Merge tag 'hax-v6-pull-request'
[qemu/ar7.git] / exec.c
blobd6ed5019715ff3f25b383ca721760a62b2a23034
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/hax.h"
35 #include "sysemu/sysemu.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "qemu/error-report.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #else /* !CONFIG_USER_ONLY */
42 #include "hw/hw.h"
43 #include "exec/memory.h"
44 #include "exec/ioport.h"
45 #include "sysemu/dma.h"
46 #include "exec/address-spaces.h"
47 #include "sysemu/xen-mapcache.h"
48 #include "trace.h"
49 #endif
50 #include "exec/cpu-all.h"
51 #include "qemu/rcu_queue.h"
52 #include "qemu/main-loop.h"
53 #include "translate-all.h"
54 #include "sysemu/replay.h"
56 #include "exec/memory-internal.h"
57 #include "exec/ram_addr.h"
58 #include "exec/log.h"
60 #include "migration/vmstate.h"
62 #include "qemu/range.h"
63 #ifndef _WIN32
64 #include "qemu/mmap-alloc.h"
65 #endif
67 //#define DEBUG_SUBPAGE
69 #if !defined(CONFIG_USER_ONLY)
70 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
71 * are protected by the ramlist lock.
73 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
75 static MemoryRegion *system_memory;
76 static MemoryRegion *system_io;
78 AddressSpace address_space_io;
79 AddressSpace address_space_memory;
81 MemoryRegion io_mem_rom, io_mem_notdirty;
82 static MemoryRegion io_mem_unassigned;
84 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
85 #define RAM_PREALLOC (1 << 0)
87 /* RAM is mmap-ed with MAP_SHARED */
88 #define RAM_SHARED (1 << 1)
90 /* Only a portion of RAM (used_length) is actually used, and migrated.
91 * This used_length size can change across reboots.
93 #define RAM_RESIZEABLE (1 << 2)
95 #endif
97 #ifdef TARGET_PAGE_BITS_VARY
98 int target_page_bits;
99 bool target_page_bits_decided;
100 #endif
102 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
103 /* current CPU in the current thread. It is only valid inside
104 cpu_exec() */
105 __thread CPUState *current_cpu;
106 /* 0 = Do not count executed instructions.
107 1 = Precise instruction counting.
108 2 = Adaptive rate instruction counting. */
109 int use_icount;
111 bool set_preferred_target_page_bits(int bits)
113 /* The target page size is the lowest common denominator for all
114 * the CPUs in the system, so we can only make it smaller, never
115 * larger. And we can't make it smaller once we've committed to
116 * a particular size.
118 #ifdef TARGET_PAGE_BITS_VARY
119 assert(bits >= TARGET_PAGE_BITS_MIN);
120 if (target_page_bits == 0 || target_page_bits > bits) {
121 if (target_page_bits_decided) {
122 return false;
124 target_page_bits = bits;
126 #endif
127 return true;
130 #if !defined(CONFIG_USER_ONLY)
132 static void finalize_target_page_bits(void)
134 #ifdef TARGET_PAGE_BITS_VARY
135 if (target_page_bits == 0) {
136 target_page_bits = TARGET_PAGE_BITS_MIN;
138 target_page_bits_decided = true;
139 #endif
142 typedef struct PhysPageEntry PhysPageEntry;
144 struct PhysPageEntry {
145 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
146 uint32_t skip : 6;
147 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
148 uint32_t ptr : 26;
151 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
153 /* Size of the L2 (and L3, etc) page tables. */
154 #define ADDR_SPACE_BITS 64
156 #define P_L2_BITS 9
157 #define P_L2_SIZE (1 << P_L2_BITS)
159 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
161 typedef PhysPageEntry Node[P_L2_SIZE];
163 typedef struct PhysPageMap {
164 struct rcu_head rcu;
166 unsigned sections_nb;
167 unsigned sections_nb_alloc;
168 unsigned nodes_nb;
169 unsigned nodes_nb_alloc;
170 Node *nodes;
171 MemoryRegionSection *sections;
172 } PhysPageMap;
174 struct AddressSpaceDispatch {
175 struct rcu_head rcu;
177 MemoryRegionSection *mru_section;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
181 PhysPageEntry phys_map;
182 PhysPageMap map;
183 AddressSpace *as;
186 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
187 typedef struct subpage_t {
188 MemoryRegion iomem;
189 AddressSpace *as;
190 hwaddr base;
191 uint16_t sub_section[];
192 } subpage_t;
194 #define PHYS_SECTION_UNASSIGNED 0
195 #define PHYS_SECTION_NOTDIRTY 1
196 #define PHYS_SECTION_ROM 2
197 #define PHYS_SECTION_WATCH 3
199 static void io_mem_init(void);
200 static void memory_map_init(void);
201 static void tcg_commit(MemoryListener *listener);
203 static MemoryRegion io_mem_watch;
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
212 struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
219 #endif
221 #if !defined(CONFIG_USER_ONLY)
223 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
225 static unsigned alloc_hint = 16;
226 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
227 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
228 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
229 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
230 alloc_hint = map->nodes_nb_alloc;
234 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
236 unsigned i;
237 uint32_t ret;
238 PhysPageEntry e;
239 PhysPageEntry *p;
241 ret = map->nodes_nb++;
242 p = map->nodes[ret];
243 assert(ret != PHYS_MAP_NODE_NIL);
244 assert(ret != map->nodes_nb_alloc);
246 e.skip = leaf ? 0 : 1;
247 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
248 for (i = 0; i < P_L2_SIZE; ++i) {
249 memcpy(&p[i], &e, sizeof(e));
251 return ret;
254 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
255 hwaddr *index, hwaddr *nb, uint16_t leaf,
256 int level)
258 PhysPageEntry *p;
259 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
261 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
262 lp->ptr = phys_map_node_alloc(map, level == 0);
264 p = map->nodes[lp->ptr];
265 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
267 while (*nb && lp < &p[P_L2_SIZE]) {
268 if ((*index & (step - 1)) == 0 && *nb >= step) {
269 lp->skip = 0;
270 lp->ptr = leaf;
271 *index += step;
272 *nb -= step;
273 } else {
274 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
276 ++lp;
280 static void phys_page_set(AddressSpaceDispatch *d,
281 hwaddr index, hwaddr nb,
282 uint16_t leaf)
284 /* Wildly overreserve - it doesn't matter much. */
285 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
287 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
290 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
291 * and update our entry so we can skip it and go directly to the destination.
293 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
295 unsigned valid_ptr = P_L2_SIZE;
296 int valid = 0;
297 PhysPageEntry *p;
298 int i;
300 if (lp->ptr == PHYS_MAP_NODE_NIL) {
301 return;
304 p = nodes[lp->ptr];
305 for (i = 0; i < P_L2_SIZE; i++) {
306 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
307 continue;
310 valid_ptr = i;
311 valid++;
312 if (p[i].skip) {
313 phys_page_compact(&p[i], nodes);
317 /* We can only compress if there's only one child. */
318 if (valid != 1) {
319 return;
322 assert(valid_ptr < P_L2_SIZE);
324 /* Don't compress if it won't fit in the # of bits we have. */
325 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
326 return;
329 lp->ptr = p[valid_ptr].ptr;
330 if (!p[valid_ptr].skip) {
331 /* If our only child is a leaf, make this a leaf. */
332 /* By design, we should have made this node a leaf to begin with so we
333 * should never reach here.
334 * But since it's so simple to handle this, let's do it just in case we
335 * change this rule.
337 lp->skip = 0;
338 } else {
339 lp->skip += p[valid_ptr].skip;
343 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
345 if (d->phys_map.skip) {
346 phys_page_compact(&d->phys_map, d->map.nodes);
350 static inline bool section_covers_addr(const MemoryRegionSection *section,
351 hwaddr addr)
353 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
354 * the section must cover the entire address space.
356 return int128_gethi(section->size) ||
357 range_covers_byte(section->offset_within_address_space,
358 int128_getlo(section->size), addr);
361 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
362 Node *nodes, MemoryRegionSection *sections)
364 PhysPageEntry *p;
365 hwaddr index = addr >> TARGET_PAGE_BITS;
366 int i;
368 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
369 if (lp.ptr == PHYS_MAP_NODE_NIL) {
370 return &sections[PHYS_SECTION_UNASSIGNED];
372 p = nodes[lp.ptr];
373 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
376 if (section_covers_addr(&sections[lp.ptr], addr)) {
377 return &sections[lp.ptr];
378 } else {
379 return &sections[PHYS_SECTION_UNASSIGNED];
383 bool memory_region_is_unassigned(MemoryRegion *mr)
385 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
386 && mr != &io_mem_watch;
389 /* Called from RCU critical section */
390 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
391 hwaddr addr,
392 bool resolve_subpage)
394 MemoryRegionSection *section = atomic_read(&d->mru_section);
395 subpage_t *subpage;
396 bool update;
398 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
399 section_covers_addr(section, addr)) {
400 update = false;
401 } else {
402 section = phys_page_find(d->phys_map, addr, d->map.nodes,
403 d->map.sections);
404 update = true;
406 if (resolve_subpage && section->mr->subpage) {
407 subpage = container_of(section->mr, subpage_t, iomem);
408 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
410 if (update) {
411 atomic_set(&d->mru_section, section);
413 return section;
416 /* Called from RCU critical section */
417 static MemoryRegionSection *
418 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
419 hwaddr *plen, bool resolve_subpage)
421 MemoryRegionSection *section;
422 MemoryRegion *mr;
423 Int128 diff;
425 section = address_space_lookup_region(d, addr, resolve_subpage);
426 /* Compute offset within MemoryRegionSection */
427 addr -= section->offset_within_address_space;
429 /* Compute offset within MemoryRegion */
430 *xlat = addr + section->offset_within_region;
432 mr = section->mr;
434 /* MMIO registers can be expected to perform full-width accesses based only
435 * on their address, without considering adjacent registers that could
436 * decode to completely different MemoryRegions. When such registers
437 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
438 * regions overlap wildly. For this reason we cannot clamp the accesses
439 * here.
441 * If the length is small (as is the case for address_space_ldl/stl),
442 * everything works fine. If the incoming length is large, however,
443 * the caller really has to do the clamping through memory_access_size.
445 if (memory_region_is_ram(mr)) {
446 diff = int128_sub(section->size, int128_make64(addr));
447 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
449 return section;
452 /* Called from RCU critical section */
453 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
454 bool is_write)
456 IOMMUTLBEntry iotlb = {0};
457 MemoryRegionSection *section;
458 MemoryRegion *mr;
460 for (;;) {
461 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
462 section = address_space_lookup_region(d, addr, false);
463 addr = addr - section->offset_within_address_space
464 + section->offset_within_region;
465 mr = section->mr;
467 if (!mr->iommu_ops) {
468 break;
471 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
472 if (!(iotlb.perm & (1 << is_write))) {
473 iotlb.target_as = NULL;
474 break;
477 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
478 | (addr & iotlb.addr_mask));
479 as = iotlb.target_as;
482 return iotlb;
485 /* Called from RCU critical section */
486 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
487 hwaddr *xlat, hwaddr *plen,
488 bool is_write)
490 IOMMUTLBEntry iotlb;
491 MemoryRegionSection *section;
492 MemoryRegion *mr;
494 for (;;) {
495 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
496 section = address_space_translate_internal(d, addr, &addr, plen, true);
497 mr = section->mr;
499 if (!mr->iommu_ops) {
500 break;
503 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
504 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
505 | (addr & iotlb.addr_mask));
506 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
507 if (!(iotlb.perm & (1 << is_write))) {
508 mr = &io_mem_unassigned;
509 break;
512 as = iotlb.target_as;
515 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
516 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
517 *plen = MIN(page, *plen);
520 *xlat = addr;
521 return mr;
524 /* Called from RCU critical section */
525 MemoryRegionSection *
526 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
527 hwaddr *xlat, hwaddr *plen)
529 MemoryRegionSection *section;
530 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
532 section = address_space_translate_internal(d, addr, xlat, plen, false);
534 assert(!section->mr->iommu_ops);
535 return section;
537 #endif
539 #if !defined(CONFIG_USER_ONLY)
541 static int cpu_common_post_load(void *opaque, int version_id)
543 CPUState *cpu = opaque;
545 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
546 version_id is increased. */
547 cpu->interrupt_request &= ~0x01;
548 tlb_flush(cpu, 1);
550 return 0;
553 static int cpu_common_pre_load(void *opaque)
555 CPUState *cpu = opaque;
557 cpu->exception_index = -1;
559 return 0;
562 static bool cpu_common_exception_index_needed(void *opaque)
564 CPUState *cpu = opaque;
566 return tcg_enabled() && cpu->exception_index != -1;
569 static const VMStateDescription vmstate_cpu_common_exception_index = {
570 .name = "cpu_common/exception_index",
571 .version_id = 1,
572 .minimum_version_id = 1,
573 .needed = cpu_common_exception_index_needed,
574 .fields = (VMStateField[]) {
575 VMSTATE_INT32(exception_index, CPUState),
576 VMSTATE_END_OF_LIST()
580 static bool cpu_common_crash_occurred_needed(void *opaque)
582 CPUState *cpu = opaque;
584 return cpu->crash_occurred;
587 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
588 .name = "cpu_common/crash_occurred",
589 .version_id = 1,
590 .minimum_version_id = 1,
591 .needed = cpu_common_crash_occurred_needed,
592 .fields = (VMStateField[]) {
593 VMSTATE_BOOL(crash_occurred, CPUState),
594 VMSTATE_END_OF_LIST()
598 const VMStateDescription vmstate_cpu_common = {
599 .name = "cpu_common",
600 .version_id = 1,
601 .minimum_version_id = 1,
602 .pre_load = cpu_common_pre_load,
603 .post_load = cpu_common_post_load,
604 .fields = (VMStateField[]) {
605 VMSTATE_UINT32(halted, CPUState),
606 VMSTATE_UINT32(interrupt_request, CPUState),
607 VMSTATE_END_OF_LIST()
609 .subsections = (const VMStateDescription*[]) {
610 &vmstate_cpu_common_exception_index,
611 &vmstate_cpu_common_crash_occurred,
612 NULL
616 #endif
618 CPUState *qemu_get_cpu(int index)
620 CPUState *cpu;
622 CPU_FOREACH(cpu) {
623 if (cpu->cpu_index == index) {
624 return cpu;
628 return NULL;
631 #if !defined(CONFIG_USER_ONLY)
632 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
634 CPUAddressSpace *newas;
636 /* Target code should have set num_ases before calling us */
637 assert(asidx < cpu->num_ases);
639 if (asidx == 0) {
640 /* address space 0 gets the convenience alias */
641 cpu->as = as;
644 /* KVM cannot currently support multiple address spaces. */
645 assert(asidx == 0 || !kvm_enabled());
647 if (!cpu->cpu_ases) {
648 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
651 newas = &cpu->cpu_ases[asidx];
652 newas->cpu = cpu;
653 newas->as = as;
654 if (tcg_enabled()) {
655 newas->tcg_as_listener.commit = tcg_commit;
656 memory_listener_register(&newas->tcg_as_listener, as);
660 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
662 /* Return the AddressSpace corresponding to the specified index */
663 return cpu->cpu_ases[asidx].as;
665 #endif
667 void cpu_exec_unrealizefn(CPUState *cpu)
669 CPUClass *cc = CPU_GET_CLASS(cpu);
671 cpu_list_remove(cpu);
673 if (cc->vmsd != NULL) {
674 vmstate_unregister(NULL, cc->vmsd, cpu);
676 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
677 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
681 void cpu_exec_initfn(CPUState *cpu)
683 #ifdef TARGET_WORDS_BIGENDIAN
684 cpu->bigendian = true;
685 #else
686 cpu->bigendian = false;
687 #endif
688 cpu->as = NULL;
689 cpu->num_ases = 0;
691 #ifndef CONFIG_USER_ONLY
692 cpu->thread_id = qemu_get_thread_id();
694 /* This is a softmmu CPU object, so create a property for it
695 * so users can wire up its memory. (This can't go in qom/cpu.c
696 * because that file is compiled only once for both user-mode
697 * and system builds.) The default if no link is set up is to use
698 * the system address space.
700 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
701 (Object **)&cpu->memory,
702 qdev_prop_allow_set_link_before_realize,
703 OBJ_PROP_LINK_UNREF_ON_RELEASE,
704 &error_abort);
705 cpu->memory = system_memory;
706 object_ref(OBJECT(cpu->memory));
707 #endif
710 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
712 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
714 cpu_list_add(cpu);
716 #ifndef CONFIG_USER_ONLY
717 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
718 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
720 if (cc->vmsd != NULL) {
721 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
723 #endif
726 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
728 /* Flush the whole TB as this will not have race conditions
729 * even if we don't have proper locking yet.
730 * Ideally we would just invalidate the TBs for the
731 * specified PC.
733 tb_flush(cpu);
736 #if defined(CONFIG_USER_ONLY)
737 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
742 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
743 int flags)
745 return -ENOSYS;
748 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
752 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
753 int flags, CPUWatchpoint **watchpoint)
755 return -ENOSYS;
757 #else
758 /* Add a watchpoint. */
759 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
760 int flags, CPUWatchpoint **watchpoint)
762 CPUWatchpoint *wp;
764 /* forbid ranges which are empty or run off the end of the address space */
765 if (len == 0 || (addr + len - 1) < addr) {
766 error_report("tried to set invalid watchpoint at %"
767 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
768 return -EINVAL;
770 wp = g_malloc(sizeof(*wp));
772 wp->vaddr = addr;
773 wp->len = len;
774 wp->flags = flags;
776 /* keep all GDB-injected watchpoints in front */
777 if (flags & BP_GDB) {
778 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
779 } else {
780 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
783 tlb_flush_page(cpu, addr);
785 if (watchpoint)
786 *watchpoint = wp;
787 return 0;
790 /* Remove a specific watchpoint. */
791 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
792 int flags)
794 CPUWatchpoint *wp;
796 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
797 if (addr == wp->vaddr && len == wp->len
798 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
799 cpu_watchpoint_remove_by_ref(cpu, wp);
800 return 0;
803 return -ENOENT;
806 /* Remove a specific watchpoint by reference. */
807 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
809 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
811 tlb_flush_page(cpu, watchpoint->vaddr);
813 g_free(watchpoint);
816 /* Remove all matching watchpoints. */
817 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
819 CPUWatchpoint *wp, *next;
821 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
822 if (wp->flags & mask) {
823 cpu_watchpoint_remove_by_ref(cpu, wp);
828 /* Return true if this watchpoint address matches the specified
829 * access (ie the address range covered by the watchpoint overlaps
830 * partially or completely with the address range covered by the
831 * access).
833 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
834 vaddr addr,
835 vaddr len)
837 /* We know the lengths are non-zero, but a little caution is
838 * required to avoid errors in the case where the range ends
839 * exactly at the top of the address space and so addr + len
840 * wraps round to zero.
842 vaddr wpend = wp->vaddr + wp->len - 1;
843 vaddr addrend = addr + len - 1;
845 return !(addr > wpend || wp->vaddr > addrend);
848 #endif
850 /* Add a breakpoint. */
851 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
852 CPUBreakpoint **breakpoint)
854 CPUBreakpoint *bp;
856 bp = g_malloc(sizeof(*bp));
858 bp->pc = pc;
859 bp->flags = flags;
861 /* keep all GDB-injected breakpoints in front */
862 if (flags & BP_GDB) {
863 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
864 } else {
865 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
868 breakpoint_invalidate(cpu, pc);
870 if (breakpoint) {
871 *breakpoint = bp;
873 return 0;
876 /* Remove a specific breakpoint. */
877 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
879 CPUBreakpoint *bp;
881 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
882 if (bp->pc == pc && bp->flags == flags) {
883 cpu_breakpoint_remove_by_ref(cpu, bp);
884 return 0;
887 return -ENOENT;
890 /* Remove a specific breakpoint by reference. */
891 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
893 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
895 breakpoint_invalidate(cpu, breakpoint->pc);
897 g_free(breakpoint);
900 /* Remove all matching breakpoints. */
901 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
903 CPUBreakpoint *bp, *next;
905 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
906 if (bp->flags & mask) {
907 cpu_breakpoint_remove_by_ref(cpu, bp);
912 /* enable or disable single step mode. EXCP_DEBUG is returned by the
913 CPU loop after each instruction */
914 void cpu_single_step(CPUState *cpu, int enabled)
916 if (cpu->singlestep_enabled != enabled) {
917 cpu->singlestep_enabled = enabled;
918 if (kvm_enabled()) {
919 kvm_update_guest_debug(cpu, 0);
920 } else {
921 /* must flush all the translated code to avoid inconsistencies */
922 /* XXX: only flush what is necessary */
923 tb_flush(cpu);
928 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
930 va_list ap;
931 va_list ap2;
933 va_start(ap, fmt);
934 va_copy(ap2, ap);
935 fprintf(stderr, "qemu: fatal: ");
936 vfprintf(stderr, fmt, ap);
937 fprintf(stderr, "\n");
938 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
939 if (qemu_log_separate()) {
940 qemu_log_lock();
941 qemu_log("qemu: fatal: ");
942 qemu_log_vprintf(fmt, ap2);
943 qemu_log("\n");
944 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
945 qemu_log_flush();
946 qemu_log_unlock();
947 qemu_log_close();
949 va_end(ap2);
950 va_end(ap);
951 replay_finish();
952 #if defined(CONFIG_USER_ONLY)
954 struct sigaction act;
955 sigfillset(&act.sa_mask);
956 act.sa_handler = SIG_DFL;
957 sigaction(SIGABRT, &act, NULL);
959 #endif
960 abort();
963 #if !defined(CONFIG_USER_ONLY)
964 /* Called from RCU critical section */
965 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
967 RAMBlock *block;
969 block = atomic_rcu_read(&ram_list.mru_block);
970 if (block && addr - block->offset < block->max_length) {
971 return block;
973 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
974 if (addr - block->offset < block->max_length) {
975 goto found;
979 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
980 abort();
982 found:
983 /* It is safe to write mru_block outside the iothread lock. This
984 * is what happens:
986 * mru_block = xxx
987 * rcu_read_unlock()
988 * xxx removed from list
989 * rcu_read_lock()
990 * read mru_block
991 * mru_block = NULL;
992 * call_rcu(reclaim_ramblock, xxx);
993 * rcu_read_unlock()
995 * atomic_rcu_set is not needed here. The block was already published
996 * when it was placed into the list. Here we're just making an extra
997 * copy of the pointer.
999 ram_list.mru_block = block;
1000 return block;
1003 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1005 CPUState *cpu;
1006 ram_addr_t start1;
1007 RAMBlock *block;
1008 ram_addr_t end;
1010 end = TARGET_PAGE_ALIGN(start + length);
1011 start &= TARGET_PAGE_MASK;
1013 rcu_read_lock();
1014 block = qemu_get_ram_block(start);
1015 assert(block == qemu_get_ram_block(end - 1));
1016 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1017 CPU_FOREACH(cpu) {
1018 tlb_reset_dirty(cpu, start1, length);
1020 rcu_read_unlock();
1023 /* Note: start and end must be within the same ram block. */
1024 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1025 ram_addr_t length,
1026 unsigned client)
1028 DirtyMemoryBlocks *blocks;
1029 unsigned long end, page;
1030 bool dirty = false;
1032 if (length == 0) {
1033 return false;
1036 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1037 page = start >> TARGET_PAGE_BITS;
1039 rcu_read_lock();
1041 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1043 while (page < end) {
1044 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1045 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1046 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1048 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1049 offset, num);
1050 page += num;
1053 rcu_read_unlock();
1055 if (dirty && tcg_enabled()) {
1056 tlb_reset_dirty_range_all(start, length);
1059 return dirty;
1062 /* Called from RCU critical section */
1063 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1064 MemoryRegionSection *section,
1065 target_ulong vaddr,
1066 hwaddr paddr, hwaddr xlat,
1067 int prot,
1068 target_ulong *address)
1070 hwaddr iotlb;
1071 CPUWatchpoint *wp;
1073 if (memory_region_is_ram(section->mr)) {
1074 /* Normal RAM. */
1075 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1076 if (!section->readonly) {
1077 iotlb |= PHYS_SECTION_NOTDIRTY;
1078 } else {
1079 iotlb |= PHYS_SECTION_ROM;
1081 } else {
1082 AddressSpaceDispatch *d;
1084 d = atomic_rcu_read(&section->address_space->dispatch);
1085 iotlb = section - d->map.sections;
1086 iotlb += xlat;
1089 /* Make accesses to pages with watchpoints go via the
1090 watchpoint trap routines. */
1091 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1092 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1093 /* Avoid trapping reads of pages with a write breakpoint. */
1094 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1095 iotlb = PHYS_SECTION_WATCH + paddr;
1096 *address |= TLB_MMIO;
1097 break;
1102 return iotlb;
1104 #endif /* defined(CONFIG_USER_ONLY) */
1106 #if !defined(CONFIG_USER_ONLY)
1108 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1109 uint16_t section);
1110 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1112 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1113 qemu_anon_ram_alloc;
1116 * Set a custom physical guest memory alloator.
1117 * Accelerators with unusual needs may need this. Hopefully, we can
1118 * get rid of it eventually.
1120 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1122 phys_mem_alloc = alloc;
1125 static uint16_t phys_section_add(PhysPageMap *map,
1126 MemoryRegionSection *section)
1128 /* The physical section number is ORed with a page-aligned
1129 * pointer to produce the iotlb entries. Thus it should
1130 * never overflow into the page-aligned value.
1132 assert(map->sections_nb < TARGET_PAGE_SIZE);
1134 if (map->sections_nb == map->sections_nb_alloc) {
1135 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1136 map->sections = g_renew(MemoryRegionSection, map->sections,
1137 map->sections_nb_alloc);
1139 map->sections[map->sections_nb] = *section;
1140 memory_region_ref(section->mr);
1141 return map->sections_nb++;
1144 static void phys_section_destroy(MemoryRegion *mr)
1146 bool have_sub_page = mr->subpage;
1148 memory_region_unref(mr);
1150 if (have_sub_page) {
1151 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1152 object_unref(OBJECT(&subpage->iomem));
1153 g_free(subpage);
1157 static void phys_sections_free(PhysPageMap *map)
1159 while (map->sections_nb > 0) {
1160 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1161 phys_section_destroy(section->mr);
1163 g_free(map->sections);
1164 g_free(map->nodes);
1167 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1169 subpage_t *subpage;
1170 hwaddr base = section->offset_within_address_space
1171 & TARGET_PAGE_MASK;
1172 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1173 d->map.nodes, d->map.sections);
1174 MemoryRegionSection subsection = {
1175 .offset_within_address_space = base,
1176 .size = int128_make64(TARGET_PAGE_SIZE),
1178 hwaddr start, end;
1180 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1182 if (!(existing->mr->subpage)) {
1183 subpage = subpage_init(d->as, base);
1184 subsection.address_space = d->as;
1185 subsection.mr = &subpage->iomem;
1186 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1187 phys_section_add(&d->map, &subsection));
1188 } else {
1189 subpage = container_of(existing->mr, subpage_t, iomem);
1191 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1192 end = start + int128_get64(section->size) - 1;
1193 subpage_register(subpage, start, end,
1194 phys_section_add(&d->map, section));
1198 static void register_multipage(AddressSpaceDispatch *d,
1199 MemoryRegionSection *section)
1201 hwaddr start_addr = section->offset_within_address_space;
1202 uint16_t section_index = phys_section_add(&d->map, section);
1203 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1204 TARGET_PAGE_BITS));
1206 assert(num_pages);
1207 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1210 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1212 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1213 AddressSpaceDispatch *d = as->next_dispatch;
1214 MemoryRegionSection now = *section, remain = *section;
1215 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1217 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1218 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1219 - now.offset_within_address_space;
1221 now.size = int128_min(int128_make64(left), now.size);
1222 register_subpage(d, &now);
1223 } else {
1224 now.size = int128_zero();
1226 while (int128_ne(remain.size, now.size)) {
1227 remain.size = int128_sub(remain.size, now.size);
1228 remain.offset_within_address_space += int128_get64(now.size);
1229 remain.offset_within_region += int128_get64(now.size);
1230 now = remain;
1231 if (int128_lt(remain.size, page_size)) {
1232 register_subpage(d, &now);
1233 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1234 now.size = page_size;
1235 register_subpage(d, &now);
1236 } else {
1237 now.size = int128_and(now.size, int128_neg(page_size));
1238 register_multipage(d, &now);
1243 void qemu_flush_coalesced_mmio_buffer(void)
1245 if (kvm_enabled())
1246 kvm_flush_coalesced_mmio_buffer();
1249 void qemu_mutex_lock_ramlist(void)
1251 qemu_mutex_lock(&ram_list.mutex);
1254 void qemu_mutex_unlock_ramlist(void)
1256 qemu_mutex_unlock(&ram_list.mutex);
1259 #ifdef __linux__
1260 static int64_t get_file_size(int fd)
1262 int64_t size = lseek(fd, 0, SEEK_END);
1263 if (size < 0) {
1264 return -errno;
1266 return size;
1269 static void *file_ram_alloc(RAMBlock *block,
1270 ram_addr_t memory,
1271 const char *path,
1272 Error **errp)
1274 bool unlink_on_error = false;
1275 char *filename;
1276 char *sanitized_name;
1277 char *c;
1278 void * volatile area = MAP_FAILED;
1279 int fd = -1;
1280 int64_t file_size;
1282 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1283 error_setg(errp,
1284 "host lacks kvm mmu notifiers, -mem-path unsupported");
1285 return NULL;
1288 for (;;) {
1289 fd = open(path, O_RDWR);
1290 if (fd >= 0) {
1291 /* @path names an existing file, use it */
1292 break;
1294 if (errno == ENOENT) {
1295 /* @path names a file that doesn't exist, create it */
1296 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1297 if (fd >= 0) {
1298 unlink_on_error = true;
1299 break;
1301 } else if (errno == EISDIR) {
1302 /* @path names a directory, create a file there */
1303 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1304 sanitized_name = g_strdup(memory_region_name(block->mr));
1305 for (c = sanitized_name; *c != '\0'; c++) {
1306 if (*c == '/') {
1307 *c = '_';
1311 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1312 sanitized_name);
1313 g_free(sanitized_name);
1315 fd = mkstemp(filename);
1316 if (fd >= 0) {
1317 unlink(filename);
1318 g_free(filename);
1319 break;
1321 g_free(filename);
1323 if (errno != EEXIST && errno != EINTR) {
1324 error_setg_errno(errp, errno,
1325 "can't open backing store %s for guest RAM",
1326 path);
1327 goto error;
1330 * Try again on EINTR and EEXIST. The latter happens when
1331 * something else creates the file between our two open().
1335 block->page_size = qemu_fd_getpagesize(fd);
1336 block->mr->align = block->page_size;
1337 #if defined(__s390x__)
1338 if (kvm_enabled()) {
1339 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1341 #endif
1343 file_size = get_file_size(fd);
1345 if (memory < block->page_size) {
1346 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1347 "or larger than page size 0x%zx",
1348 memory, block->page_size);
1349 goto error;
1352 if (file_size > 0 && file_size < memory) {
1353 error_setg(errp, "backing store %s size 0x%" PRIx64
1354 " does not match 'size' option 0x" RAM_ADDR_FMT,
1355 path, file_size, memory);
1356 goto error;
1359 memory = ROUND_UP(memory, block->page_size);
1362 * ftruncate is not supported by hugetlbfs in older
1363 * hosts, so don't bother bailing out on errors.
1364 * If anything goes wrong with it under other filesystems,
1365 * mmap will fail.
1367 * Do not truncate the non-empty backend file to avoid corrupting
1368 * the existing data in the file. Disabling shrinking is not
1369 * enough. For example, the current vNVDIMM implementation stores
1370 * the guest NVDIMM labels at the end of the backend file. If the
1371 * backend file is later extended, QEMU will not be able to find
1372 * those labels. Therefore, extending the non-empty backend file
1373 * is disabled as well.
1375 if (!file_size && ftruncate(fd, memory)) {
1376 perror("ftruncate");
1379 area = qemu_ram_mmap(fd, memory, block->mr->align,
1380 block->flags & RAM_SHARED);
1381 if (area == MAP_FAILED) {
1382 error_setg_errno(errp, errno,
1383 "unable to map backing store for guest RAM");
1384 goto error;
1387 if (mem_prealloc) {
1388 os_mem_prealloc(fd, area, memory, errp);
1389 if (errp && *errp) {
1390 goto error;
1394 block->fd = fd;
1395 return area;
1397 error:
1398 if (area != MAP_FAILED) {
1399 qemu_ram_munmap(area, memory);
1401 if (unlink_on_error) {
1402 unlink(path);
1404 if (fd != -1) {
1405 close(fd);
1407 return NULL;
1409 #endif
1411 /* Called with the ramlist lock held. */
1412 static ram_addr_t find_ram_offset(ram_addr_t size)
1414 RAMBlock *block, *next_block;
1415 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1417 assert(size != 0); /* it would hand out same offset multiple times */
1419 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1420 return 0;
1423 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1424 ram_addr_t end, next = RAM_ADDR_MAX;
1426 end = block->offset + block->max_length;
1428 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1429 if (next_block->offset >= end) {
1430 next = MIN(next, next_block->offset);
1433 if (next - end >= size && next - end < mingap) {
1434 offset = end;
1435 mingap = next - end;
1439 if (offset == RAM_ADDR_MAX) {
1440 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1441 (uint64_t)size);
1442 abort();
1445 return offset;
1448 ram_addr_t last_ram_offset(void)
1450 RAMBlock *block;
1451 ram_addr_t last = 0;
1453 rcu_read_lock();
1454 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1455 last = MAX(last, block->offset + block->max_length);
1457 rcu_read_unlock();
1458 return last;
1461 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1463 int ret;
1465 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1466 if (!machine_dump_guest_core(current_machine)) {
1467 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1468 if (ret) {
1469 perror("qemu_madvise");
1470 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1471 "but dump_guest_core=off specified\n");
1476 const char *qemu_ram_get_idstr(RAMBlock *rb)
1478 return rb->idstr;
1481 /* Called with iothread lock held. */
1482 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1484 RAMBlock *block;
1486 assert(new_block);
1487 assert(!new_block->idstr[0]);
1489 if (dev) {
1490 char *id = qdev_get_dev_path(dev);
1491 if (id) {
1492 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1493 g_free(id);
1496 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1498 rcu_read_lock();
1499 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1500 if (block != new_block &&
1501 !strcmp(block->idstr, new_block->idstr)) {
1502 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1503 new_block->idstr);
1504 abort();
1507 rcu_read_unlock();
1510 /* Called with iothread lock held. */
1511 void qemu_ram_unset_idstr(RAMBlock *block)
1513 /* FIXME: arch_init.c assumes that this is not called throughout
1514 * migration. Ignore the problem since hot-unplug during migration
1515 * does not work anyway.
1517 if (block) {
1518 memset(block->idstr, 0, sizeof(block->idstr));
1522 size_t qemu_ram_pagesize(RAMBlock *rb)
1524 return rb->page_size;
1527 static int memory_try_enable_merging(void *addr, size_t len)
1529 if (!machine_mem_merge(current_machine)) {
1530 /* disabled by the user */
1531 return 0;
1534 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1537 /* Only legal before guest might have detected the memory size: e.g. on
1538 * incoming migration, or right after reset.
1540 * As memory core doesn't know how is memory accessed, it is up to
1541 * resize callback to update device state and/or add assertions to detect
1542 * misuse, if necessary.
1544 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1546 assert(block);
1548 newsize = HOST_PAGE_ALIGN(newsize);
1550 if (block->used_length == newsize) {
1551 return 0;
1554 if (!(block->flags & RAM_RESIZEABLE)) {
1555 error_setg_errno(errp, EINVAL,
1556 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1557 " in != 0x" RAM_ADDR_FMT, block->idstr,
1558 newsize, block->used_length);
1559 return -EINVAL;
1562 if (block->max_length < newsize) {
1563 error_setg_errno(errp, EINVAL,
1564 "Length too large: %s: 0x" RAM_ADDR_FMT
1565 " > 0x" RAM_ADDR_FMT, block->idstr,
1566 newsize, block->max_length);
1567 return -EINVAL;
1570 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1571 block->used_length = newsize;
1572 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1573 DIRTY_CLIENTS_ALL);
1574 memory_region_set_size(block->mr, newsize);
1575 if (block->resized) {
1576 block->resized(block->idstr, newsize, block->host);
1578 return 0;
1581 /* Called with ram_list.mutex held */
1582 static void dirty_memory_extend(ram_addr_t old_ram_size,
1583 ram_addr_t new_ram_size)
1585 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1586 DIRTY_MEMORY_BLOCK_SIZE);
1587 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1588 DIRTY_MEMORY_BLOCK_SIZE);
1589 int i;
1591 /* Only need to extend if block count increased */
1592 if (new_num_blocks <= old_num_blocks) {
1593 return;
1596 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1597 DirtyMemoryBlocks *old_blocks;
1598 DirtyMemoryBlocks *new_blocks;
1599 int j;
1601 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1602 new_blocks = g_malloc(sizeof(*new_blocks) +
1603 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1605 if (old_num_blocks) {
1606 memcpy(new_blocks->blocks, old_blocks->blocks,
1607 old_num_blocks * sizeof(old_blocks->blocks[0]));
1610 for (j = old_num_blocks; j < new_num_blocks; j++) {
1611 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1614 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1616 if (old_blocks) {
1617 g_free_rcu(old_blocks, rcu);
1622 static void ram_block_add(RAMBlock *new_block, Error **errp)
1624 RAMBlock *block;
1625 RAMBlock *last_block = NULL;
1626 ram_addr_t old_ram_size, new_ram_size;
1627 Error *err = NULL;
1629 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1631 qemu_mutex_lock_ramlist();
1632 new_block->offset = find_ram_offset(new_block->max_length);
1634 if (!new_block->host) {
1635 if (xen_enabled()) {
1636 xen_ram_alloc(new_block->offset, new_block->max_length,
1637 new_block->mr, &err);
1638 if (err) {
1639 error_propagate(errp, err);
1640 qemu_mutex_unlock_ramlist();
1641 return;
1643 } else {
1644 new_block->host = phys_mem_alloc(new_block->max_length,
1645 &new_block->mr->align);
1646 if (!new_block->host) {
1647 error_setg_errno(errp, errno,
1648 "cannot set up guest memory '%s'",
1649 memory_region_name(new_block->mr));
1650 qemu_mutex_unlock_ramlist();
1651 return;
1654 * In Hax, the qemu allocate the virtual address, and HAX kernel
1655 * populate the memory with physical memory. Currently we have no
1656 * paging, so user should make sure enough free memory in advance
1658 if (hax_enabled()) {
1659 int ret;
1660 ret = hax_populate_ram((uint64_t)(uintptr_t)new_block->host,
1661 new_block->max_length);
1662 if (ret < 0) {
1663 error_setg(errp, "Hax failed to populate ram");
1664 return;
1668 memory_try_enable_merging(new_block->host, new_block->max_length);
1672 new_ram_size = MAX(old_ram_size,
1673 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1674 if (new_ram_size > old_ram_size) {
1675 migration_bitmap_extend(old_ram_size, new_ram_size);
1676 dirty_memory_extend(old_ram_size, new_ram_size);
1678 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1679 * QLIST (which has an RCU-friendly variant) does not have insertion at
1680 * tail, so save the last element in last_block.
1682 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1683 last_block = block;
1684 if (block->max_length < new_block->max_length) {
1685 break;
1688 if (block) {
1689 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1690 } else if (last_block) {
1691 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1692 } else { /* list is empty */
1693 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1695 ram_list.mru_block = NULL;
1697 /* Write list before version */
1698 smp_wmb();
1699 ram_list.version++;
1700 qemu_mutex_unlock_ramlist();
1702 cpu_physical_memory_set_dirty_range(new_block->offset,
1703 new_block->used_length,
1704 DIRTY_CLIENTS_ALL);
1706 if (new_block->host) {
1707 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1708 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1709 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1710 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1711 ram_block_notify_add(new_block->host, new_block->max_length);
1715 #ifdef __linux__
1716 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1717 bool share, const char *mem_path,
1718 Error **errp)
1720 RAMBlock *new_block;
1721 Error *local_err = NULL;
1723 if (xen_enabled()) {
1724 error_setg(errp, "-mem-path not supported with Xen");
1725 return NULL;
1728 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1730 * file_ram_alloc() needs to allocate just like
1731 * phys_mem_alloc, but we haven't bothered to provide
1732 * a hook there.
1734 error_setg(errp,
1735 "-mem-path not supported with this accelerator");
1736 return NULL;
1739 size = HOST_PAGE_ALIGN(size);
1740 new_block = g_malloc0(sizeof(*new_block));
1741 new_block->mr = mr;
1742 new_block->used_length = size;
1743 new_block->max_length = size;
1744 new_block->flags = share ? RAM_SHARED : 0;
1745 new_block->host = file_ram_alloc(new_block, size,
1746 mem_path, errp);
1747 if (!new_block->host) {
1748 g_free(new_block);
1749 return NULL;
1752 ram_block_add(new_block, &local_err);
1753 if (local_err) {
1754 g_free(new_block);
1755 error_propagate(errp, local_err);
1756 return NULL;
1758 return new_block;
1760 #endif
1762 static
1763 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1764 void (*resized)(const char*,
1765 uint64_t length,
1766 void *host),
1767 void *host, bool resizeable,
1768 MemoryRegion *mr, Error **errp)
1770 RAMBlock *new_block;
1771 Error *local_err = NULL;
1773 size = HOST_PAGE_ALIGN(size);
1774 max_size = HOST_PAGE_ALIGN(max_size);
1775 new_block = g_malloc0(sizeof(*new_block));
1776 new_block->mr = mr;
1777 new_block->resized = resized;
1778 new_block->used_length = size;
1779 new_block->max_length = max_size;
1780 assert(max_size >= size);
1781 new_block->fd = -1;
1782 new_block->page_size = getpagesize();
1783 new_block->host = host;
1784 if (host) {
1785 new_block->flags |= RAM_PREALLOC;
1787 if (resizeable) {
1788 new_block->flags |= RAM_RESIZEABLE;
1790 ram_block_add(new_block, &local_err);
1791 if (local_err) {
1792 g_free(new_block);
1793 error_propagate(errp, local_err);
1794 return NULL;
1796 return new_block;
1799 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1800 MemoryRegion *mr, Error **errp)
1802 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1805 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1807 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1810 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1811 void (*resized)(const char*,
1812 uint64_t length,
1813 void *host),
1814 MemoryRegion *mr, Error **errp)
1816 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1819 static void reclaim_ramblock(RAMBlock *block)
1821 if (block->flags & RAM_PREALLOC) {
1823 } else if (xen_enabled()) {
1824 xen_invalidate_map_cache_entry(block->host);
1825 #ifndef _WIN32
1826 } else if (block->fd >= 0) {
1827 qemu_ram_munmap(block->host, block->max_length);
1828 close(block->fd);
1829 #endif
1830 } else {
1831 qemu_anon_ram_free(block->host, block->max_length);
1833 g_free(block);
1836 void qemu_ram_free(RAMBlock *block)
1838 if (!block) {
1839 return;
1842 if (block->host) {
1843 ram_block_notify_remove(block->host, block->max_length);
1846 qemu_mutex_lock_ramlist();
1847 QLIST_REMOVE_RCU(block, next);
1848 ram_list.mru_block = NULL;
1849 /* Write list before version */
1850 smp_wmb();
1851 ram_list.version++;
1852 call_rcu(block, reclaim_ramblock, rcu);
1853 qemu_mutex_unlock_ramlist();
1856 #ifndef _WIN32
1857 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1859 RAMBlock *block;
1860 ram_addr_t offset;
1861 int flags;
1862 void *area, *vaddr;
1864 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1865 offset = addr - block->offset;
1866 if (offset < block->max_length) {
1867 vaddr = ramblock_ptr(block, offset);
1868 if (block->flags & RAM_PREALLOC) {
1870 } else if (xen_enabled()) {
1871 abort();
1872 } else {
1873 flags = MAP_FIXED;
1874 if (block->fd >= 0) {
1875 flags |= (block->flags & RAM_SHARED ?
1876 MAP_SHARED : MAP_PRIVATE);
1877 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1878 flags, block->fd, offset);
1879 } else {
1881 * Remap needs to match alloc. Accelerators that
1882 * set phys_mem_alloc never remap. If they did,
1883 * we'd need a remap hook here.
1885 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1887 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1888 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1889 flags, -1, 0);
1891 if (area != vaddr) {
1892 fprintf(stderr, "Could not remap addr: "
1893 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1894 length, addr);
1895 exit(1);
1897 memory_try_enable_merging(vaddr, length);
1898 qemu_ram_setup_dump(vaddr, length);
1903 #endif /* !_WIN32 */
1905 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1906 * This should not be used for general purpose DMA. Use address_space_map
1907 * or address_space_rw instead. For local memory (e.g. video ram) that the
1908 * device owns, use memory_region_get_ram_ptr.
1910 * Called within RCU critical section.
1912 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1914 RAMBlock *block = ram_block;
1916 if (block == NULL) {
1917 block = qemu_get_ram_block(addr);
1918 addr -= block->offset;
1921 if (xen_enabled() && block->host == NULL) {
1922 /* We need to check if the requested address is in the RAM
1923 * because we don't want to map the entire memory in QEMU.
1924 * In that case just map until the end of the page.
1926 if (block->offset == 0) {
1927 return xen_map_cache(addr, 0, 0);
1930 block->host = xen_map_cache(block->offset, block->max_length, 1);
1932 return ramblock_ptr(block, addr);
1935 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1936 * but takes a size argument.
1938 * Called within RCU critical section.
1940 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1941 hwaddr *size)
1943 RAMBlock *block = ram_block;
1944 if (*size == 0) {
1945 return NULL;
1948 if (block == NULL) {
1949 block = qemu_get_ram_block(addr);
1950 addr -= block->offset;
1952 *size = MIN(*size, block->max_length - addr);
1954 if (xen_enabled() && block->host == NULL) {
1955 /* We need to check if the requested address is in the RAM
1956 * because we don't want to map the entire memory in QEMU.
1957 * In that case just map the requested area.
1959 if (block->offset == 0) {
1960 return xen_map_cache(addr, *size, 1);
1963 block->host = xen_map_cache(block->offset, block->max_length, 1);
1966 return ramblock_ptr(block, addr);
1970 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1971 * in that RAMBlock.
1973 * ptr: Host pointer to look up
1974 * round_offset: If true round the result offset down to a page boundary
1975 * *ram_addr: set to result ram_addr
1976 * *offset: set to result offset within the RAMBlock
1978 * Returns: RAMBlock (or NULL if not found)
1980 * By the time this function returns, the returned pointer is not protected
1981 * by RCU anymore. If the caller is not within an RCU critical section and
1982 * does not hold the iothread lock, it must have other means of protecting the
1983 * pointer, such as a reference to the region that includes the incoming
1984 * ram_addr_t.
1986 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1987 ram_addr_t *offset)
1989 RAMBlock *block;
1990 uint8_t *host = ptr;
1992 if (xen_enabled()) {
1993 ram_addr_t ram_addr;
1994 rcu_read_lock();
1995 ram_addr = xen_ram_addr_from_mapcache(ptr);
1996 block = qemu_get_ram_block(ram_addr);
1997 if (block) {
1998 *offset = ram_addr - block->offset;
2000 rcu_read_unlock();
2001 return block;
2004 rcu_read_lock();
2005 block = atomic_rcu_read(&ram_list.mru_block);
2006 if (block && block->host && host - block->host < block->max_length) {
2007 goto found;
2010 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2011 /* This case append when the block is not mapped. */
2012 if (block->host == NULL) {
2013 continue;
2015 if (host - block->host < block->max_length) {
2016 goto found;
2020 rcu_read_unlock();
2021 return NULL;
2023 found:
2024 *offset = (host - block->host);
2025 if (round_offset) {
2026 *offset &= TARGET_PAGE_MASK;
2028 rcu_read_unlock();
2029 return block;
2033 * Finds the named RAMBlock
2035 * name: The name of RAMBlock to find
2037 * Returns: RAMBlock (or NULL if not found)
2039 RAMBlock *qemu_ram_block_by_name(const char *name)
2041 RAMBlock *block;
2043 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2044 if (!strcmp(name, block->idstr)) {
2045 return block;
2049 return NULL;
2052 /* Some of the softmmu routines need to translate from a host pointer
2053 (typically a TLB entry) back to a ram offset. */
2054 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2056 RAMBlock *block;
2057 ram_addr_t offset;
2059 block = qemu_ram_block_from_host(ptr, false, &offset);
2060 if (!block) {
2061 return RAM_ADDR_INVALID;
2064 return block->offset + offset;
2067 /* Called within RCU critical section. */
2068 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2069 uint64_t val, unsigned size)
2071 bool locked = false;
2073 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2074 locked = true;
2075 tb_lock();
2076 tb_invalidate_phys_page_fast(ram_addr, size);
2078 switch (size) {
2079 case 1:
2080 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2081 break;
2082 case 2:
2083 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2084 break;
2085 case 4:
2086 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2087 break;
2088 default:
2089 abort();
2092 if (locked) {
2093 tb_unlock();
2096 /* Set both VGA and migration bits for simplicity and to remove
2097 * the notdirty callback faster.
2099 cpu_physical_memory_set_dirty_range(ram_addr, size,
2100 DIRTY_CLIENTS_NOCODE);
2101 /* we remove the notdirty callback only if the code has been
2102 flushed */
2103 if (!cpu_physical_memory_is_clean(ram_addr)) {
2104 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2108 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2109 unsigned size, bool is_write)
2111 return is_write;
2114 static const MemoryRegionOps notdirty_mem_ops = {
2115 .write = notdirty_mem_write,
2116 .valid.accepts = notdirty_mem_accepts,
2117 .endianness = DEVICE_NATIVE_ENDIAN,
2120 /* Generate a debug exception if a watchpoint has been hit. */
2121 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2123 CPUState *cpu = current_cpu;
2124 CPUClass *cc = CPU_GET_CLASS(cpu);
2125 CPUArchState *env = cpu->env_ptr;
2126 target_ulong pc, cs_base;
2127 target_ulong vaddr;
2128 CPUWatchpoint *wp;
2129 uint32_t cpu_flags;
2131 if (cpu->watchpoint_hit) {
2132 /* We re-entered the check after replacing the TB. Now raise
2133 * the debug interrupt so that is will trigger after the
2134 * current instruction. */
2135 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2136 return;
2138 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2139 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2140 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2141 && (wp->flags & flags)) {
2142 if (flags == BP_MEM_READ) {
2143 wp->flags |= BP_WATCHPOINT_HIT_READ;
2144 } else {
2145 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2147 wp->hitaddr = vaddr;
2148 wp->hitattrs = attrs;
2149 if (!cpu->watchpoint_hit) {
2150 if (wp->flags & BP_CPU &&
2151 !cc->debug_check_watchpoint(cpu, wp)) {
2152 wp->flags &= ~BP_WATCHPOINT_HIT;
2153 continue;
2155 cpu->watchpoint_hit = wp;
2157 /* The tb_lock will be reset when cpu_loop_exit or
2158 * cpu_loop_exit_noexc longjmp back into the cpu_exec
2159 * main loop.
2161 tb_lock();
2162 tb_check_watchpoint(cpu);
2163 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2164 cpu->exception_index = EXCP_DEBUG;
2165 cpu_loop_exit(cpu);
2166 } else {
2167 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2168 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2169 cpu_loop_exit_noexc(cpu);
2172 } else {
2173 wp->flags &= ~BP_WATCHPOINT_HIT;
2178 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2179 so these check for a hit then pass through to the normal out-of-line
2180 phys routines. */
2181 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2182 unsigned size, MemTxAttrs attrs)
2184 MemTxResult res;
2185 uint64_t data;
2186 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2187 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2189 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2190 switch (size) {
2191 case 1:
2192 data = address_space_ldub(as, addr, attrs, &res);
2193 break;
2194 case 2:
2195 data = address_space_lduw(as, addr, attrs, &res);
2196 break;
2197 case 4:
2198 data = address_space_ldl(as, addr, attrs, &res);
2199 break;
2200 default: abort();
2202 *pdata = data;
2203 return res;
2206 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2207 uint64_t val, unsigned size,
2208 MemTxAttrs attrs)
2210 MemTxResult res;
2211 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2212 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2214 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2215 switch (size) {
2216 case 1:
2217 address_space_stb(as, addr, val, attrs, &res);
2218 break;
2219 case 2:
2220 address_space_stw(as, addr, val, attrs, &res);
2221 break;
2222 case 4:
2223 address_space_stl(as, addr, val, attrs, &res);
2224 break;
2225 default: abort();
2227 return res;
2230 static const MemoryRegionOps watch_mem_ops = {
2231 .read_with_attrs = watch_mem_read,
2232 .write_with_attrs = watch_mem_write,
2233 .endianness = DEVICE_NATIVE_ENDIAN,
2236 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2237 unsigned len, MemTxAttrs attrs)
2239 subpage_t *subpage = opaque;
2240 uint8_t buf[8];
2241 MemTxResult res;
2243 #if defined(DEBUG_SUBPAGE)
2244 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2245 subpage, len, addr);
2246 #endif
2247 res = address_space_read(subpage->as, addr + subpage->base,
2248 attrs, buf, len);
2249 if (res) {
2250 return res;
2252 switch (len) {
2253 case 1:
2254 *data = ldub_p(buf);
2255 return MEMTX_OK;
2256 case 2:
2257 *data = lduw_p(buf);
2258 return MEMTX_OK;
2259 case 4:
2260 *data = ldl_p(buf);
2261 return MEMTX_OK;
2262 case 8:
2263 *data = ldq_p(buf);
2264 return MEMTX_OK;
2265 default:
2266 abort();
2270 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2271 uint64_t value, unsigned len, MemTxAttrs attrs)
2273 subpage_t *subpage = opaque;
2274 uint8_t buf[8];
2276 #if defined(DEBUG_SUBPAGE)
2277 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2278 " value %"PRIx64"\n",
2279 __func__, subpage, len, addr, value);
2280 #endif
2281 switch (len) {
2282 case 1:
2283 stb_p(buf, value);
2284 break;
2285 case 2:
2286 stw_p(buf, value);
2287 break;
2288 case 4:
2289 stl_p(buf, value);
2290 break;
2291 case 8:
2292 stq_p(buf, value);
2293 break;
2294 default:
2295 abort();
2297 return address_space_write(subpage->as, addr + subpage->base,
2298 attrs, buf, len);
2301 static bool subpage_accepts(void *opaque, hwaddr addr,
2302 unsigned len, bool is_write)
2304 subpage_t *subpage = opaque;
2305 #if defined(DEBUG_SUBPAGE)
2306 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2307 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2308 #endif
2310 return address_space_access_valid(subpage->as, addr + subpage->base,
2311 len, is_write);
2314 static const MemoryRegionOps subpage_ops = {
2315 .read_with_attrs = subpage_read,
2316 .write_with_attrs = subpage_write,
2317 .impl.min_access_size = 1,
2318 .impl.max_access_size = 8,
2319 .valid.min_access_size = 1,
2320 .valid.max_access_size = 8,
2321 .valid.accepts = subpage_accepts,
2322 .endianness = DEVICE_NATIVE_ENDIAN,
2325 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2326 uint16_t section)
2328 int idx, eidx;
2330 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2331 return -1;
2332 idx = SUBPAGE_IDX(start);
2333 eidx = SUBPAGE_IDX(end);
2334 #if defined(DEBUG_SUBPAGE)
2335 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2336 __func__, mmio, start, end, idx, eidx, section);
2337 #endif
2338 for (; idx <= eidx; idx++) {
2339 mmio->sub_section[idx] = section;
2342 return 0;
2345 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2347 subpage_t *mmio;
2349 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2350 mmio->as = as;
2351 mmio->base = base;
2352 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2353 NULL, TARGET_PAGE_SIZE);
2354 mmio->iomem.subpage = true;
2355 #if defined(DEBUG_SUBPAGE)
2356 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2357 mmio, base, TARGET_PAGE_SIZE);
2358 #endif
2359 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2361 return mmio;
2364 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2365 MemoryRegion *mr)
2367 assert(as);
2368 MemoryRegionSection section = {
2369 .address_space = as,
2370 .mr = mr,
2371 .offset_within_address_space = 0,
2372 .offset_within_region = 0,
2373 .size = int128_2_64(),
2376 return phys_section_add(map, &section);
2379 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2381 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2382 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2383 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2384 MemoryRegionSection *sections = d->map.sections;
2386 return sections[index & ~TARGET_PAGE_MASK].mr;
2389 static void io_mem_init(void)
2391 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2392 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2393 NULL, UINT64_MAX);
2394 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2395 NULL, UINT64_MAX);
2396 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2397 NULL, UINT64_MAX);
2400 static void mem_begin(MemoryListener *listener)
2402 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2403 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2404 uint16_t n;
2406 n = dummy_section(&d->map, as, &io_mem_unassigned);
2407 assert(n == PHYS_SECTION_UNASSIGNED);
2408 n = dummy_section(&d->map, as, &io_mem_notdirty);
2409 assert(n == PHYS_SECTION_NOTDIRTY);
2410 n = dummy_section(&d->map, as, &io_mem_rom);
2411 assert(n == PHYS_SECTION_ROM);
2412 n = dummy_section(&d->map, as, &io_mem_watch);
2413 assert(n == PHYS_SECTION_WATCH);
2415 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2416 d->as = as;
2417 as->next_dispatch = d;
2420 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2422 phys_sections_free(&d->map);
2423 g_free(d);
2426 static void mem_commit(MemoryListener *listener)
2428 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2429 AddressSpaceDispatch *cur = as->dispatch;
2430 AddressSpaceDispatch *next = as->next_dispatch;
2432 phys_page_compact_all(next, next->map.nodes_nb);
2434 atomic_rcu_set(&as->dispatch, next);
2435 if (cur) {
2436 call_rcu(cur, address_space_dispatch_free, rcu);
2440 static void tcg_commit(MemoryListener *listener)
2442 CPUAddressSpace *cpuas;
2443 AddressSpaceDispatch *d;
2445 /* since each CPU stores ram addresses in its TLB cache, we must
2446 reset the modified entries */
2447 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2448 cpu_reloading_memory_map();
2449 /* The CPU and TLB are protected by the iothread lock.
2450 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2451 * may have split the RCU critical section.
2453 d = atomic_rcu_read(&cpuas->as->dispatch);
2454 atomic_rcu_set(&cpuas->memory_dispatch, d);
2455 tlb_flush(cpuas->cpu, 1);
2458 void address_space_init_dispatch(AddressSpace *as)
2460 as->dispatch = NULL;
2461 as->dispatch_listener = (MemoryListener) {
2462 .begin = mem_begin,
2463 .commit = mem_commit,
2464 .region_add = mem_add,
2465 .region_nop = mem_add,
2466 .priority = 0,
2468 memory_listener_register(&as->dispatch_listener, as);
2471 void address_space_unregister(AddressSpace *as)
2473 memory_listener_unregister(&as->dispatch_listener);
2476 void address_space_destroy_dispatch(AddressSpace *as)
2478 AddressSpaceDispatch *d = as->dispatch;
2480 atomic_rcu_set(&as->dispatch, NULL);
2481 if (d) {
2482 call_rcu(d, address_space_dispatch_free, rcu);
2486 static void memory_map_init(void)
2488 system_memory = g_malloc(sizeof(*system_memory));
2490 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2491 address_space_init(&address_space_memory, system_memory, "memory");
2493 system_io = g_malloc(sizeof(*system_io));
2494 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2495 65536);
2496 address_space_init(&address_space_io, system_io, "I/O");
2499 MemoryRegion *get_system_memory(void)
2501 return system_memory;
2504 MemoryRegion *get_system_io(void)
2506 return system_io;
2509 #endif /* !defined(CONFIG_USER_ONLY) */
2511 /* physical memory access (slow version, mainly for debug) */
2512 #if defined(CONFIG_USER_ONLY)
2513 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2514 uint8_t *buf, int len, int is_write)
2516 int l, flags;
2517 target_ulong page;
2518 void * p;
2520 while (len > 0) {
2521 page = addr & TARGET_PAGE_MASK;
2522 l = (page + TARGET_PAGE_SIZE) - addr;
2523 if (l > len)
2524 l = len;
2525 flags = page_get_flags(page);
2526 if (!(flags & PAGE_VALID))
2527 return -1;
2528 if (is_write) {
2529 if (!(flags & PAGE_WRITE))
2530 return -1;
2531 /* XXX: this code should not depend on lock_user */
2532 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2533 return -1;
2534 memcpy(p, buf, l);
2535 unlock_user(p, addr, l);
2536 } else {
2537 if (!(flags & PAGE_READ))
2538 return -1;
2539 /* XXX: this code should not depend on lock_user */
2540 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2541 return -1;
2542 memcpy(buf, p, l);
2543 unlock_user(p, addr, 0);
2545 len -= l;
2546 buf += l;
2547 addr += l;
2549 return 0;
2552 #else
2554 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2555 hwaddr length)
2557 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2558 addr += memory_region_get_ram_addr(mr);
2560 /* No early return if dirty_log_mask is or becomes 0, because
2561 * cpu_physical_memory_set_dirty_range will still call
2562 * xen_modified_memory.
2564 if (dirty_log_mask) {
2565 dirty_log_mask =
2566 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2568 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2569 tb_lock();
2570 tb_invalidate_phys_range(addr, addr + length);
2571 tb_unlock();
2572 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2574 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2577 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2579 unsigned access_size_max = mr->ops->valid.max_access_size;
2581 /* Regions are assumed to support 1-4 byte accesses unless
2582 otherwise specified. */
2583 if (access_size_max == 0) {
2584 access_size_max = 4;
2587 /* Bound the maximum access by the alignment of the address. */
2588 if (!mr->ops->impl.unaligned) {
2589 unsigned align_size_max = addr & -addr;
2590 if (align_size_max != 0 && align_size_max < access_size_max) {
2591 access_size_max = align_size_max;
2595 /* Don't attempt accesses larger than the maximum. */
2596 if (l > access_size_max) {
2597 l = access_size_max;
2599 l = pow2floor(l);
2601 return l;
2604 static bool prepare_mmio_access(MemoryRegion *mr)
2606 bool unlocked = !qemu_mutex_iothread_locked();
2607 bool release_lock = false;
2609 if (unlocked && mr->global_locking) {
2610 qemu_mutex_lock_iothread();
2611 unlocked = false;
2612 release_lock = true;
2614 if (mr->flush_coalesced_mmio) {
2615 if (unlocked) {
2616 qemu_mutex_lock_iothread();
2618 qemu_flush_coalesced_mmio_buffer();
2619 if (unlocked) {
2620 qemu_mutex_unlock_iothread();
2624 return release_lock;
2627 /* Called within RCU critical section. */
2628 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2629 MemTxAttrs attrs,
2630 const uint8_t *buf,
2631 int len, hwaddr addr1,
2632 hwaddr l, MemoryRegion *mr)
2634 uint8_t *ptr;
2635 uint64_t val;
2636 MemTxResult result = MEMTX_OK;
2637 bool release_lock = false;
2639 for (;;) {
2640 if (!memory_access_is_direct(mr, true)) {
2641 release_lock |= prepare_mmio_access(mr);
2642 l = memory_access_size(mr, l, addr1);
2643 /* XXX: could force current_cpu to NULL to avoid
2644 potential bugs */
2645 switch (l) {
2646 case 8:
2647 /* 64 bit write access */
2648 val = ldq_p(buf);
2649 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2650 attrs);
2651 break;
2652 case 4:
2653 /* 32 bit write access */
2654 val = ldl_p(buf);
2655 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2656 attrs);
2657 break;
2658 case 2:
2659 /* 16 bit write access */
2660 val = lduw_p(buf);
2661 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2662 attrs);
2663 break;
2664 case 1:
2665 /* 8 bit write access */
2666 val = ldub_p(buf);
2667 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2668 attrs);
2669 break;
2670 default:
2671 abort();
2673 } else {
2674 /* RAM case */
2675 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2676 memcpy(ptr, buf, l);
2677 invalidate_and_set_dirty(mr, addr1, l);
2680 if (release_lock) {
2681 qemu_mutex_unlock_iothread();
2682 release_lock = false;
2685 len -= l;
2686 buf += l;
2687 addr += l;
2689 if (!len) {
2690 break;
2693 l = len;
2694 mr = address_space_translate(as, addr, &addr1, &l, true);
2697 return result;
2700 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2701 const uint8_t *buf, int len)
2703 hwaddr l;
2704 hwaddr addr1;
2705 MemoryRegion *mr;
2706 MemTxResult result = MEMTX_OK;
2708 if (len > 0) {
2709 rcu_read_lock();
2710 l = len;
2711 mr = address_space_translate(as, addr, &addr1, &l, true);
2712 result = address_space_write_continue(as, addr, attrs, buf, len,
2713 addr1, l, mr);
2714 rcu_read_unlock();
2717 return result;
2720 /* Called within RCU critical section. */
2721 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2722 MemTxAttrs attrs, uint8_t *buf,
2723 int len, hwaddr addr1, hwaddr l,
2724 MemoryRegion *mr)
2726 uint8_t *ptr;
2727 uint64_t val;
2728 MemTxResult result = MEMTX_OK;
2729 bool release_lock = false;
2731 for (;;) {
2732 if (!memory_access_is_direct(mr, false)) {
2733 /* I/O case */
2734 release_lock |= prepare_mmio_access(mr);
2735 l = memory_access_size(mr, l, addr1);
2736 switch (l) {
2737 case 8:
2738 /* 64 bit read access */
2739 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2740 attrs);
2741 stq_p(buf, val);
2742 break;
2743 case 4:
2744 /* 32 bit read access */
2745 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2746 attrs);
2747 stl_p(buf, val);
2748 break;
2749 case 2:
2750 /* 16 bit read access */
2751 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2752 attrs);
2753 stw_p(buf, val);
2754 break;
2755 case 1:
2756 /* 8 bit read access */
2757 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2758 attrs);
2759 stb_p(buf, val);
2760 break;
2761 default:
2762 abort();
2764 } else {
2765 /* RAM case */
2766 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2767 memcpy(buf, ptr, l);
2770 if (release_lock) {
2771 qemu_mutex_unlock_iothread();
2772 release_lock = false;
2775 len -= l;
2776 buf += l;
2777 addr += l;
2779 if (!len) {
2780 break;
2783 l = len;
2784 mr = address_space_translate(as, addr, &addr1, &l, false);
2787 return result;
2790 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2791 MemTxAttrs attrs, uint8_t *buf, int len)
2793 hwaddr l;
2794 hwaddr addr1;
2795 MemoryRegion *mr;
2796 MemTxResult result = MEMTX_OK;
2798 if (len > 0) {
2799 rcu_read_lock();
2800 l = len;
2801 mr = address_space_translate(as, addr, &addr1, &l, false);
2802 result = address_space_read_continue(as, addr, attrs, buf, len,
2803 addr1, l, mr);
2804 rcu_read_unlock();
2807 return result;
2810 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2811 uint8_t *buf, int len, bool is_write)
2813 if (is_write) {
2814 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2815 } else {
2816 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2820 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2821 int len, int is_write)
2823 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2824 buf, len, is_write);
2827 enum write_rom_type {
2828 WRITE_DATA,
2829 FLUSH_CACHE,
2832 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2833 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2835 hwaddr l;
2836 uint8_t *ptr;
2837 hwaddr addr1;
2838 MemoryRegion *mr;
2840 rcu_read_lock();
2841 while (len > 0) {
2842 l = len;
2843 mr = address_space_translate(as, addr, &addr1, &l, true);
2845 if (!(memory_region_is_ram(mr) ||
2846 memory_region_is_romd(mr))) {
2847 l = memory_access_size(mr, l, addr1);
2848 } else {
2849 /* ROM/RAM case */
2850 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2851 switch (type) {
2852 case WRITE_DATA:
2853 memcpy(ptr, buf, l);
2854 invalidate_and_set_dirty(mr, addr1, l);
2855 break;
2856 case FLUSH_CACHE:
2857 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2858 break;
2861 len -= l;
2862 buf += l;
2863 addr += l;
2865 rcu_read_unlock();
2868 /* used for ROM loading : can write in RAM and ROM */
2869 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2870 const uint8_t *buf, int len)
2872 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2875 void cpu_flush_icache_range(hwaddr start, int len)
2878 * This function should do the same thing as an icache flush that was
2879 * triggered from within the guest. For TCG we are always cache coherent,
2880 * so there is no need to flush anything. For KVM / Xen we need to flush
2881 * the host's instruction cache at least.
2883 if (tcg_enabled()) {
2884 return;
2887 cpu_physical_memory_write_rom_internal(&address_space_memory,
2888 start, NULL, len, FLUSH_CACHE);
2891 typedef struct {
2892 MemoryRegion *mr;
2893 void *buffer;
2894 hwaddr addr;
2895 hwaddr len;
2896 bool in_use;
2897 } BounceBuffer;
2899 static BounceBuffer bounce;
2901 typedef struct MapClient {
2902 QEMUBH *bh;
2903 QLIST_ENTRY(MapClient) link;
2904 } MapClient;
2906 QemuMutex map_client_list_lock;
2907 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2908 = QLIST_HEAD_INITIALIZER(map_client_list);
2910 static void cpu_unregister_map_client_do(MapClient *client)
2912 QLIST_REMOVE(client, link);
2913 g_free(client);
2916 static void cpu_notify_map_clients_locked(void)
2918 MapClient *client;
2920 while (!QLIST_EMPTY(&map_client_list)) {
2921 client = QLIST_FIRST(&map_client_list);
2922 qemu_bh_schedule(client->bh);
2923 cpu_unregister_map_client_do(client);
2927 void cpu_register_map_client(QEMUBH *bh)
2929 MapClient *client = g_malloc(sizeof(*client));
2931 qemu_mutex_lock(&map_client_list_lock);
2932 client->bh = bh;
2933 QLIST_INSERT_HEAD(&map_client_list, client, link);
2934 if (!atomic_read(&bounce.in_use)) {
2935 cpu_notify_map_clients_locked();
2937 qemu_mutex_unlock(&map_client_list_lock);
2940 void cpu_exec_init_all(void)
2942 qemu_mutex_init(&ram_list.mutex);
2943 /* The data structures we set up here depend on knowing the page size,
2944 * so no more changes can be made after this point.
2945 * In an ideal world, nothing we did before we had finished the
2946 * machine setup would care about the target page size, and we could
2947 * do this much later, rather than requiring board models to state
2948 * up front what their requirements are.
2950 finalize_target_page_bits();
2951 io_mem_init();
2952 memory_map_init();
2953 qemu_mutex_init(&map_client_list_lock);
2956 void cpu_unregister_map_client(QEMUBH *bh)
2958 MapClient *client;
2960 qemu_mutex_lock(&map_client_list_lock);
2961 QLIST_FOREACH(client, &map_client_list, link) {
2962 if (client->bh == bh) {
2963 cpu_unregister_map_client_do(client);
2964 break;
2967 qemu_mutex_unlock(&map_client_list_lock);
2970 static void cpu_notify_map_clients(void)
2972 qemu_mutex_lock(&map_client_list_lock);
2973 cpu_notify_map_clients_locked();
2974 qemu_mutex_unlock(&map_client_list_lock);
2977 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2979 MemoryRegion *mr;
2980 hwaddr l, xlat;
2982 rcu_read_lock();
2983 while (len > 0) {
2984 l = len;
2985 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2986 if (!memory_access_is_direct(mr, is_write)) {
2987 l = memory_access_size(mr, l, addr);
2988 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2989 return false;
2993 len -= l;
2994 addr += l;
2996 rcu_read_unlock();
2997 return true;
3000 static hwaddr
3001 address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3002 MemoryRegion *mr, hwaddr base, hwaddr len,
3003 bool is_write)
3005 hwaddr done = 0;
3006 hwaddr xlat;
3007 MemoryRegion *this_mr;
3009 for (;;) {
3010 target_len -= len;
3011 addr += len;
3012 done += len;
3013 if (target_len == 0) {
3014 return done;
3017 len = target_len;
3018 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3019 if (this_mr != mr || xlat != base + done) {
3020 return done;
3025 /* Map a physical memory region into a host virtual address.
3026 * May map a subset of the requested range, given by and returned in *plen.
3027 * May return NULL if resources needed to perform the mapping are exhausted.
3028 * Use only for reads OR writes - not for read-modify-write operations.
3029 * Use cpu_register_map_client() to know when retrying the map operation is
3030 * likely to succeed.
3032 void *address_space_map(AddressSpace *as,
3033 hwaddr addr,
3034 hwaddr *plen,
3035 bool is_write)
3037 hwaddr len = *plen;
3038 hwaddr l, xlat;
3039 MemoryRegion *mr;
3040 void *ptr;
3042 if (len == 0) {
3043 return NULL;
3046 l = len;
3047 rcu_read_lock();
3048 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3050 if (!memory_access_is_direct(mr, is_write)) {
3051 if (atomic_xchg(&bounce.in_use, true)) {
3052 rcu_read_unlock();
3053 return NULL;
3055 /* Avoid unbounded allocations */
3056 l = MIN(l, TARGET_PAGE_SIZE);
3057 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3058 bounce.addr = addr;
3059 bounce.len = l;
3061 memory_region_ref(mr);
3062 bounce.mr = mr;
3063 if (!is_write) {
3064 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3065 bounce.buffer, l);
3068 rcu_read_unlock();
3069 *plen = l;
3070 return bounce.buffer;
3074 memory_region_ref(mr);
3075 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3076 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
3077 rcu_read_unlock();
3079 return ptr;
3082 /* Unmaps a memory region previously mapped by address_space_map().
3083 * Will also mark the memory as dirty if is_write == 1. access_len gives
3084 * the amount of memory that was actually read or written by the caller.
3086 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3087 int is_write, hwaddr access_len)
3089 if (buffer != bounce.buffer) {
3090 MemoryRegion *mr;
3091 ram_addr_t addr1;
3093 mr = memory_region_from_host(buffer, &addr1);
3094 assert(mr != NULL);
3095 if (is_write) {
3096 invalidate_and_set_dirty(mr, addr1, access_len);
3098 if (xen_enabled()) {
3099 xen_invalidate_map_cache_entry(buffer);
3101 memory_region_unref(mr);
3102 return;
3104 if (is_write) {
3105 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3106 bounce.buffer, access_len);
3108 qemu_vfree(bounce.buffer);
3109 bounce.buffer = NULL;
3110 memory_region_unref(bounce.mr);
3111 atomic_mb_set(&bounce.in_use, false);
3112 cpu_notify_map_clients();
3115 void *cpu_physical_memory_map(hwaddr addr,
3116 hwaddr *plen,
3117 int is_write)
3119 return address_space_map(&address_space_memory, addr, plen, is_write);
3122 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3123 int is_write, hwaddr access_len)
3125 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3128 #define ARG1_DECL AddressSpace *as
3129 #define ARG1 as
3130 #define SUFFIX
3131 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3132 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3133 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3134 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3135 #define RCU_READ_LOCK(...) rcu_read_lock()
3136 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3137 #include "memory_ldst.inc.c"
3139 int64_t address_space_cache_init(MemoryRegionCache *cache,
3140 AddressSpace *as,
3141 hwaddr addr,
3142 hwaddr len,
3143 bool is_write)
3145 hwaddr l, xlat;
3146 MemoryRegion *mr;
3147 void *ptr;
3149 assert(len > 0);
3151 l = len;
3152 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3153 if (!memory_access_is_direct(mr, is_write)) {
3154 return -EINVAL;
3157 l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3158 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l);
3160 cache->xlat = xlat;
3161 cache->is_write = is_write;
3162 cache->mr = mr;
3163 cache->ptr = ptr;
3164 cache->len = l;
3165 memory_region_ref(cache->mr);
3167 return l;
3170 void address_space_cache_invalidate(MemoryRegionCache *cache,
3171 hwaddr addr,
3172 hwaddr access_len)
3174 assert(cache->is_write);
3175 invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len);
3178 void address_space_cache_destroy(MemoryRegionCache *cache)
3180 if (!cache->mr) {
3181 return;
3184 if (xen_enabled()) {
3185 xen_invalidate_map_cache_entry(cache->ptr);
3187 memory_region_unref(cache->mr);
3190 /* Called from RCU critical section. This function has the same
3191 * semantics as address_space_translate, but it only works on a
3192 * predefined range of a MemoryRegion that was mapped with
3193 * address_space_cache_init.
3195 static inline MemoryRegion *address_space_translate_cached(
3196 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3197 hwaddr *plen, bool is_write)
3199 assert(addr < cache->len && *plen <= cache->len - addr);
3200 *xlat = addr + cache->xlat;
3201 return cache->mr;
3204 #define ARG1_DECL MemoryRegionCache *cache
3205 #define ARG1 cache
3206 #define SUFFIX _cached
3207 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3208 #define IS_DIRECT(mr, is_write) true
3209 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3210 #define INVALIDATE(mr, ofs, len) ((void)0)
3211 #define RCU_READ_LOCK() ((void)0)
3212 #define RCU_READ_UNLOCK() ((void)0)
3213 #include "memory_ldst.inc.c"
3215 /* virtual memory access for debug (includes writing to ROM) */
3216 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3217 uint8_t *buf, int len, int is_write)
3219 int l;
3220 hwaddr phys_addr;
3221 target_ulong page;
3223 while (len > 0) {
3224 int asidx;
3225 MemTxAttrs attrs;
3227 page = addr & TARGET_PAGE_MASK;
3228 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3229 asidx = cpu_asidx_from_attrs(cpu, attrs);
3230 /* if no physical page mapped, return an error */
3231 if (phys_addr == -1)
3232 return -1;
3233 l = (page + TARGET_PAGE_SIZE) - addr;
3234 if (l > len)
3235 l = len;
3236 phys_addr += (addr & ~TARGET_PAGE_MASK);
3237 if (is_write) {
3238 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3239 phys_addr, buf, l);
3240 } else {
3241 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3242 MEMTXATTRS_UNSPECIFIED,
3243 buf, l, 0);
3245 len -= l;
3246 buf += l;
3247 addr += l;
3249 return 0;
3253 * Allows code that needs to deal with migration bitmaps etc to still be built
3254 * target independent.
3256 size_t qemu_target_page_bits(void)
3258 return TARGET_PAGE_BITS;
3261 #endif
3264 * A helper function for the _utterly broken_ virtio device model to find out if
3265 * it's running on a big endian machine. Don't do this at home kids!
3267 bool target_words_bigendian(void);
3268 bool target_words_bigendian(void)
3270 #if defined(TARGET_WORDS_BIGENDIAN)
3271 return true;
3272 #else
3273 return false;
3274 #endif
3277 #ifndef CONFIG_USER_ONLY
3278 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3280 MemoryRegion*mr;
3281 hwaddr l = 1;
3282 bool res;
3284 rcu_read_lock();
3285 mr = address_space_translate(&address_space_memory,
3286 phys_addr, &phys_addr, &l, false);
3288 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3289 rcu_read_unlock();
3290 return res;
3293 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3295 RAMBlock *block;
3296 int ret = 0;
3298 rcu_read_lock();
3299 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3300 ret = func(block->idstr, block->host, block->offset,
3301 block->used_length, opaque);
3302 if (ret) {
3303 break;
3306 rcu_read_unlock();
3307 return ret;
3309 #endif