /* Add timers to event loop */
165 void throttle_timers_attach_aio_context(ThrottleTimers *tt,
166 AioContext *new_context)
168 tt->timers[0] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
169 tt->read_timer_cb, tt->timer_opaque);
170 tt->timers[1] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
171 tt->write_timer_cb, tt->timer_opaque);
174 /* To be called first on the ThrottleState */
175 void throttle_init(ThrottleState *ts)
177 memset(ts, 0, sizeof(ThrottleState));
180 /* To be called first on the ThrottleTimers */
181 void throttle_timers_init(ThrottleTimers *tt,
182 AioContext *aio_context,
183 QEMUClockType clock_type,
184 QEMUTimerCB *read_timer_cb,
185 QEMUTimerCB *write_timer_cb,
186 void *timer_opaque)
188 memset(tt, 0, sizeof(ThrottleTimers));
190 tt->clock_type = clock_type;
191 tt->read_timer_cb = read_timer_cb;
192 tt->write_timer_cb = write_timer_cb;
193 tt->timer_opaque = timer_opaque;
194 throttle_timers_attach_aio_context(tt, aio_context);
197 /* destroy a timer */
198 static void throttle_timer_destroy(QEMUTimer **timer)
200 assert(*timer != NULL);
202 timer_del(*timer);
203 timer_free(*timer);
204 *timer = NULL;
207 /* Remove timers from event loop */
208 void throttle_timers_detach_aio_context(ThrottleTimers *tt)
210 int i;
212 for (i = 0; i < 2; i++) {
213 throttle_timer_destroy(&tt->timers[i]);
217 /* To be called last on the ThrottleTimers */
218 void throttle_timers_destroy(ThrottleTimers *tt)
220 throttle_timers_detach_aio_context(tt);
223 /* is any throttling timer configured */
224 bool throttle_timers_are_initialized(ThrottleTimers *tt)
226 if (tt->timers[0]) {
227 return true;
230 return false;
233 /* Does any throttling must be done
235 * @cfg: the throttling configuration to inspect
236 * @ret: true if throttling must be done else false
238 bool throttle_enabled(ThrottleConfig *cfg)
240 int i;
242 for (i = 0; i < BUCKETS_COUNT; i++) {
243 if (cfg->buckets[i].avg > 0) {
244 return true;
248 return false;
251 /* return true if any two throttling parameters conflicts
253 * @cfg: the throttling configuration to inspect
254 * @ret: true if any conflict detected else false
256 bool throttle_conflicting(ThrottleConfig *cfg)
258 bool bps_flag, ops_flag;
259 bool bps_max_flag, ops_max_flag;
261 bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
262 (cfg->buckets[THROTTLE_BPS_READ].avg ||
263 cfg->buckets[THROTTLE_BPS_WRITE].avg);
265 ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
266 (cfg->buckets[THROTTLE_OPS_READ].avg ||
267 cfg->buckets[THROTTLE_OPS_WRITE].avg);
269 bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
270 (cfg->buckets[THROTTLE_BPS_READ].max ||
271 cfg->buckets[THROTTLE_BPS_WRITE].max);
273 ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
274 (cfg->buckets[THROTTLE_OPS_READ].max ||
275 cfg->buckets[THROTTLE_OPS_WRITE].max);
277 return bps_flag || ops_flag || bps_max_flag || ops_max_flag;
280 /* check if a throttling configuration is valid
281 * @cfg: the throttling configuration to inspect
282 * @ret: true if valid else false
284 bool throttle_is_valid(ThrottleConfig *cfg)
286 int i;
288 for (i = 0; i < BUCKETS_COUNT; i++) {
289 if (cfg->buckets[i].avg < 0 ||
290 cfg->buckets[i].max < 0 ||
291 cfg->buckets[i].avg > THROTTLE_VALUE_MAX ||
292 cfg->buckets[i].max > THROTTLE_VALUE_MAX) {
293 return false;
297 return true;
300 /* check if bps_max/iops_max is used without bps/iops
301 * @cfg: the throttling configuration to inspect
303 bool throttle_max_is_missing_limit(ThrottleConfig *cfg)
305 int i;
307 for (i = 0; i < BUCKETS_COUNT; i++) {
308 if (cfg->buckets[i].max && !cfg->buckets[i].avg) {
309 return true;
312 return false;
315 /* fix bucket parameters */
316 static void throttle_fix_bucket(LeakyBucket *bkt)
318 double min;
320 /* zero bucket level */
321 bkt->level = 0;
323 /* The following is done to cope with the Linux CFQ block scheduler
324 * which regroup reads and writes by block of 100ms in the guest.
325 * When they are two process one making reads and one making writes cfq
326 * make a pattern looking like the following:
327 * WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR
328 * Having a max burst value of 100ms of the average will help smooth the
329 * throttling
331 min = bkt->avg / 10;
332 if (bkt->avg && !bkt->max) {
333 bkt->max = min;
337 /* take care of canceling a timer */
338 static void throttle_cancel_timer(QEMUTimer *timer)
340 assert(timer != NULL);
342 timer_del(timer);
345 /* Used to configure the throttle
347 * @ts: the throttle state we are working on
348 * @tt: the throttle timers we use in this aio context
349 * @cfg: the config to set
351 void throttle_config(ThrottleState *ts,
352 ThrottleTimers *tt,
353 ThrottleConfig *cfg)
355 int i;
357 ts->cfg = *cfg;
359 for (i = 0; i < BUCKETS_COUNT; i++) {
360 throttle_fix_bucket(&ts->cfg.buckets[i]);
363 ts->previous_leak = qemu_clock_get_ns(tt->clock_type);
365 for (i = 0; i < 2; i++) {
366 throttle_cancel_timer(tt->timers[i]);
370 /* used to get config
372 * @ts: the throttle state we are working on
373 * @cfg: the config to write
375 void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
377 *cfg = ts->cfg;
381 /* Schedule the read or write timer if needed
383 * NOTE: this function is not unit tested due to it's usage of timer_mod
385 * @tt: the timers structure
386 * @is_write: the type of operation (read/write)
387 * @ret: true if the timer has been scheduled else false
389 bool throttle_schedule_timer(ThrottleState *ts,
390 ThrottleTimers *tt,
391 bool is_write)
393 int64_t now = qemu_clock_get_ns(tt->clock_type);
394 int64_t next_timestamp;
395 bool must_wait;
397 must_wait = throttle_compute_timer(ts,
398 is_write,
399 now,
400 &next_timestamp);
402 /* request not throttled */
403 if (!must_wait) {
404 return false;
407 /* request throttled and timer pending -> do nothing */
408 if (timer_pending(tt->timers[is_write])) {
409 return true;
412 /* request throttled and timer not pending -> arm timer */
413 timer_mod(tt->timers[is_write], next_timestamp);
414 return true;
417 /* do the accounting for this operation
419 * @is_write: the type of operation (read/write)
420 * @size: the size of the operation
422 void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
424 double units = 1.0;
426 /* if cfg.op_size is defined and smaller than size we compute unit count */
427 if (ts->cfg.op_size && size > ts->cfg.op_size) {
428 units = (double) size / ts->cfg.op_size;
431 ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size;
432 ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units;
434 if (is_write) {
435 ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size;
436 ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units;
437 } else {
438 ts->cfg.buckets[THROTTLE_BPS_READ].level += size;
439 ts->cfg.buckets[THROTTLE_OPS_READ].level += units;