Merge tag 'v2.9.0-rc3'
[qemu/ar7.git] / memory.c
blob9ca7eb6525a87e1bdedc94147f9251c57b922e62
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/exec-all.h" /* qemu_sprint_backtrace */
21 #include "exec/memory.h"
22 #include "exec/address-spaces.h"
23 #include "exec/ioport.h"
24 #include "qapi/visitor.h"
25 #include "qemu/bitops.h"
26 #include "qemu/error-report.h"
27 #include "qom/object.h"
28 #include "trace-root.h"
30 #include "exec/memory-internal.h"
31 #include "exec/ram_addr.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/sysemu.h"
35 //#define DEBUG_UNASSIGNED
37 static unsigned memory_region_transaction_depth;
38 static bool memory_region_update_pending;
39 static bool ioeventfd_update_pending;
40 static bool global_dirty_log = false;
42 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
43 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
45 static QTAILQ_HEAD(, AddressSpace) address_spaces
46 = QTAILQ_HEAD_INITIALIZER(address_spaces);
48 typedef struct AddrRange AddrRange;
51 * Note that signed integers are needed for negative offsetting in aliases
52 * (large MemoryRegion::alias_offset).
54 struct AddrRange {
55 Int128 start;
56 Int128 size;
59 static AddrRange addrrange_make(Int128 start, Int128 size)
61 return (AddrRange) { start, size };
64 static bool addrrange_equal(AddrRange r1, AddrRange r2)
66 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
69 static Int128 addrrange_end(AddrRange r)
71 return int128_add(r.start, r.size);
74 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
76 int128_addto(&range.start, delta);
77 return range;
80 static bool addrrange_contains(AddrRange range, Int128 addr)
82 return int128_ge(addr, range.start)
83 && int128_lt(addr, addrrange_end(range));
86 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
88 return addrrange_contains(r1, r2.start)
89 || addrrange_contains(r2, r1.start);
92 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
94 Int128 start = int128_max(r1.start, r2.start);
95 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
96 return addrrange_make(start, int128_sub(end, start));
99 enum ListenerDirection { Forward, Reverse };
101 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
102 do { \
103 MemoryListener *_listener; \
105 switch (_direction) { \
106 case Forward: \
107 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
108 if (_listener->_callback) { \
109 _listener->_callback(_listener, ##_args); \
112 break; \
113 case Reverse: \
114 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
115 memory_listeners, link) { \
116 if (_listener->_callback) { \
117 _listener->_callback(_listener, ##_args); \
120 break; \
121 default: \
122 abort(); \
124 } while (0)
126 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
127 do { \
128 MemoryListener *_listener; \
129 struct memory_listeners_as *list = &(_as)->listeners; \
131 switch (_direction) { \
132 case Forward: \
133 QTAILQ_FOREACH(_listener, list, link_as) { \
134 if (_listener->_callback) { \
135 _listener->_callback(_listener, _section, ##_args); \
138 break; \
139 case Reverse: \
140 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
141 link_as) { \
142 if (_listener->_callback) { \
143 _listener->_callback(_listener, _section, ##_args); \
146 break; \
147 default: \
148 abort(); \
150 } while (0)
152 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
153 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
154 do { \
155 MemoryRegionSection mrs = section_from_flat_range(fr, as); \
156 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
157 } while(0)
159 struct CoalescedMemoryRange {
160 AddrRange addr;
161 QTAILQ_ENTRY(CoalescedMemoryRange) link;
164 struct MemoryRegionIoeventfd {
165 AddrRange addr;
166 bool match_data;
167 uint64_t data;
168 EventNotifier *e;
171 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
172 MemoryRegionIoeventfd b)
174 if (int128_lt(a.addr.start, b.addr.start)) {
175 return true;
176 } else if (int128_gt(a.addr.start, b.addr.start)) {
177 return false;
178 } else if (int128_lt(a.addr.size, b.addr.size)) {
179 return true;
180 } else if (int128_gt(a.addr.size, b.addr.size)) {
181 return false;
182 } else if (a.match_data < b.match_data) {
183 return true;
184 } else if (a.match_data > b.match_data) {
185 return false;
186 } else if (a.match_data) {
187 if (a.data < b.data) {
188 return true;
189 } else if (a.data > b.data) {
190 return false;
193 if (a.e < b.e) {
194 return true;
195 } else if (a.e > b.e) {
196 return false;
198 return false;
201 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
202 MemoryRegionIoeventfd b)
204 return !memory_region_ioeventfd_before(a, b)
205 && !memory_region_ioeventfd_before(b, a);
208 typedef struct FlatRange FlatRange;
209 typedef struct FlatView FlatView;
211 /* Range of memory in the global map. Addresses are absolute. */
212 struct FlatRange {
213 MemoryRegion *mr;
214 hwaddr offset_in_region;
215 AddrRange addr;
216 uint8_t dirty_log_mask;
217 bool romd_mode;
218 bool readonly;
221 /* Flattened global view of current active memory hierarchy. Kept in sorted
222 * order.
224 struct FlatView {
225 struct rcu_head rcu;
226 unsigned ref;
227 FlatRange *ranges;
228 unsigned nr;
229 unsigned nr_allocated;
232 typedef struct AddressSpaceOps AddressSpaceOps;
234 #define FOR_EACH_FLAT_RANGE(var, view) \
235 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
237 static inline MemoryRegionSection
238 section_from_flat_range(FlatRange *fr, AddressSpace *as)
240 return (MemoryRegionSection) {
241 .mr = fr->mr,
242 .address_space = as,
243 .offset_within_region = fr->offset_in_region,
244 .size = fr->addr.size,
245 .offset_within_address_space = int128_get64(fr->addr.start),
246 .readonly = fr->readonly,
250 static bool flatrange_equal(FlatRange *a, FlatRange *b)
252 return a->mr == b->mr
253 && addrrange_equal(a->addr, b->addr)
254 && a->offset_in_region == b->offset_in_region
255 && a->romd_mode == b->romd_mode
256 && a->readonly == b->readonly;
259 static void flatview_init(FlatView *view)
261 view->ref = 1;
262 view->ranges = NULL;
263 view->nr = 0;
264 view->nr_allocated = 0;
267 /* Insert a range into a given position. Caller is responsible for maintaining
268 * sorting order.
270 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
272 if (view->nr == view->nr_allocated) {
273 view->nr_allocated = MAX(2 * view->nr, 10);
274 view->ranges = g_realloc(view->ranges,
275 view->nr_allocated * sizeof(*view->ranges));
277 memmove(view->ranges + pos + 1, view->ranges + pos,
278 (view->nr - pos) * sizeof(FlatRange));
279 view->ranges[pos] = *range;
280 memory_region_ref(range->mr);
281 ++view->nr;
284 static void flatview_destroy(FlatView *view)
286 int i;
288 for (i = 0; i < view->nr; i++) {
289 memory_region_unref(view->ranges[i].mr);
291 g_free(view->ranges);
292 g_free(view);
295 static void flatview_ref(FlatView *view)
297 atomic_inc(&view->ref);
300 static void flatview_unref(FlatView *view)
302 if (atomic_fetch_dec(&view->ref) == 1) {
303 flatview_destroy(view);
307 static bool can_merge(FlatRange *r1, FlatRange *r2)
309 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
310 && r1->mr == r2->mr
311 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
312 r1->addr.size),
313 int128_make64(r2->offset_in_region))
314 && r1->dirty_log_mask == r2->dirty_log_mask
315 && r1->romd_mode == r2->romd_mode
316 && r1->readonly == r2->readonly;
319 /* Attempt to simplify a view by merging adjacent ranges */
320 static void flatview_simplify(FlatView *view)
322 unsigned i, j;
324 i = 0;
325 while (i < view->nr) {
326 j = i + 1;
327 while (j < view->nr
328 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
329 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
330 ++j;
332 ++i;
333 memmove(&view->ranges[i], &view->ranges[j],
334 (view->nr - j) * sizeof(view->ranges[j]));
335 view->nr -= j - i;
339 static bool memory_region_big_endian(MemoryRegion *mr)
341 #ifdef TARGET_WORDS_BIGENDIAN
342 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
343 #else
344 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
345 #endif
348 static bool memory_region_wrong_endianness(MemoryRegion *mr)
350 #ifdef TARGET_WORDS_BIGENDIAN
351 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
352 #else
353 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
354 #endif
357 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
359 if (memory_region_wrong_endianness(mr)) {
360 switch (size) {
361 case 1:
362 break;
363 case 2:
364 *data = bswap16(*data);
365 break;
366 case 4:
367 *data = bswap32(*data);
368 break;
369 case 8:
370 *data = bswap64(*data);
371 break;
372 default:
373 abort();
378 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
380 MemoryRegion *root;
381 hwaddr abs_addr = offset;
383 abs_addr += mr->addr;
384 for (root = mr; root->container; ) {
385 root = root->container;
386 abs_addr += root->addr;
389 return abs_addr;
392 static int get_cpu_index(void)
394 if (current_cpu) {
395 return current_cpu->cpu_index;
397 return -1;
400 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
401 hwaddr addr,
402 uint64_t *value,
403 unsigned size,
404 unsigned shift,
405 uint64_t mask,
406 MemTxAttrs attrs)
408 uint64_t tmp;
410 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
411 if (mr->subpage) {
412 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
413 } else if (mr == &io_mem_notdirty) {
414 /* Accesses to code which has previously been translated into a TB show
415 * up in the MMIO path, as accesses to the io_mem_notdirty
416 * MemoryRegion. */
417 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
418 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
419 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
420 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
422 *value |= (tmp & mask) << shift;
423 return MEMTX_OK;
426 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
427 hwaddr addr,
428 uint64_t *value,
429 unsigned size,
430 unsigned shift,
431 uint64_t mask,
432 MemTxAttrs attrs)
434 uint64_t tmp;
436 tmp = mr->ops->read(mr->opaque, addr, size);
437 if (mr->subpage) {
438 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
439 } else if (mr == &io_mem_notdirty) {
440 /* Accesses to code which has previously been translated into a TB show
441 * up in the MMIO path, as accesses to the io_mem_notdirty
442 * MemoryRegion. */
443 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
444 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
445 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
446 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
448 *value |= (tmp & mask) << shift;
449 return MEMTX_OK;
452 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
453 hwaddr addr,
454 uint64_t *value,
455 unsigned size,
456 unsigned shift,
457 uint64_t mask,
458 MemTxAttrs attrs)
460 uint64_t tmp = 0;
461 MemTxResult r;
463 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
464 if (mr->subpage) {
465 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
466 } else if (mr == &io_mem_notdirty) {
467 /* Accesses to code which has previously been translated into a TB show
468 * up in the MMIO path, as accesses to the io_mem_notdirty
469 * MemoryRegion. */
470 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
471 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
472 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
473 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
475 *value |= (tmp & mask) << shift;
476 return r;
479 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
480 hwaddr addr,
481 uint64_t *value,
482 unsigned size,
483 unsigned shift,
484 uint64_t mask,
485 MemTxAttrs attrs)
487 uint64_t tmp;
489 tmp = (*value >> shift) & mask;
490 if (mr->subpage) {
491 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
492 } else if (mr == &io_mem_notdirty) {
493 /* Accesses to code which has previously been translated into a TB show
494 * up in the MMIO path, as accesses to the io_mem_notdirty
495 * MemoryRegion. */
496 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
497 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
498 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
499 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
501 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
502 return MEMTX_OK;
505 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
506 hwaddr addr,
507 uint64_t *value,
508 unsigned size,
509 unsigned shift,
510 uint64_t mask,
511 MemTxAttrs attrs)
513 uint64_t tmp;
515 tmp = (*value >> shift) & mask;
516 if (mr->subpage) {
517 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
518 } else if (mr == &io_mem_notdirty) {
519 /* Accesses to code which has previously been translated into a TB show
520 * up in the MMIO path, as accesses to the io_mem_notdirty
521 * MemoryRegion. */
522 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
523 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
524 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
525 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
527 mr->ops->write(mr->opaque, addr, tmp, size);
528 return MEMTX_OK;
531 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
532 hwaddr addr,
533 uint64_t *value,
534 unsigned size,
535 unsigned shift,
536 uint64_t mask,
537 MemTxAttrs attrs)
539 uint64_t tmp;
541 tmp = (*value >> shift) & mask;
542 if (mr->subpage) {
543 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
544 } else if (mr == &io_mem_notdirty) {
545 /* Accesses to code which has previously been translated into a TB show
546 * up in the MMIO path, as accesses to the io_mem_notdirty
547 * MemoryRegion. */
548 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
549 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
550 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
551 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
553 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
556 static MemTxResult access_with_adjusted_size(hwaddr addr,
557 uint64_t *value,
558 unsigned size,
559 unsigned access_size_min,
560 unsigned access_size_max,
561 MemTxResult (*access)(MemoryRegion *mr,
562 hwaddr addr,
563 uint64_t *value,
564 unsigned size,
565 unsigned shift,
566 uint64_t mask,
567 MemTxAttrs attrs),
568 MemoryRegion *mr,
569 MemTxAttrs attrs)
571 uint64_t access_mask;
572 unsigned access_size;
573 unsigned i;
574 MemTxResult r = MEMTX_OK;
576 if (!access_size_min) {
577 access_size_min = 1;
579 if (!access_size_max) {
580 access_size_max = 4;
583 /* FIXME: support unaligned access? */
584 access_size = MAX(MIN(size, access_size_max), access_size_min);
585 access_mask = -1ULL >> (64 - access_size * 8);
586 if (memory_region_big_endian(mr)) {
587 for (i = 0; i < size; i += access_size) {
588 r |= access(mr, addr + i, value, access_size,
589 (size - access_size - i) * 8, access_mask, attrs);
591 } else {
592 for (i = 0; i < size; i += access_size) {
593 r |= access(mr, addr + i, value, access_size, i * 8,
594 access_mask, attrs);
597 return r;
600 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
602 AddressSpace *as;
604 while (mr->container) {
605 mr = mr->container;
607 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
608 if (mr == as->root) {
609 return as;
612 return NULL;
615 /* Render a memory region into the global view. Ranges in @view obscure
616 * ranges in @mr.
618 static void render_memory_region(FlatView *view,
619 MemoryRegion *mr,
620 Int128 base,
621 AddrRange clip,
622 bool readonly)
624 MemoryRegion *subregion;
625 unsigned i;
626 hwaddr offset_in_region;
627 Int128 remain;
628 Int128 now;
629 FlatRange fr;
630 AddrRange tmp;
632 if (!mr->enabled) {
633 return;
636 int128_addto(&base, int128_make64(mr->addr));
637 readonly |= mr->readonly;
639 tmp = addrrange_make(base, mr->size);
641 if (!addrrange_intersects(tmp, clip)) {
642 return;
645 clip = addrrange_intersection(tmp, clip);
647 if (mr->alias) {
648 int128_subfrom(&base, int128_make64(mr->alias->addr));
649 int128_subfrom(&base, int128_make64(mr->alias_offset));
650 render_memory_region(view, mr->alias, base, clip, readonly);
651 return;
654 /* Render subregions in priority order. */
655 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
656 render_memory_region(view, subregion, base, clip, readonly);
659 if (!mr->terminates) {
660 return;
663 offset_in_region = int128_get64(int128_sub(clip.start, base));
664 base = clip.start;
665 remain = clip.size;
667 fr.mr = mr;
668 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
669 fr.romd_mode = mr->romd_mode;
670 fr.readonly = readonly;
672 /* Render the region itself into any gaps left by the current view. */
673 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
674 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
675 continue;
677 if (int128_lt(base, view->ranges[i].addr.start)) {
678 now = int128_min(remain,
679 int128_sub(view->ranges[i].addr.start, base));
680 fr.offset_in_region = offset_in_region;
681 fr.addr = addrrange_make(base, now);
682 flatview_insert(view, i, &fr);
683 ++i;
684 int128_addto(&base, now);
685 offset_in_region += int128_get64(now);
686 int128_subfrom(&remain, now);
688 now = int128_sub(int128_min(int128_add(base, remain),
689 addrrange_end(view->ranges[i].addr)),
690 base);
691 int128_addto(&base, now);
692 offset_in_region += int128_get64(now);
693 int128_subfrom(&remain, now);
695 if (int128_nz(remain)) {
696 fr.offset_in_region = offset_in_region;
697 fr.addr = addrrange_make(base, remain);
698 flatview_insert(view, i, &fr);
702 /* Render a memory topology into a list of disjoint absolute ranges. */
703 static FlatView *generate_memory_topology(MemoryRegion *mr)
705 FlatView *view;
707 view = g_new(FlatView, 1);
708 flatview_init(view);
710 if (mr) {
711 render_memory_region(view, mr, int128_zero(),
712 addrrange_make(int128_zero(), int128_2_64()), false);
714 flatview_simplify(view);
716 return view;
719 static void address_space_add_del_ioeventfds(AddressSpace *as,
720 MemoryRegionIoeventfd *fds_new,
721 unsigned fds_new_nb,
722 MemoryRegionIoeventfd *fds_old,
723 unsigned fds_old_nb)
725 unsigned iold, inew;
726 MemoryRegionIoeventfd *fd;
727 MemoryRegionSection section;
729 /* Generate a symmetric difference of the old and new fd sets, adding
730 * and deleting as necessary.
733 iold = inew = 0;
734 while (iold < fds_old_nb || inew < fds_new_nb) {
735 if (iold < fds_old_nb
736 && (inew == fds_new_nb
737 || memory_region_ioeventfd_before(fds_old[iold],
738 fds_new[inew]))) {
739 fd = &fds_old[iold];
740 section = (MemoryRegionSection) {
741 .address_space = as,
742 .offset_within_address_space = int128_get64(fd->addr.start),
743 .size = fd->addr.size,
745 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
746 fd->match_data, fd->data, fd->e);
747 ++iold;
748 } else if (inew < fds_new_nb
749 && (iold == fds_old_nb
750 || memory_region_ioeventfd_before(fds_new[inew],
751 fds_old[iold]))) {
752 fd = &fds_new[inew];
753 section = (MemoryRegionSection) {
754 .address_space = as,
755 .offset_within_address_space = int128_get64(fd->addr.start),
756 .size = fd->addr.size,
758 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
759 fd->match_data, fd->data, fd->e);
760 ++inew;
761 } else {
762 ++iold;
763 ++inew;
768 static FlatView *address_space_get_flatview(AddressSpace *as)
770 FlatView *view;
772 rcu_read_lock();
773 view = atomic_rcu_read(&as->current_map);
774 flatview_ref(view);
775 rcu_read_unlock();
776 return view;
779 static void address_space_update_ioeventfds(AddressSpace *as)
781 FlatView *view;
782 FlatRange *fr;
783 unsigned ioeventfd_nb = 0;
784 MemoryRegionIoeventfd *ioeventfds = NULL;
785 AddrRange tmp;
786 unsigned i;
788 view = address_space_get_flatview(as);
789 FOR_EACH_FLAT_RANGE(fr, view) {
790 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
791 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
792 int128_sub(fr->addr.start,
793 int128_make64(fr->offset_in_region)));
794 if (addrrange_intersects(fr->addr, tmp)) {
795 ++ioeventfd_nb;
796 ioeventfds = g_realloc(ioeventfds,
797 ioeventfd_nb * sizeof(*ioeventfds));
798 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
799 ioeventfds[ioeventfd_nb-1].addr = tmp;
804 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
805 as->ioeventfds, as->ioeventfd_nb);
807 g_free(as->ioeventfds);
808 as->ioeventfds = ioeventfds;
809 as->ioeventfd_nb = ioeventfd_nb;
810 flatview_unref(view);
813 static void address_space_update_topology_pass(AddressSpace *as,
814 const FlatView *old_view,
815 const FlatView *new_view,
816 bool adding)
818 unsigned iold, inew;
819 FlatRange *frold, *frnew;
821 /* Generate a symmetric difference of the old and new memory maps.
822 * Kill ranges in the old map, and instantiate ranges in the new map.
824 iold = inew = 0;
825 while (iold < old_view->nr || inew < new_view->nr) {
826 if (iold < old_view->nr) {
827 frold = &old_view->ranges[iold];
828 } else {
829 frold = NULL;
831 if (inew < new_view->nr) {
832 frnew = &new_view->ranges[inew];
833 } else {
834 frnew = NULL;
837 if (frold
838 && (!frnew
839 || int128_lt(frold->addr.start, frnew->addr.start)
840 || (int128_eq(frold->addr.start, frnew->addr.start)
841 && !flatrange_equal(frold, frnew)))) {
842 /* In old but not in new, or in both but attributes changed. */
844 if (!adding) {
845 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
848 ++iold;
849 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
850 /* In both and unchanged (except logging may have changed) */
852 if (adding) {
853 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
854 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
855 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
856 frold->dirty_log_mask,
857 frnew->dirty_log_mask);
859 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
860 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
861 frold->dirty_log_mask,
862 frnew->dirty_log_mask);
866 ++iold;
867 ++inew;
868 } else {
869 /* In new */
871 if (adding) {
872 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
875 ++inew;
881 static void address_space_update_topology(AddressSpace *as)
883 FlatView *old_view = address_space_get_flatview(as);
884 FlatView *new_view = generate_memory_topology(as->root);
886 address_space_update_topology_pass(as, old_view, new_view, false);
887 address_space_update_topology_pass(as, old_view, new_view, true);
889 /* Writes are protected by the BQL. */
890 atomic_rcu_set(&as->current_map, new_view);
891 call_rcu(old_view, flatview_unref, rcu);
893 /* Note that all the old MemoryRegions are still alive up to this
894 * point. This relieves most MemoryListeners from the need to
895 * ref/unref the MemoryRegions they get---unless they use them
896 * outside the iothread mutex, in which case precise reference
897 * counting is necessary.
899 flatview_unref(old_view);
901 address_space_update_ioeventfds(as);
904 void memory_region_transaction_begin(void)
906 qemu_flush_coalesced_mmio_buffer();
907 ++memory_region_transaction_depth;
910 void memory_region_transaction_commit(void)
912 AddressSpace *as;
914 assert(memory_region_transaction_depth);
915 assert(qemu_mutex_iothread_locked());
917 --memory_region_transaction_depth;
918 if (!memory_region_transaction_depth) {
919 if (memory_region_update_pending) {
920 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
922 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
923 address_space_update_topology(as);
925 memory_region_update_pending = false;
926 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
927 } else if (ioeventfd_update_pending) {
928 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
929 address_space_update_ioeventfds(as);
931 ioeventfd_update_pending = false;
936 static void memory_region_destructor_none(MemoryRegion *mr)
940 static void memory_region_destructor_ram(MemoryRegion *mr)
942 qemu_ram_free(mr->ram_block);
945 static bool memory_region_need_escape(char c)
947 return c == '/' || c == '[' || c == '\\' || c == ']';
950 static char *memory_region_escape_name(const char *name)
952 const char *p;
953 char *escaped, *q;
954 uint8_t c;
955 size_t bytes = 0;
957 for (p = name; *p; p++) {
958 bytes += memory_region_need_escape(*p) ? 4 : 1;
960 if (bytes == p - name) {
961 return g_memdup(name, bytes + 1);
964 escaped = g_malloc(bytes + 1);
965 for (p = name, q = escaped; *p; p++) {
966 c = *p;
967 if (unlikely(memory_region_need_escape(c))) {
968 *q++ = '\\';
969 *q++ = 'x';
970 *q++ = "0123456789abcdef"[c >> 4];
971 c = "0123456789abcdef"[c & 15];
973 *q++ = c;
975 *q = 0;
976 return escaped;
979 void memory_region_init(MemoryRegion *mr,
980 Object *owner,
981 const char *name,
982 uint64_t size)
984 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
985 mr->size = int128_make64(size);
986 if (size == UINT64_MAX) {
987 mr->size = int128_2_64();
989 mr->name = g_strdup(name);
990 mr->owner = owner;
991 mr->ram_block = NULL;
993 if (name) {
994 char *escaped_name = memory_region_escape_name(name);
995 char *name_array = g_strdup_printf("%s[*]", escaped_name);
997 if (!owner) {
998 owner = container_get(qdev_get_machine(), "/unattached");
1001 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1002 object_unref(OBJECT(mr));
1003 g_free(name_array);
1004 g_free(escaped_name);
1008 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1009 void *opaque, Error **errp)
1011 MemoryRegion *mr = MEMORY_REGION(obj);
1012 uint64_t value = mr->addr;
1014 visit_type_uint64(v, name, &value, errp);
1017 static void memory_region_get_container(Object *obj, Visitor *v,
1018 const char *name, void *opaque,
1019 Error **errp)
1021 MemoryRegion *mr = MEMORY_REGION(obj);
1022 gchar *path = (gchar *)"";
1024 if (mr->container) {
1025 path = object_get_canonical_path(OBJECT(mr->container));
1027 visit_type_str(v, name, &path, errp);
1028 if (mr->container) {
1029 g_free(path);
1033 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1034 const char *part)
1036 MemoryRegion *mr = MEMORY_REGION(obj);
1038 return OBJECT(mr->container);
1041 static void memory_region_get_priority(Object *obj, Visitor *v,
1042 const char *name, void *opaque,
1043 Error **errp)
1045 MemoryRegion *mr = MEMORY_REGION(obj);
1046 int32_t value = mr->priority;
1048 visit_type_int32(v, name, &value, errp);
1051 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1052 void *opaque, Error **errp)
1054 MemoryRegion *mr = MEMORY_REGION(obj);
1055 uint64_t value = memory_region_size(mr);
1057 visit_type_uint64(v, name, &value, errp);
1060 static void memory_region_initfn(Object *obj)
1062 MemoryRegion *mr = MEMORY_REGION(obj);
1063 ObjectProperty *op;
1065 mr->ops = &unassigned_mem_ops;
1066 mr->enabled = true;
1067 mr->romd_mode = true;
1068 mr->global_locking = true;
1069 mr->destructor = memory_region_destructor_none;
1070 QTAILQ_INIT(&mr->subregions);
1071 QTAILQ_INIT(&mr->coalesced);
1073 op = object_property_add(OBJECT(mr), "container",
1074 "link<" TYPE_MEMORY_REGION ">",
1075 memory_region_get_container,
1076 NULL, /* memory_region_set_container */
1077 NULL, NULL, &error_abort);
1078 op->resolve = memory_region_resolve_container;
1080 object_property_add(OBJECT(mr), "addr", "uint64",
1081 memory_region_get_addr,
1082 NULL, /* memory_region_set_addr */
1083 NULL, NULL, &error_abort);
1084 object_property_add(OBJECT(mr), "priority", "uint32",
1085 memory_region_get_priority,
1086 NULL, /* memory_region_set_priority */
1087 NULL, NULL, &error_abort);
1088 object_property_add(OBJECT(mr), "size", "uint64",
1089 memory_region_get_size,
1090 NULL, /* memory_region_set_size, */
1091 NULL, NULL, &error_abort);
1094 static int qemu_target_backtrace(target_ulong *array, size_t size)
1096 int n = 0;
1097 if (size >= 2) {
1098 #if defined(TARGET_ARM)
1099 CPUArchState *env = current_cpu->env_ptr;
1100 array[0] = env->regs[15];
1101 array[1] = env->regs[14];
1102 #elif defined(TARGET_MIPS)
1103 CPUArchState *env = current_cpu->env_ptr;
1104 array[0] = env->active_tc.PC;
1105 array[1] = env->active_tc.gpr[31];
1106 #else
1107 array[0] = 0;
1108 array[1] = 0;
1109 #endif
1110 n = 2;
1112 return n;
1115 #include "disas/disas.h"
1116 const char *qemu_sprint_backtrace(char *buffer, size_t length)
1118 char *p = buffer;
1119 if (current_cpu) {
1120 target_ulong caller[2];
1121 const char *symbol;
1122 qemu_target_backtrace(caller, 2);
1123 symbol = lookup_symbol(caller[0]);
1124 p += sprintf(p, "[%s]", symbol);
1125 symbol = lookup_symbol(caller[1]);
1126 p += sprintf(p, "[%s]", symbol);
1127 } else {
1128 p += sprintf(p, "[cpu not running]");
1130 assert((p - buffer) < length);
1131 return buffer;
1134 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1135 unsigned size)
1137 if (trace_unassigned) {
1138 char buffer[256];
1139 fprintf(stderr, "Unassigned mem read " TARGET_FMT_plx " %s\n",
1140 addr, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1142 //~ vm_stop(0);
1143 if (current_cpu != NULL) {
1144 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1146 return 0;
1149 static void unassigned_mem_write(void *opaque, hwaddr addr,
1150 uint64_t val, unsigned size)
1152 if (trace_unassigned) {
1153 char buffer[256];
1154 fprintf(stderr, "Unassigned mem write " TARGET_FMT_plx
1155 " = 0x%" PRIx64 " %s\n",
1156 addr, val, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1158 if (current_cpu != NULL) {
1159 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1163 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1164 unsigned size, bool is_write)
1166 return false;
1169 const MemoryRegionOps unassigned_mem_ops = {
1170 .valid.accepts = unassigned_mem_accepts,
1171 .endianness = DEVICE_NATIVE_ENDIAN,
1174 static uint64_t memory_region_ram_device_read(void *opaque,
1175 hwaddr addr, unsigned size)
1177 MemoryRegion *mr = opaque;
1178 uint64_t data = (uint64_t)~0;
1180 switch (size) {
1181 case 1:
1182 data = *(uint8_t *)(mr->ram_block->host + addr);
1183 break;
1184 case 2:
1185 data = *(uint16_t *)(mr->ram_block->host + addr);
1186 break;
1187 case 4:
1188 data = *(uint32_t *)(mr->ram_block->host + addr);
1189 break;
1190 case 8:
1191 data = *(uint64_t *)(mr->ram_block->host + addr);
1192 break;
1195 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1197 return data;
1200 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1201 uint64_t data, unsigned size)
1203 MemoryRegion *mr = opaque;
1205 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1207 switch (size) {
1208 case 1:
1209 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1210 break;
1211 case 2:
1212 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1213 break;
1214 case 4:
1215 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1216 break;
1217 case 8:
1218 *(uint64_t *)(mr->ram_block->host + addr) = data;
1219 break;
1223 static const MemoryRegionOps ram_device_mem_ops = {
1224 .read = memory_region_ram_device_read,
1225 .write = memory_region_ram_device_write,
1226 .endianness = DEVICE_HOST_ENDIAN,
1227 .valid = {
1228 .min_access_size = 1,
1229 .max_access_size = 8,
1230 .unaligned = true,
1232 .impl = {
1233 .min_access_size = 1,
1234 .max_access_size = 8,
1235 .unaligned = true,
1239 bool memory_region_access_valid(MemoryRegion *mr,
1240 hwaddr addr,
1241 unsigned size,
1242 bool is_write)
1244 int access_size_min, access_size_max;
1245 int access_size, i;
1247 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1248 fprintf(stderr, "Misaligned i/o to address %08" HWADDR_PRIx
1249 " with size %u for memory region %s\n",
1250 addr, size, mr->name);
1251 return false;
1254 if (!mr->ops->valid.accepts) {
1255 return true;
1258 access_size_min = mr->ops->valid.min_access_size;
1259 if (!mr->ops->valid.min_access_size) {
1260 access_size_min = 1;
1263 access_size_max = mr->ops->valid.max_access_size;
1264 if (!mr->ops->valid.max_access_size) {
1265 access_size_max = 4;
1268 access_size = MAX(MIN(size, access_size_max), access_size_min);
1269 for (i = 0; i < size; i += access_size) {
1270 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1271 is_write)) {
1272 return false;
1276 return true;
1279 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1280 hwaddr addr,
1281 uint64_t *pval,
1282 unsigned size,
1283 MemTxAttrs attrs)
1285 *pval = 0;
1287 if (mr->ops->read) {
1288 return access_with_adjusted_size(addr, pval, size,
1289 mr->ops->impl.min_access_size,
1290 mr->ops->impl.max_access_size,
1291 memory_region_read_accessor,
1292 mr, attrs);
1293 } else if (mr->ops->read_with_attrs) {
1294 return access_with_adjusted_size(addr, pval, size,
1295 mr->ops->impl.min_access_size,
1296 mr->ops->impl.max_access_size,
1297 memory_region_read_with_attrs_accessor,
1298 mr, attrs);
1299 } else {
1300 return access_with_adjusted_size(addr, pval, size, 1, 4,
1301 memory_region_oldmmio_read_accessor,
1302 mr, attrs);
1306 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1307 hwaddr addr,
1308 uint64_t *pval,
1309 unsigned size,
1310 MemTxAttrs attrs)
1312 MemTxResult r;
1314 if (!memory_region_access_valid(mr, addr, size, false)) {
1315 *pval = unassigned_mem_read(mr, addr, size);
1316 return MEMTX_DECODE_ERROR;
1319 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1320 adjust_endianness(mr, pval, size);
1321 return r;
1324 /* Return true if an eventfd was signalled */
1325 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1326 hwaddr addr,
1327 uint64_t data,
1328 unsigned size,
1329 MemTxAttrs attrs)
1331 MemoryRegionIoeventfd ioeventfd = {
1332 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1333 .data = data,
1335 unsigned i;
1337 for (i = 0; i < mr->ioeventfd_nb; i++) {
1338 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1339 ioeventfd.e = mr->ioeventfds[i].e;
1341 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1342 event_notifier_set(ioeventfd.e);
1343 return true;
1347 return false;
1350 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1351 hwaddr addr,
1352 uint64_t data,
1353 unsigned size,
1354 MemTxAttrs attrs)
1356 if (!memory_region_access_valid(mr, addr, size, true)) {
1357 unassigned_mem_write(mr, addr, data, size);
1358 return MEMTX_DECODE_ERROR;
1361 adjust_endianness(mr, &data, size);
1363 if ((!kvm_eventfds_enabled()) &&
1364 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1365 return MEMTX_OK;
1368 if (mr->ops->write) {
1369 return access_with_adjusted_size(addr, &data, size,
1370 mr->ops->impl.min_access_size,
1371 mr->ops->impl.max_access_size,
1372 memory_region_write_accessor, mr,
1373 attrs);
1374 } else if (mr->ops->write_with_attrs) {
1375 return
1376 access_with_adjusted_size(addr, &data, size,
1377 mr->ops->impl.min_access_size,
1378 mr->ops->impl.max_access_size,
1379 memory_region_write_with_attrs_accessor,
1380 mr, attrs);
1381 } else {
1382 return access_with_adjusted_size(addr, &data, size, 1, 4,
1383 memory_region_oldmmio_write_accessor,
1384 mr, attrs);
1388 void memory_region_init_io(MemoryRegion *mr,
1389 Object *owner,
1390 const MemoryRegionOps *ops,
1391 void *opaque,
1392 const char *name,
1393 uint64_t size)
1395 memory_region_init(mr, owner, name, size);
1396 mr->ops = ops ? ops : &unassigned_mem_ops;
1397 mr->opaque = opaque;
1398 mr->terminates = true;
1401 void memory_region_init_ram(MemoryRegion *mr,
1402 Object *owner,
1403 const char *name,
1404 uint64_t size,
1405 Error **errp)
1407 memory_region_init(mr, owner, name, size);
1408 mr->ram = true;
1409 mr->terminates = true;
1410 mr->destructor = memory_region_destructor_ram;
1411 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1412 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1415 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1416 Object *owner,
1417 const char *name,
1418 uint64_t size,
1419 uint64_t max_size,
1420 void (*resized)(const char*,
1421 uint64_t length,
1422 void *host),
1423 Error **errp)
1425 memory_region_init(mr, owner, name, size);
1426 mr->ram = true;
1427 mr->terminates = true;
1428 mr->destructor = memory_region_destructor_ram;
1429 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1430 mr, errp);
1431 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1434 #ifdef __linux__
1435 void memory_region_init_ram_from_file(MemoryRegion *mr,
1436 struct Object *owner,
1437 const char *name,
1438 uint64_t size,
1439 bool share,
1440 const char *path,
1441 Error **errp)
1443 memory_region_init(mr, owner, name, size);
1444 mr->ram = true;
1445 mr->terminates = true;
1446 mr->destructor = memory_region_destructor_ram;
1447 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1448 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1450 #endif
1452 void memory_region_init_ram_ptr(MemoryRegion *mr,
1453 Object *owner,
1454 const char *name,
1455 uint64_t size,
1456 void *ptr)
1458 memory_region_init(mr, owner, name, size);
1459 mr->ram = true;
1460 mr->terminates = true;
1461 mr->destructor = memory_region_destructor_ram;
1462 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1464 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1465 assert(ptr != NULL);
1466 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1469 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1470 Object *owner,
1471 const char *name,
1472 uint64_t size,
1473 void *ptr)
1475 memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1476 mr->ram_device = true;
1477 mr->ops = &ram_device_mem_ops;
1478 mr->opaque = mr;
1481 void memory_region_init_alias(MemoryRegion *mr,
1482 Object *owner,
1483 const char *name,
1484 MemoryRegion *orig,
1485 hwaddr offset,
1486 uint64_t size)
1488 memory_region_init(mr, owner, name, size);
1489 mr->alias = orig;
1490 mr->alias_offset = offset;
1493 void memory_region_init_rom(MemoryRegion *mr,
1494 struct Object *owner,
1495 const char *name,
1496 uint64_t size,
1497 Error **errp)
1499 memory_region_init(mr, owner, name, size);
1500 mr->ram = true;
1501 mr->readonly = true;
1502 mr->terminates = true;
1503 mr->destructor = memory_region_destructor_ram;
1504 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1505 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1508 void memory_region_init_rom_device(MemoryRegion *mr,
1509 Object *owner,
1510 const MemoryRegionOps *ops,
1511 void *opaque,
1512 const char *name,
1513 uint64_t size,
1514 Error **errp)
1516 assert(ops);
1517 memory_region_init(mr, owner, name, size);
1518 mr->ops = ops;
1519 mr->opaque = opaque;
1520 mr->terminates = true;
1521 mr->rom_device = true;
1522 mr->destructor = memory_region_destructor_ram;
1523 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1526 void memory_region_init_iommu(MemoryRegion *mr,
1527 Object *owner,
1528 const MemoryRegionIOMMUOps *ops,
1529 const char *name,
1530 uint64_t size)
1532 memory_region_init(mr, owner, name, size);
1533 mr->iommu_ops = ops,
1534 mr->terminates = true; /* then re-forwards */
1535 QLIST_INIT(&mr->iommu_notify);
1536 mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1539 static void memory_region_finalize(Object *obj)
1541 MemoryRegion *mr = MEMORY_REGION(obj);
1543 assert(!mr->container);
1545 /* We know the region is not visible in any address space (it
1546 * does not have a container and cannot be a root either because
1547 * it has no references, so we can blindly clear mr->enabled.
1548 * memory_region_set_enabled instead could trigger a transaction
1549 * and cause an infinite loop.
1551 mr->enabled = false;
1552 memory_region_transaction_begin();
1553 while (!QTAILQ_EMPTY(&mr->subregions)) {
1554 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1555 memory_region_del_subregion(mr, subregion);
1557 memory_region_transaction_commit();
1559 mr->destructor(mr);
1560 memory_region_clear_coalescing(mr);
1561 g_free((char *)mr->name);
1562 g_free(mr->ioeventfds);
1565 Object *memory_region_owner(MemoryRegion *mr)
1567 Object *obj = OBJECT(mr);
1568 return obj->parent;
1571 void memory_region_ref(MemoryRegion *mr)
1573 /* MMIO callbacks most likely will access data that belongs
1574 * to the owner, hence the need to ref/unref the owner whenever
1575 * the memory region is in use.
1577 * The memory region is a child of its owner. As long as the
1578 * owner doesn't call unparent itself on the memory region,
1579 * ref-ing the owner will also keep the memory region alive.
1580 * Memory regions without an owner are supposed to never go away;
1581 * we do not ref/unref them because it slows down DMA sensibly.
1583 if (mr && mr->owner) {
1584 object_ref(mr->owner);
1588 void memory_region_unref(MemoryRegion *mr)
1590 if (mr && mr->owner) {
1591 object_unref(mr->owner);
1595 uint64_t memory_region_size(MemoryRegion *mr)
1597 if (int128_eq(mr->size, int128_2_64())) {
1598 return UINT64_MAX;
1600 return int128_get64(mr->size);
1603 const char *memory_region_name(const MemoryRegion *mr)
1605 if (!mr->name) {
1606 ((MemoryRegion *)mr)->name =
1607 object_get_canonical_path_component(OBJECT(mr));
1609 return mr->name;
1612 bool memory_region_is_ram_device(MemoryRegion *mr)
1614 return mr->ram_device;
1617 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1619 uint8_t mask = mr->dirty_log_mask;
1620 if (global_dirty_log && mr->ram_block) {
1621 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1623 return mask;
1626 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1628 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1631 static void memory_region_update_iommu_notify_flags(MemoryRegion *mr)
1633 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1634 IOMMUNotifier *iommu_notifier;
1636 QLIST_FOREACH(iommu_notifier, &mr->iommu_notify, node) {
1637 flags |= iommu_notifier->notifier_flags;
1640 if (flags != mr->iommu_notify_flags &&
1641 mr->iommu_ops->notify_flag_changed) {
1642 mr->iommu_ops->notify_flag_changed(mr, mr->iommu_notify_flags,
1643 flags);
1646 mr->iommu_notify_flags = flags;
1649 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1650 IOMMUNotifier *n)
1652 if (mr->alias) {
1653 memory_region_register_iommu_notifier(mr->alias, n);
1654 return;
1657 /* We need to register for at least one bitfield */
1658 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1659 QLIST_INSERT_HEAD(&mr->iommu_notify, n, node);
1660 memory_region_update_iommu_notify_flags(mr);
1663 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr)
1665 assert(memory_region_is_iommu(mr));
1666 if (mr->iommu_ops && mr->iommu_ops->get_min_page_size) {
1667 return mr->iommu_ops->get_min_page_size(mr);
1669 return TARGET_PAGE_SIZE;
1672 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
1673 bool is_write)
1675 hwaddr addr, granularity;
1676 IOMMUTLBEntry iotlb;
1678 granularity = memory_region_iommu_get_min_page_size(mr);
1680 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1681 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1682 if (iotlb.perm != IOMMU_NONE) {
1683 n->notify(n, &iotlb);
1686 /* if (2^64 - MR size) < granularity, it's possible to get an
1687 * infinite loop here. This should catch such a wraparound */
1688 if ((addr + granularity) < addr) {
1689 break;
1694 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1695 IOMMUNotifier *n)
1697 if (mr->alias) {
1698 memory_region_unregister_iommu_notifier(mr->alias, n);
1699 return;
1701 QLIST_REMOVE(n, node);
1702 memory_region_update_iommu_notify_flags(mr);
1705 void memory_region_notify_iommu(MemoryRegion *mr,
1706 IOMMUTLBEntry entry)
1708 IOMMUNotifier *iommu_notifier;
1709 IOMMUNotifierFlag request_flags;
1711 assert(memory_region_is_iommu(mr));
1713 if (entry.perm & IOMMU_RW) {
1714 request_flags = IOMMU_NOTIFIER_MAP;
1715 } else {
1716 request_flags = IOMMU_NOTIFIER_UNMAP;
1719 QLIST_FOREACH(iommu_notifier, &mr->iommu_notify, node) {
1720 if (iommu_notifier->notifier_flags & request_flags) {
1721 iommu_notifier->notify(iommu_notifier, &entry);
1726 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1728 uint8_t mask = 1 << client;
1729 uint8_t old_logging;
1731 assert(client == DIRTY_MEMORY_VGA);
1732 old_logging = mr->vga_logging_count;
1733 mr->vga_logging_count += log ? 1 : -1;
1734 if (!!old_logging == !!mr->vga_logging_count) {
1735 return;
1738 memory_region_transaction_begin();
1739 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1740 memory_region_update_pending |= mr->enabled;
1741 memory_region_transaction_commit();
1744 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1745 hwaddr size, unsigned client)
1747 assert(mr->ram_block);
1748 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1749 size, client);
1752 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1753 hwaddr size)
1755 assert(mr->ram_block);
1756 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1757 size,
1758 memory_region_get_dirty_log_mask(mr));
1761 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1762 hwaddr size, unsigned client)
1764 assert(mr->ram_block);
1765 return cpu_physical_memory_test_and_clear_dirty(
1766 memory_region_get_ram_addr(mr) + addr, size, client);
1770 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1772 MemoryListener *listener;
1773 AddressSpace *as;
1774 FlatView *view;
1775 FlatRange *fr;
1777 /* If the same address space has multiple log_sync listeners, we
1778 * visit that address space's FlatView multiple times. But because
1779 * log_sync listeners are rare, it's still cheaper than walking each
1780 * address space once.
1782 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1783 if (!listener->log_sync) {
1784 continue;
1786 as = listener->address_space;
1787 view = address_space_get_flatview(as);
1788 FOR_EACH_FLAT_RANGE(fr, view) {
1789 if (fr->mr == mr) {
1790 MemoryRegionSection mrs = section_from_flat_range(fr, as);
1791 listener->log_sync(listener, &mrs);
1794 flatview_unref(view);
1798 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1800 if (mr->readonly != readonly) {
1801 memory_region_transaction_begin();
1802 mr->readonly = readonly;
1803 memory_region_update_pending |= mr->enabled;
1804 memory_region_transaction_commit();
1808 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1810 if (mr->romd_mode != romd_mode) {
1811 memory_region_transaction_begin();
1812 mr->romd_mode = romd_mode;
1813 memory_region_update_pending |= mr->enabled;
1814 memory_region_transaction_commit();
1818 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1819 hwaddr size, unsigned client)
1821 assert(mr->ram_block);
1822 cpu_physical_memory_test_and_clear_dirty(
1823 memory_region_get_ram_addr(mr) + addr, size, client);
1826 int memory_region_get_fd(MemoryRegion *mr)
1828 int fd;
1830 rcu_read_lock();
1831 while (mr->alias) {
1832 mr = mr->alias;
1834 fd = mr->ram_block->fd;
1835 rcu_read_unlock();
1837 return fd;
1840 void memory_region_set_fd(MemoryRegion *mr, int fd)
1842 rcu_read_lock();
1843 while (mr->alias) {
1844 mr = mr->alias;
1846 mr->ram_block->fd = fd;
1847 rcu_read_unlock();
1850 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1852 void *ptr;
1853 uint64_t offset = 0;
1855 rcu_read_lock();
1856 while (mr->alias) {
1857 offset += mr->alias_offset;
1858 mr = mr->alias;
1860 assert(mr->ram_block);
1861 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
1862 rcu_read_unlock();
1864 return ptr;
1867 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
1869 RAMBlock *block;
1871 block = qemu_ram_block_from_host(ptr, false, offset);
1872 if (!block) {
1873 return NULL;
1876 return block->mr;
1879 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1881 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1884 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1886 assert(mr->ram_block);
1888 qemu_ram_resize(mr->ram_block, newsize, errp);
1891 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1893 FlatView *view;
1894 FlatRange *fr;
1895 CoalescedMemoryRange *cmr;
1896 AddrRange tmp;
1897 MemoryRegionSection section;
1899 view = address_space_get_flatview(as);
1900 FOR_EACH_FLAT_RANGE(fr, view) {
1901 if (fr->mr == mr) {
1902 section = (MemoryRegionSection) {
1903 .address_space = as,
1904 .offset_within_address_space = int128_get64(fr->addr.start),
1905 .size = fr->addr.size,
1908 MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
1909 int128_get64(fr->addr.start),
1910 int128_get64(fr->addr.size));
1911 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1912 tmp = addrrange_shift(cmr->addr,
1913 int128_sub(fr->addr.start,
1914 int128_make64(fr->offset_in_region)));
1915 if (!addrrange_intersects(tmp, fr->addr)) {
1916 continue;
1918 tmp = addrrange_intersection(tmp, fr->addr);
1919 MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
1920 int128_get64(tmp.start),
1921 int128_get64(tmp.size));
1925 flatview_unref(view);
1928 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1930 AddressSpace *as;
1932 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1933 memory_region_update_coalesced_range_as(mr, as);
1937 void memory_region_set_coalescing(MemoryRegion *mr)
1939 memory_region_clear_coalescing(mr);
1940 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1943 void memory_region_add_coalescing(MemoryRegion *mr,
1944 hwaddr offset,
1945 uint64_t size)
1947 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1949 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1950 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1951 memory_region_update_coalesced_range(mr);
1952 memory_region_set_flush_coalesced(mr);
1955 void memory_region_clear_coalescing(MemoryRegion *mr)
1957 CoalescedMemoryRange *cmr;
1958 bool updated = false;
1960 qemu_flush_coalesced_mmio_buffer();
1961 mr->flush_coalesced_mmio = false;
1963 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1964 cmr = QTAILQ_FIRST(&mr->coalesced);
1965 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1966 g_free(cmr);
1967 updated = true;
1970 if (updated) {
1971 memory_region_update_coalesced_range(mr);
1975 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1977 mr->flush_coalesced_mmio = true;
1980 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1982 qemu_flush_coalesced_mmio_buffer();
1983 if (QTAILQ_EMPTY(&mr->coalesced)) {
1984 mr->flush_coalesced_mmio = false;
1988 void memory_region_set_global_locking(MemoryRegion *mr)
1990 mr->global_locking = true;
1993 void memory_region_clear_global_locking(MemoryRegion *mr)
1995 mr->global_locking = false;
1998 static bool userspace_eventfd_warning;
2000 void memory_region_add_eventfd(MemoryRegion *mr,
2001 hwaddr addr,
2002 unsigned size,
2003 bool match_data,
2004 uint64_t data,
2005 EventNotifier *e)
2007 MemoryRegionIoeventfd mrfd = {
2008 .addr.start = int128_make64(addr),
2009 .addr.size = int128_make64(size),
2010 .match_data = match_data,
2011 .data = data,
2012 .e = e,
2014 unsigned i;
2016 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2017 userspace_eventfd_warning))) {
2018 userspace_eventfd_warning = true;
2019 error_report("Using eventfd without MMIO binding in KVM. "
2020 "Suboptimal performance expected");
2023 if (size) {
2024 adjust_endianness(mr, &mrfd.data, size);
2026 memory_region_transaction_begin();
2027 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2028 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
2029 break;
2032 ++mr->ioeventfd_nb;
2033 mr->ioeventfds = g_realloc(mr->ioeventfds,
2034 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2035 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2036 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2037 mr->ioeventfds[i] = mrfd;
2038 ioeventfd_update_pending |= mr->enabled;
2039 memory_region_transaction_commit();
2042 void memory_region_del_eventfd(MemoryRegion *mr,
2043 hwaddr addr,
2044 unsigned size,
2045 bool match_data,
2046 uint64_t data,
2047 EventNotifier *e)
2049 MemoryRegionIoeventfd mrfd = {
2050 .addr.start = int128_make64(addr),
2051 .addr.size = int128_make64(size),
2052 .match_data = match_data,
2053 .data = data,
2054 .e = e,
2056 unsigned i;
2058 if (size) {
2059 adjust_endianness(mr, &mrfd.data, size);
2061 memory_region_transaction_begin();
2062 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2063 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
2064 break;
2067 assert(i != mr->ioeventfd_nb);
2068 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2069 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2070 --mr->ioeventfd_nb;
2071 mr->ioeventfds = g_realloc(mr->ioeventfds,
2072 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2073 ioeventfd_update_pending |= mr->enabled;
2074 memory_region_transaction_commit();
2077 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2079 MemoryRegion *mr = subregion->container;
2080 MemoryRegion *other;
2082 memory_region_transaction_begin();
2084 memory_region_ref(subregion);
2085 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2086 if (subregion->priority >= other->priority) {
2087 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2088 goto done;
2091 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2092 done:
2093 memory_region_update_pending |= mr->enabled && subregion->enabled;
2094 memory_region_transaction_commit();
2097 static void memory_region_add_subregion_common(MemoryRegion *mr,
2098 hwaddr offset,
2099 MemoryRegion *subregion)
2101 assert(!subregion->container);
2102 subregion->container = mr;
2103 subregion->addr = offset;
2104 memory_region_update_container_subregions(subregion);
2107 void memory_region_add_subregion(MemoryRegion *mr,
2108 hwaddr offset,
2109 MemoryRegion *subregion)
2111 subregion->priority = 0;
2112 memory_region_add_subregion_common(mr, offset, subregion);
2115 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2116 hwaddr offset,
2117 MemoryRegion *subregion,
2118 int priority)
2120 subregion->priority = priority;
2121 memory_region_add_subregion_common(mr, offset, subregion);
2124 void memory_region_del_subregion(MemoryRegion *mr,
2125 MemoryRegion *subregion)
2127 memory_region_transaction_begin();
2128 assert(subregion->container == mr);
2129 subregion->container = NULL;
2130 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2131 memory_region_unref(subregion);
2132 memory_region_update_pending |= mr->enabled && subregion->enabled;
2133 memory_region_transaction_commit();
2136 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2138 if (enabled == mr->enabled) {
2139 return;
2141 memory_region_transaction_begin();
2142 mr->enabled = enabled;
2143 memory_region_update_pending = true;
2144 memory_region_transaction_commit();
2147 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2149 Int128 s = int128_make64(size);
2151 if (size == UINT64_MAX) {
2152 s = int128_2_64();
2154 if (int128_eq(s, mr->size)) {
2155 return;
2157 memory_region_transaction_begin();
2158 mr->size = s;
2159 memory_region_update_pending = true;
2160 memory_region_transaction_commit();
2163 static void memory_region_readd_subregion(MemoryRegion *mr)
2165 MemoryRegion *container = mr->container;
2167 if (container) {
2168 memory_region_transaction_begin();
2169 memory_region_ref(mr);
2170 memory_region_del_subregion(container, mr);
2171 mr->container = container;
2172 memory_region_update_container_subregions(mr);
2173 memory_region_unref(mr);
2174 memory_region_transaction_commit();
2178 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2180 if (addr != mr->addr) {
2181 mr->addr = addr;
2182 memory_region_readd_subregion(mr);
2186 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2188 assert(mr->alias);
2190 if (offset == mr->alias_offset) {
2191 return;
2194 memory_region_transaction_begin();
2195 mr->alias_offset = offset;
2196 memory_region_update_pending |= mr->enabled;
2197 memory_region_transaction_commit();
2200 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2202 return mr->align;
2205 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2207 const AddrRange *addr = addr_;
2208 const FlatRange *fr = fr_;
2210 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2211 return -1;
2212 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2213 return 1;
2215 return 0;
2218 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2220 return bsearch(&addr, view->ranges, view->nr,
2221 sizeof(FlatRange), cmp_flatrange_addr);
2224 bool memory_region_is_mapped(MemoryRegion *mr)
2226 return mr->container ? true : false;
2229 /* Same as memory_region_find, but it does not add a reference to the
2230 * returned region. It must be called from an RCU critical section.
2232 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2233 hwaddr addr, uint64_t size)
2235 MemoryRegionSection ret = { .mr = NULL };
2236 MemoryRegion *root;
2237 AddressSpace *as;
2238 AddrRange range;
2239 FlatView *view;
2240 FlatRange *fr;
2242 addr += mr->addr;
2243 for (root = mr; root->container; ) {
2244 root = root->container;
2245 addr += root->addr;
2248 as = memory_region_to_address_space(root);
2249 if (!as) {
2250 return ret;
2252 range = addrrange_make(int128_make64(addr), int128_make64(size));
2254 view = atomic_rcu_read(&as->current_map);
2255 fr = flatview_lookup(view, range);
2256 if (!fr) {
2257 return ret;
2260 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2261 --fr;
2264 ret.mr = fr->mr;
2265 ret.address_space = as;
2266 range = addrrange_intersection(range, fr->addr);
2267 ret.offset_within_region = fr->offset_in_region;
2268 ret.offset_within_region += int128_get64(int128_sub(range.start,
2269 fr->addr.start));
2270 ret.size = range.size;
2271 ret.offset_within_address_space = int128_get64(range.start);
2272 ret.readonly = fr->readonly;
2273 return ret;
2276 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2277 hwaddr addr, uint64_t size)
2279 MemoryRegionSection ret;
2280 rcu_read_lock();
2281 ret = memory_region_find_rcu(mr, addr, size);
2282 if (ret.mr) {
2283 memory_region_ref(ret.mr);
2285 rcu_read_unlock();
2286 return ret;
2289 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2291 MemoryRegion *mr;
2293 rcu_read_lock();
2294 mr = memory_region_find_rcu(container, addr, 1).mr;
2295 rcu_read_unlock();
2296 return mr && mr != container;
2299 void memory_global_dirty_log_sync(void)
2301 MemoryListener *listener;
2302 AddressSpace *as;
2303 FlatView *view;
2304 FlatRange *fr;
2306 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2307 if (!listener->log_sync) {
2308 continue;
2310 as = listener->address_space;
2311 view = address_space_get_flatview(as);
2312 FOR_EACH_FLAT_RANGE(fr, view) {
2313 if (fr->dirty_log_mask) {
2314 MemoryRegionSection mrs = section_from_flat_range(fr, as);
2315 listener->log_sync(listener, &mrs);
2318 flatview_unref(view);
2322 void memory_global_dirty_log_start(void)
2324 global_dirty_log = true;
2326 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2328 /* Refresh DIRTY_LOG_MIGRATION bit. */
2329 memory_region_transaction_begin();
2330 memory_region_update_pending = true;
2331 memory_region_transaction_commit();
2334 void memory_global_dirty_log_stop(void)
2336 global_dirty_log = false;
2338 /* Refresh DIRTY_LOG_MIGRATION bit. */
2339 memory_region_transaction_begin();
2340 memory_region_update_pending = true;
2341 memory_region_transaction_commit();
2343 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2346 static void listener_add_address_space(MemoryListener *listener,
2347 AddressSpace *as)
2349 FlatView *view;
2350 FlatRange *fr;
2352 if (listener->begin) {
2353 listener->begin(listener);
2355 if (global_dirty_log) {
2356 if (listener->log_global_start) {
2357 listener->log_global_start(listener);
2361 view = address_space_get_flatview(as);
2362 FOR_EACH_FLAT_RANGE(fr, view) {
2363 MemoryRegionSection section = {
2364 .mr = fr->mr,
2365 .address_space = as,
2366 .offset_within_region = fr->offset_in_region,
2367 .size = fr->addr.size,
2368 .offset_within_address_space = int128_get64(fr->addr.start),
2369 .readonly = fr->readonly,
2371 if (fr->dirty_log_mask && listener->log_start) {
2372 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2374 if (listener->region_add) {
2375 listener->region_add(listener, &section);
2378 if (listener->commit) {
2379 listener->commit(listener);
2381 flatview_unref(view);
2384 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2386 MemoryListener *other = NULL;
2388 listener->address_space = as;
2389 if (QTAILQ_EMPTY(&memory_listeners)
2390 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2391 memory_listeners)->priority) {
2392 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2393 } else {
2394 QTAILQ_FOREACH(other, &memory_listeners, link) {
2395 if (listener->priority < other->priority) {
2396 break;
2399 QTAILQ_INSERT_BEFORE(other, listener, link);
2402 if (QTAILQ_EMPTY(&as->listeners)
2403 || listener->priority >= QTAILQ_LAST(&as->listeners,
2404 memory_listeners)->priority) {
2405 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2406 } else {
2407 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2408 if (listener->priority < other->priority) {
2409 break;
2412 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2415 listener_add_address_space(listener, as);
2418 void memory_listener_unregister(MemoryListener *listener)
2420 if (!listener->address_space) {
2421 return;
2424 QTAILQ_REMOVE(&memory_listeners, listener, link);
2425 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2426 listener->address_space = NULL;
2429 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2431 memory_region_ref(root);
2432 memory_region_transaction_begin();
2433 as->ref_count = 1;
2434 as->root = root;
2435 as->malloced = false;
2436 as->current_map = g_new(FlatView, 1);
2437 flatview_init(as->current_map);
2438 as->ioeventfd_nb = 0;
2439 as->ioeventfds = NULL;
2440 QTAILQ_INIT(&as->listeners);
2441 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2442 as->name = g_strdup(name ? name : "anonymous");
2443 address_space_init_dispatch(as);
2444 memory_region_update_pending |= root->enabled;
2445 memory_region_transaction_commit();
2448 static void do_address_space_destroy(AddressSpace *as)
2450 bool do_free = as->malloced;
2452 address_space_destroy_dispatch(as);
2453 assert(QTAILQ_EMPTY(&as->listeners));
2455 flatview_unref(as->current_map);
2456 g_free(as->name);
2457 g_free(as->ioeventfds);
2458 memory_region_unref(as->root);
2459 if (do_free) {
2460 g_free(as);
2464 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2466 AddressSpace *as;
2468 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2469 if (root == as->root && as->malloced) {
2470 as->ref_count++;
2471 return as;
2475 as = g_malloc0(sizeof *as);
2476 address_space_init(as, root, name);
2477 as->malloced = true;
2478 return as;
2481 void address_space_destroy(AddressSpace *as)
2483 MemoryRegion *root = as->root;
2485 as->ref_count--;
2486 if (as->ref_count) {
2487 return;
2489 /* Flush out anything from MemoryListeners listening in on this */
2490 memory_region_transaction_begin();
2491 as->root = NULL;
2492 memory_region_transaction_commit();
2493 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2494 address_space_unregister(as);
2496 /* At this point, as->dispatch and as->current_map are dummy
2497 * entries that the guest should never use. Wait for the old
2498 * values to expire before freeing the data.
2500 as->root = root;
2501 call_rcu(as, do_address_space_destroy, rcu);
2504 static const char *memory_region_type(MemoryRegion *mr)
2506 if (memory_region_is_ram_device(mr)) {
2507 return "ramd";
2508 } else if (memory_region_is_romd(mr)) {
2509 return "romd";
2510 } else if (memory_region_is_rom(mr)) {
2511 return "rom";
2512 } else if (memory_region_is_ram(mr)) {
2513 return "ram";
2514 } else {
2515 return "i/o";
2519 typedef struct MemoryRegionList MemoryRegionList;
2521 struct MemoryRegionList {
2522 const MemoryRegion *mr;
2523 QTAILQ_ENTRY(MemoryRegionList) queue;
2526 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2528 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2529 int128_sub((size), int128_one())) : 0)
2530 #define MTREE_INDENT " "
2532 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2533 const MemoryRegion *mr, unsigned int level,
2534 hwaddr base,
2535 MemoryRegionListHead *alias_print_queue)
2537 MemoryRegionList *new_ml, *ml, *next_ml;
2538 MemoryRegionListHead submr_print_queue;
2539 const MemoryRegion *submr;
2540 unsigned int i;
2541 hwaddr cur_start, cur_end;
2543 if (!mr) {
2544 return;
2547 for (i = 0; i < level; i++) {
2548 mon_printf(f, MTREE_INDENT);
2551 cur_start = base + mr->addr;
2552 cur_end = cur_start + MR_SIZE(mr->size);
2555 * Try to detect overflow of memory region. This should never
2556 * happen normally. When it happens, we dump something to warn the
2557 * user who is observing this.
2559 if (cur_start < base || cur_end < cur_start) {
2560 mon_printf(f, "[DETECTED OVERFLOW!] ");
2563 if (mr->alias) {
2564 MemoryRegionList *ml;
2565 bool found = false;
2567 /* check if the alias is already in the queue */
2568 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2569 if (ml->mr == mr->alias) {
2570 found = true;
2574 if (!found) {
2575 ml = g_new(MemoryRegionList, 1);
2576 ml->mr = mr->alias;
2577 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2579 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2580 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2581 "-" TARGET_FMT_plx "%s\n",
2582 cur_start, cur_end,
2583 mr->priority,
2584 memory_region_type((MemoryRegion *)mr),
2585 memory_region_name(mr),
2586 memory_region_name(mr->alias),
2587 mr->alias_offset,
2588 mr->alias_offset + MR_SIZE(mr->size),
2589 mr->enabled ? "" : " [disabled]");
2590 } else {
2591 mon_printf(f,
2592 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s\n",
2593 cur_start, cur_end,
2594 mr->priority,
2595 memory_region_type((MemoryRegion *)mr),
2596 memory_region_name(mr),
2597 mr->enabled ? "" : " [disabled]");
2600 QTAILQ_INIT(&submr_print_queue);
2602 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2603 new_ml = g_new(MemoryRegionList, 1);
2604 new_ml->mr = submr;
2605 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2606 if (new_ml->mr->addr < ml->mr->addr ||
2607 (new_ml->mr->addr == ml->mr->addr &&
2608 new_ml->mr->priority > ml->mr->priority)) {
2609 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2610 new_ml = NULL;
2611 break;
2614 if (new_ml) {
2615 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2619 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2620 mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
2621 alias_print_queue);
2624 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2625 g_free(ml);
2629 static void mtree_print_flatview(fprintf_function p, void *f,
2630 AddressSpace *as)
2632 FlatView *view = address_space_get_flatview(as);
2633 FlatRange *range = &view->ranges[0];
2634 MemoryRegion *mr;
2635 int n = view->nr;
2637 if (n <= 0) {
2638 p(f, MTREE_INDENT "No rendered FlatView for "
2639 "address space '%s'\n", as->name);
2640 flatview_unref(view);
2641 return;
2644 while (n--) {
2645 mr = range->mr;
2646 if (range->offset_in_region) {
2647 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2648 TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx "\n",
2649 int128_get64(range->addr.start),
2650 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2651 mr->priority,
2652 range->readonly ? "rom" : memory_region_type(mr),
2653 memory_region_name(mr),
2654 range->offset_in_region);
2655 } else {
2656 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2657 TARGET_FMT_plx " (prio %d, %s): %s\n",
2658 int128_get64(range->addr.start),
2659 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2660 mr->priority,
2661 range->readonly ? "rom" : memory_region_type(mr),
2662 memory_region_name(mr));
2664 range++;
2667 flatview_unref(view);
2670 void mtree_info(fprintf_function mon_printf, void *f, bool flatview)
2672 MemoryRegionListHead ml_head;
2673 MemoryRegionList *ml, *ml2;
2674 AddressSpace *as;
2676 if (flatview) {
2677 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2678 mon_printf(f, "address-space (flat view): %s\n", as->name);
2679 mtree_print_flatview(mon_printf, f, as);
2680 mon_printf(f, "\n");
2682 return;
2685 QTAILQ_INIT(&ml_head);
2687 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2688 mon_printf(f, "address-space: %s\n", as->name);
2689 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2690 mon_printf(f, "\n");
2693 /* print aliased regions */
2694 QTAILQ_FOREACH(ml, &ml_head, queue) {
2695 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2696 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2697 mon_printf(f, "\n");
2700 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2701 g_free(ml);
2705 static const TypeInfo memory_region_info = {
2706 .parent = TYPE_OBJECT,
2707 .name = TYPE_MEMORY_REGION,
2708 .instance_size = sizeof(MemoryRegion),
2709 .instance_init = memory_region_initfn,
2710 .instance_finalize = memory_region_finalize,
2713 static void memory_register_types(void)
2715 type_register_static(&memory_region_info);
2718 type_init(memory_register_types)