hw/arm/virt: use machine->possible_cpus for storing possible topology info
[qemu/ar7.git] / hw / arm / virt.c
blobe2c5626c52559d12b8c93ada0e0e277464a1b9fa
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62 void *data) \
63 { \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67 if (latest) { \
68 mc->alias = "virt"; \
69 } \
70 } \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
76 }; \
77 static void machvirt_machine_##major##_##minor##_init(void) \
78 { \
79 type_register_static(&machvirt_##major##_##minor##_info); \
80 } \
81 type_init(machvirt_machine_##major##_##minor##_init);
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
92 #define PLATFORM_BUS_NUM_IRQS 64
94 static ARMPlatformBusSystemParams platform_bus_params;
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113 /* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
125 static const MemMapEntry a15memmap[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
127 [VIRT_FLASH] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
137 [VIRT_UART] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC] = { 0x09010000, 0x00001000 },
139 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
140 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
141 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
142 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
145 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
146 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
149 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
154 static const int a15irqmap[] = {
155 [VIRT_UART] = 1,
156 [VIRT_RTC] = 2,
157 [VIRT_PCIE] = 3, /* ... to 6 */
158 [VIRT_GPIO] = 7,
159 [VIRT_SECURE_UART] = 8,
160 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 static const char *valid_cpus[] = {
166 "cortex-a15",
167 "cortex-a53",
168 "cortex-a57",
169 "host",
172 static bool cpuname_valid(const char *cpu)
174 int i;
176 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177 if (strcmp(cpu, valid_cpus[i]) == 0) {
178 return true;
181 return false;
184 static void create_fdt(VirtMachineState *vms)
186 void *fdt = create_device_tree(&vms->fdt_size);
188 if (!fdt) {
189 error_report("create_device_tree() failed");
190 exit(1);
193 vms->fdt = fdt;
195 /* Header */
196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
204 qemu_fdt_add_subnode(fdt, "/chosen");
205 qemu_fdt_add_subnode(fdt, "/memory");
206 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
213 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214 qemu_fdt_add_subnode(fdt, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219 "clk24mhz");
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
224 static void fdt_add_psci_node(const VirtMachineState *vms)
226 uint32_t cpu_suspend_fn;
227 uint32_t cpu_off_fn;
228 uint32_t cpu_on_fn;
229 uint32_t migrate_fn;
230 void *fdt = vms->fdt;
231 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
232 const char *psci_method;
234 switch (vms->psci_conduit) {
235 case QEMU_PSCI_CONDUIT_DISABLED:
236 return;
237 case QEMU_PSCI_CONDUIT_HVC:
238 psci_method = "hvc";
239 break;
240 case QEMU_PSCI_CONDUIT_SMC:
241 psci_method = "smc";
242 break;
243 default:
244 g_assert_not_reached();
247 qemu_fdt_add_subnode(fdt, "/psci");
248 if (armcpu->psci_version == 2) {
249 const char comp[] = "arm,psci-0.2\0arm,psci";
250 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
252 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
253 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
254 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
255 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
256 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
257 } else {
258 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
259 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
260 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
262 } else {
263 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
265 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
266 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
267 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
268 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
271 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
272 * to the instruction that should be used to invoke PSCI functions.
273 * However, the device tree binding uses 'method' instead, so that is
274 * what we should use here.
276 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
278 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
279 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
280 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
281 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
284 static void fdt_add_timer_nodes(const VirtMachineState *vms)
286 /* On real hardware these interrupts are level-triggered.
287 * On KVM they were edge-triggered before host kernel version 4.4,
288 * and level-triggered afterwards.
289 * On emulated QEMU they are level-triggered.
291 * Getting the DTB info about them wrong is awkward for some
292 * guest kernels:
293 * pre-4.8 ignore the DT and leave the interrupt configured
294 * with whatever the GIC reset value (or the bootloader) left it at
295 * 4.8 before rc6 honour the incorrect data by programming it back
296 * into the GIC, causing problems
297 * 4.8rc6 and later ignore the DT and always write "level triggered"
298 * into the GIC
300 * For backwards-compatibility, virt-2.8 and earlier will continue
301 * to say these are edge-triggered, but later machines will report
302 * the correct information.
304 ARMCPU *armcpu;
305 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
306 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
308 if (vmc->claim_edge_triggered_timers) {
309 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
312 if (vms->gic_version == 2) {
313 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
314 GIC_FDT_IRQ_PPI_CPU_WIDTH,
315 (1 << vms->smp_cpus) - 1);
318 qemu_fdt_add_subnode(vms->fdt, "/timer");
320 armcpu = ARM_CPU(qemu_get_cpu(0));
321 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
322 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
323 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
324 compat, sizeof(compat));
325 } else {
326 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
327 "arm,armv7-timer");
329 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
330 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
331 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
332 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
333 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
334 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
337 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
339 int cpu;
340 int addr_cells = 1;
341 unsigned int i;
344 * From Documentation/devicetree/bindings/arm/cpus.txt
345 * On ARM v8 64-bit systems value should be set to 2,
346 * that corresponds to the MPIDR_EL1 register size.
347 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
348 * in the system, #address-cells can be set to 1, since
349 * MPIDR_EL1[63:32] bits are not used for CPUs
350 * identification.
352 * Here we actually don't know whether our system is 32- or 64-bit one.
353 * The simplest way to go is to examine affinity IDs of all our CPUs. If
354 * at least one of them has Aff3 populated, we set #address-cells to 2.
356 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
357 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
359 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
360 addr_cells = 2;
361 break;
365 qemu_fdt_add_subnode(vms->fdt, "/cpus");
366 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
367 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
369 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
370 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
371 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
373 qemu_fdt_add_subnode(vms->fdt, nodename);
374 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
375 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
376 armcpu->dtb_compatible);
378 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
379 && vms->smp_cpus > 1) {
380 qemu_fdt_setprop_string(vms->fdt, nodename,
381 "enable-method", "psci");
384 if (addr_cells == 2) {
385 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
386 armcpu->mp_affinity);
387 } else {
388 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
389 armcpu->mp_affinity);
392 i = numa_get_node_for_cpu(cpu);
393 if (i < nb_numa_nodes) {
394 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
397 g_free(nodename);
401 static void fdt_add_its_gic_node(VirtMachineState *vms)
403 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
404 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
405 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
406 "arm,gic-v3-its");
407 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
408 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
409 2, vms->memmap[VIRT_GIC_ITS].base,
410 2, vms->memmap[VIRT_GIC_ITS].size);
411 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
414 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
416 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
417 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
418 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
419 "arm,gic-v2m-frame");
420 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
421 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
422 2, vms->memmap[VIRT_GIC_V2M].base,
423 2, vms->memmap[VIRT_GIC_V2M].size);
424 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
427 static void fdt_add_gic_node(VirtMachineState *vms)
429 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
430 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
432 qemu_fdt_add_subnode(vms->fdt, "/intc");
433 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
434 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
435 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
436 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
437 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
438 if (vms->gic_version == 3) {
439 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
440 "arm,gic-v3");
441 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
442 2, vms->memmap[VIRT_GIC_DIST].base,
443 2, vms->memmap[VIRT_GIC_DIST].size,
444 2, vms->memmap[VIRT_GIC_REDIST].base,
445 2, vms->memmap[VIRT_GIC_REDIST].size);
446 if (vms->virt) {
447 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
448 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
449 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
451 } else {
452 /* 'cortex-a15-gic' means 'GIC v2' */
453 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
454 "arm,cortex-a15-gic");
455 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
456 2, vms->memmap[VIRT_GIC_DIST].base,
457 2, vms->memmap[VIRT_GIC_DIST].size,
458 2, vms->memmap[VIRT_GIC_CPU].base,
459 2, vms->memmap[VIRT_GIC_CPU].size);
462 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
465 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
467 CPUState *cpu;
468 ARMCPU *armcpu;
469 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
471 CPU_FOREACH(cpu) {
472 armcpu = ARM_CPU(cpu);
473 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
474 (kvm_enabled() && !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ)))) {
475 return;
479 if (vms->gic_version == 2) {
480 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
481 GIC_FDT_IRQ_PPI_CPU_WIDTH,
482 (1 << vms->smp_cpus) - 1);
485 armcpu = ARM_CPU(qemu_get_cpu(0));
486 qemu_fdt_add_subnode(vms->fdt, "/pmu");
487 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
488 const char compat[] = "arm,armv8-pmuv3";
489 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
490 compat, sizeof(compat));
491 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
492 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
496 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
498 const char *itsclass = its_class_name();
499 DeviceState *dev;
501 if (!itsclass) {
502 /* Do nothing if not supported */
503 return;
506 dev = qdev_create(NULL, itsclass);
508 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
509 &error_abort);
510 qdev_init_nofail(dev);
511 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
513 fdt_add_its_gic_node(vms);
516 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
518 int i;
519 int irq = vms->irqmap[VIRT_GIC_V2M];
520 DeviceState *dev;
522 dev = qdev_create(NULL, "arm-gicv2m");
523 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
524 qdev_prop_set_uint32(dev, "base-spi", irq);
525 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
526 qdev_init_nofail(dev);
528 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
529 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
532 fdt_add_v2m_gic_node(vms);
535 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
537 /* We create a standalone GIC */
538 DeviceState *gicdev;
539 SysBusDevice *gicbusdev;
540 const char *gictype;
541 int type = vms->gic_version, i;
543 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
545 gicdev = qdev_create(NULL, gictype);
546 qdev_prop_set_uint32(gicdev, "revision", type);
547 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
548 /* Note that the num-irq property counts both internal and external
549 * interrupts; there are always 32 of the former (mandated by GIC spec).
551 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
552 if (!kvm_irqchip_in_kernel()) {
553 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
555 qdev_init_nofail(gicdev);
556 gicbusdev = SYS_BUS_DEVICE(gicdev);
557 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
558 if (type == 3) {
559 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
560 } else {
561 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
564 /* Wire the outputs from each CPU's generic timer and the GICv3
565 * maintenance interrupt signal to the appropriate GIC PPI inputs,
566 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
568 for (i = 0; i < smp_cpus; i++) {
569 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
570 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
571 int irq;
572 /* Mapping from the output timer irq lines from the CPU to the
573 * GIC PPI inputs we use for the virt board.
575 const int timer_irq[] = {
576 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
577 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
578 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
579 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
582 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
583 qdev_connect_gpio_out(cpudev, irq,
584 qdev_get_gpio_in(gicdev,
585 ppibase + timer_irq[irq]));
588 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
589 qdev_get_gpio_in(gicdev, ppibase
590 + ARCH_GICV3_MAINT_IRQ));
592 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
593 sysbus_connect_irq(gicbusdev, i + smp_cpus,
594 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
595 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
596 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
597 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
598 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
601 for (i = 0; i < NUM_IRQS; i++) {
602 pic[i] = qdev_get_gpio_in(gicdev, i);
605 fdt_add_gic_node(vms);
607 if (type == 3 && vms->its) {
608 create_its(vms, gicdev);
609 } else if (type == 2) {
610 create_v2m(vms, pic);
614 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
615 MemoryRegion *mem, Chardev *chr)
617 char *nodename;
618 hwaddr base = vms->memmap[uart].base;
619 hwaddr size = vms->memmap[uart].size;
620 int irq = vms->irqmap[uart];
621 const char compat[] = "arm,pl011\0arm,primecell";
622 const char clocknames[] = "uartclk\0apb_pclk";
623 DeviceState *dev = qdev_create(NULL, "pl011");
624 SysBusDevice *s = SYS_BUS_DEVICE(dev);
626 qdev_prop_set_chr(dev, "chardev", chr);
627 qdev_init_nofail(dev);
628 memory_region_add_subregion(mem, base,
629 sysbus_mmio_get_region(s, 0));
630 sysbus_connect_irq(s, 0, pic[irq]);
632 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
633 qemu_fdt_add_subnode(vms->fdt, nodename);
634 /* Note that we can't use setprop_string because of the embedded NUL */
635 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
636 compat, sizeof(compat));
637 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
638 2, base, 2, size);
639 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
640 GIC_FDT_IRQ_TYPE_SPI, irq,
641 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
642 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
643 vms->clock_phandle, vms->clock_phandle);
644 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
645 clocknames, sizeof(clocknames));
647 if (uart == VIRT_UART) {
648 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
649 } else {
650 /* Mark as not usable by the normal world */
651 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
652 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
655 g_free(nodename);
658 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
660 char *nodename;
661 hwaddr base = vms->memmap[VIRT_RTC].base;
662 hwaddr size = vms->memmap[VIRT_RTC].size;
663 int irq = vms->irqmap[VIRT_RTC];
664 const char compat[] = "arm,pl031\0arm,primecell";
666 sysbus_create_simple("pl031", base, pic[irq]);
668 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
669 qemu_fdt_add_subnode(vms->fdt, nodename);
670 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
671 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
672 2, base, 2, size);
673 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
674 GIC_FDT_IRQ_TYPE_SPI, irq,
675 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
676 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
677 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
678 g_free(nodename);
681 static DeviceState *gpio_key_dev;
682 static void virt_powerdown_req(Notifier *n, void *opaque)
684 /* use gpio Pin 3 for power button event */
685 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
688 static Notifier virt_system_powerdown_notifier = {
689 .notify = virt_powerdown_req
692 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
694 char *nodename;
695 DeviceState *pl061_dev;
696 hwaddr base = vms->memmap[VIRT_GPIO].base;
697 hwaddr size = vms->memmap[VIRT_GPIO].size;
698 int irq = vms->irqmap[VIRT_GPIO];
699 const char compat[] = "arm,pl061\0arm,primecell";
701 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
703 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
704 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
705 qemu_fdt_add_subnode(vms->fdt, nodename);
706 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
707 2, base, 2, size);
708 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
709 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
710 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
711 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
712 GIC_FDT_IRQ_TYPE_SPI, irq,
713 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
714 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
715 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
716 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
718 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
719 qdev_get_gpio_in(pl061_dev, 3));
720 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
721 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
722 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
723 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
725 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
726 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
727 "label", "GPIO Key Poweroff");
728 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
729 KEY_POWER);
730 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
731 "gpios", phandle, 3, 0);
733 /* connect powerdown request */
734 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
736 g_free(nodename);
739 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
741 int i;
742 hwaddr size = vms->memmap[VIRT_MMIO].size;
744 /* We create the transports in forwards order. Since qbus_realize()
745 * prepends (not appends) new child buses, the incrementing loop below will
746 * create a list of virtio-mmio buses with decreasing base addresses.
748 * When a -device option is processed from the command line,
749 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
750 * order. The upshot is that -device options in increasing command line
751 * order are mapped to virtio-mmio buses with decreasing base addresses.
753 * When this code was originally written, that arrangement ensured that the
754 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
755 * the first -device on the command line. (The end-to-end order is a
756 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
757 * guest kernel's name-to-address assignment strategy.)
759 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
760 * the message, if not necessarily the code, of commit 70161ff336.
761 * Therefore the loop now establishes the inverse of the original intent.
763 * Unfortunately, we can't counteract the kernel change by reversing the
764 * loop; it would break existing command lines.
766 * In any case, the kernel makes no guarantee about the stability of
767 * enumeration order of virtio devices (as demonstrated by it changing
768 * between kernel versions). For reliable and stable identification
769 * of disks users must use UUIDs or similar mechanisms.
771 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
772 int irq = vms->irqmap[VIRT_MMIO] + i;
773 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
775 sysbus_create_simple("virtio-mmio", base, pic[irq]);
778 /* We add dtb nodes in reverse order so that they appear in the finished
779 * device tree lowest address first.
781 * Note that this mapping is independent of the loop above. The previous
782 * loop influences virtio device to virtio transport assignment, whereas
783 * this loop controls how virtio transports are laid out in the dtb.
785 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
786 char *nodename;
787 int irq = vms->irqmap[VIRT_MMIO] + i;
788 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
790 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
791 qemu_fdt_add_subnode(vms->fdt, nodename);
792 qemu_fdt_setprop_string(vms->fdt, nodename,
793 "compatible", "virtio,mmio");
794 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
795 2, base, 2, size);
796 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
797 GIC_FDT_IRQ_TYPE_SPI, irq,
798 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
799 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
800 g_free(nodename);
804 static void create_one_flash(const char *name, hwaddr flashbase,
805 hwaddr flashsize, const char *file,
806 MemoryRegion *sysmem)
808 /* Create and map a single flash device. We use the same
809 * parameters as the flash devices on the Versatile Express board.
811 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
812 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
813 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
814 const uint64_t sectorlength = 256 * 1024;
816 if (dinfo) {
817 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
818 &error_abort);
821 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
822 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
823 qdev_prop_set_uint8(dev, "width", 4);
824 qdev_prop_set_uint8(dev, "device-width", 2);
825 qdev_prop_set_bit(dev, "big-endian", false);
826 qdev_prop_set_uint16(dev, "id0", 0x89);
827 qdev_prop_set_uint16(dev, "id1", 0x18);
828 qdev_prop_set_uint16(dev, "id2", 0x00);
829 qdev_prop_set_uint16(dev, "id3", 0x00);
830 qdev_prop_set_string(dev, "name", name);
831 qdev_init_nofail(dev);
833 memory_region_add_subregion(sysmem, flashbase,
834 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
836 if (file) {
837 char *fn;
838 int image_size;
840 if (drive_get(IF_PFLASH, 0, 0)) {
841 error_report("The contents of the first flash device may be "
842 "specified with -bios or with -drive if=pflash... "
843 "but you cannot use both options at once");
844 exit(1);
846 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
847 if (!fn) {
848 error_report("Could not find ROM image '%s'", file);
849 exit(1);
851 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
852 g_free(fn);
853 if (image_size < 0) {
854 error_report("Could not load ROM image '%s'", file);
855 exit(1);
860 static void create_flash(const VirtMachineState *vms,
861 MemoryRegion *sysmem,
862 MemoryRegion *secure_sysmem)
864 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
865 * Any file passed via -bios goes in the first of these.
866 * sysmem is the system memory space. secure_sysmem is the secure view
867 * of the system, and the first flash device should be made visible only
868 * there. The second flash device is visible to both secure and nonsecure.
869 * If sysmem == secure_sysmem this means there is no separate Secure
870 * address space and both flash devices are generally visible.
872 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
873 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
874 char *nodename;
876 create_one_flash("virt.flash0", flashbase, flashsize,
877 bios_name, secure_sysmem);
878 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
879 NULL, sysmem);
881 if (sysmem == secure_sysmem) {
882 /* Report both flash devices as a single node in the DT */
883 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
884 qemu_fdt_add_subnode(vms->fdt, nodename);
885 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
886 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
887 2, flashbase, 2, flashsize,
888 2, flashbase + flashsize, 2, flashsize);
889 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
890 g_free(nodename);
891 } else {
892 /* Report the devices as separate nodes so we can mark one as
893 * only visible to the secure world.
895 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
896 qemu_fdt_add_subnode(vms->fdt, nodename);
897 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
898 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
899 2, flashbase, 2, flashsize);
900 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
901 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
902 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
903 g_free(nodename);
905 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
906 qemu_fdt_add_subnode(vms->fdt, nodename);
907 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
908 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
909 2, flashbase + flashsize, 2, flashsize);
910 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
911 g_free(nodename);
915 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
917 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
918 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
919 FWCfgState *fw_cfg;
920 char *nodename;
922 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
923 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
925 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
926 qemu_fdt_add_subnode(vms->fdt, nodename);
927 qemu_fdt_setprop_string(vms->fdt, nodename,
928 "compatible", "qemu,fw-cfg-mmio");
929 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
930 2, base, 2, size);
931 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
932 g_free(nodename);
933 return fw_cfg;
936 static void create_pcie_irq_map(const VirtMachineState *vms,
937 uint32_t gic_phandle,
938 int first_irq, const char *nodename)
940 int devfn, pin;
941 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
942 uint32_t *irq_map = full_irq_map;
944 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
945 for (pin = 0; pin < 4; pin++) {
946 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
947 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
948 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
949 int i;
951 uint32_t map[] = {
952 devfn << 8, 0, 0, /* devfn */
953 pin + 1, /* PCI pin */
954 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
956 /* Convert map to big endian */
957 for (i = 0; i < 10; i++) {
958 irq_map[i] = cpu_to_be32(map[i]);
960 irq_map += 10;
964 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
965 full_irq_map, sizeof(full_irq_map));
967 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
968 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
969 0x7 /* PCI irq */);
972 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
974 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
975 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
976 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
977 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
978 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
979 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
980 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
981 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
982 hwaddr base = base_mmio;
983 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
984 int irq = vms->irqmap[VIRT_PCIE];
985 MemoryRegion *mmio_alias;
986 MemoryRegion *mmio_reg;
987 MemoryRegion *ecam_alias;
988 MemoryRegion *ecam_reg;
989 DeviceState *dev;
990 char *nodename;
991 int i;
992 PCIHostState *pci;
994 dev = qdev_create(NULL, TYPE_GPEX_HOST);
995 qdev_init_nofail(dev);
997 /* Map only the first size_ecam bytes of ECAM space */
998 ecam_alias = g_new0(MemoryRegion, 1);
999 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1000 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1001 ecam_reg, 0, size_ecam);
1002 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1004 /* Map the MMIO window into system address space so as to expose
1005 * the section of PCI MMIO space which starts at the same base address
1006 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1007 * the window).
1009 mmio_alias = g_new0(MemoryRegion, 1);
1010 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1011 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1012 mmio_reg, base_mmio, size_mmio);
1013 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1015 if (vms->highmem) {
1016 /* Map high MMIO space */
1017 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1019 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1020 mmio_reg, base_mmio_high, size_mmio_high);
1021 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1022 high_mmio_alias);
1025 /* Map IO port space */
1026 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1028 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1029 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1032 pci = PCI_HOST_BRIDGE(dev);
1033 if (pci->bus) {
1034 for (i = 0; i < nb_nics; i++) {
1035 NICInfo *nd = &nd_table[i];
1037 if (!nd->model) {
1038 nd->model = g_strdup("virtio");
1041 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1045 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1046 qemu_fdt_add_subnode(vms->fdt, nodename);
1047 qemu_fdt_setprop_string(vms->fdt, nodename,
1048 "compatible", "pci-host-ecam-generic");
1049 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1050 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1051 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1052 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1053 nr_pcie_buses - 1);
1054 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1056 if (vms->msi_phandle) {
1057 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1058 vms->msi_phandle);
1061 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1062 2, base_ecam, 2, size_ecam);
1064 if (vms->highmem) {
1065 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1066 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1067 2, base_pio, 2, size_pio,
1068 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1069 2, base_mmio, 2, size_mmio,
1070 1, FDT_PCI_RANGE_MMIO_64BIT,
1071 2, base_mmio_high,
1072 2, base_mmio_high, 2, size_mmio_high);
1073 } else {
1074 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1075 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1076 2, base_pio, 2, size_pio,
1077 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1078 2, base_mmio, 2, size_mmio);
1081 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1082 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1084 g_free(nodename);
1087 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1089 DeviceState *dev;
1090 SysBusDevice *s;
1091 int i;
1092 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1093 MemoryRegion *sysmem = get_system_memory();
1095 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1096 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1097 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1098 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1100 fdt_params->system_params = &platform_bus_params;
1101 fdt_params->binfo = &vms->bootinfo;
1102 fdt_params->intc = "/intc";
1104 * register a machine init done notifier that creates the device tree
1105 * nodes of the platform bus and its children dynamic sysbus devices
1107 arm_register_platform_bus_fdt_creator(fdt_params);
1109 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1110 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1111 qdev_prop_set_uint32(dev, "num_irqs",
1112 platform_bus_params.platform_bus_num_irqs);
1113 qdev_prop_set_uint32(dev, "mmio_size",
1114 platform_bus_params.platform_bus_size);
1115 qdev_init_nofail(dev);
1116 s = SYS_BUS_DEVICE(dev);
1118 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1119 int irqn = platform_bus_params.platform_bus_first_irq + i;
1120 sysbus_connect_irq(s, i, pic[irqn]);
1123 memory_region_add_subregion(sysmem,
1124 platform_bus_params.platform_bus_base,
1125 sysbus_mmio_get_region(s, 0));
1128 static void create_secure_ram(VirtMachineState *vms,
1129 MemoryRegion *secure_sysmem)
1131 MemoryRegion *secram = g_new(MemoryRegion, 1);
1132 char *nodename;
1133 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1134 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1136 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1137 vmstate_register_ram_global(secram);
1138 memory_region_add_subregion(secure_sysmem, base, secram);
1140 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1141 qemu_fdt_add_subnode(vms->fdt, nodename);
1142 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1143 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1144 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1145 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1147 g_free(nodename);
1150 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1152 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1153 bootinfo);
1155 *fdt_size = board->fdt_size;
1156 return board->fdt;
1159 static void virt_build_smbios(VirtMachineState *vms)
1161 uint8_t *smbios_tables, *smbios_anchor;
1162 size_t smbios_tables_len, smbios_anchor_len;
1163 const char *product = "QEMU Virtual Machine";
1165 if (!vms->fw_cfg) {
1166 return;
1169 if (kvm_enabled()) {
1170 product = "KVM Virtual Machine";
1173 smbios_set_defaults("QEMU", product,
1174 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1176 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1177 &smbios_anchor, &smbios_anchor_len);
1179 if (smbios_anchor) {
1180 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1181 smbios_tables, smbios_tables_len);
1182 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1183 smbios_anchor, smbios_anchor_len);
1187 static
1188 void virt_machine_done(Notifier *notifier, void *data)
1190 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1191 machine_done);
1193 virt_acpi_setup(vms);
1194 virt_build_smbios(vms);
1197 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1199 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1200 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1202 if (!vmc->disallow_affinity_adjustment) {
1203 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1204 * GIC's target-list limitations. 32-bit KVM hosts currently
1205 * always create clusters of 4 CPUs, but that is expected to
1206 * change when they gain support for gicv3. When KVM is enabled
1207 * it will override the changes we make here, therefore our
1208 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1209 * and to improve SGI efficiency.
1211 if (vms->gic_version == 3) {
1212 clustersz = GICV3_TARGETLIST_BITS;
1213 } else {
1214 clustersz = GIC_TARGETLIST_BITS;
1217 return arm_cpu_mp_affinity(idx, clustersz);
1220 static void machvirt_init(MachineState *machine)
1222 VirtMachineState *vms = VIRT_MACHINE(machine);
1223 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1224 MachineClass *mc = MACHINE_GET_CLASS(machine);
1225 const CPUArchIdList *possible_cpus;
1226 qemu_irq pic[NUM_IRQS];
1227 MemoryRegion *sysmem = get_system_memory();
1228 MemoryRegion *secure_sysmem = NULL;
1229 int n, virt_max_cpus;
1230 MemoryRegion *ram = g_new(MemoryRegion, 1);
1231 const char *cpu_model = machine->cpu_model;
1232 char **cpustr;
1233 ObjectClass *oc;
1234 const char *typename;
1235 CPUClass *cc;
1236 Error *err = NULL;
1237 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1239 if (!cpu_model) {
1240 cpu_model = "cortex-a15";
1243 /* We can probe only here because during property set
1244 * KVM is not available yet
1246 if (!vms->gic_version) {
1247 if (!kvm_enabled()) {
1248 error_report("gic-version=host requires KVM");
1249 exit(1);
1252 vms->gic_version = kvm_arm_vgic_probe();
1253 if (!vms->gic_version) {
1254 error_report("Unable to determine GIC version supported by host");
1255 exit(1);
1259 /* Separate the actual CPU model name from any appended features */
1260 cpustr = g_strsplit(cpu_model, ",", 2);
1262 if (!cpuname_valid(cpustr[0])) {
1263 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1264 exit(1);
1267 /* If we have an EL3 boot ROM then the assumption is that it will
1268 * implement PSCI itself, so disable QEMU's internal implementation
1269 * so it doesn't get in the way. Instead of starting secondary
1270 * CPUs in PSCI powerdown state we will start them all running and
1271 * let the boot ROM sort them out.
1272 * The usual case is that we do use QEMU's PSCI implementation;
1273 * if the guest has EL2 then we will use SMC as the conduit,
1274 * and otherwise we will use HVC (for backwards compatibility and
1275 * because if we're using KVM then we must use HVC).
1277 if (vms->secure && firmware_loaded) {
1278 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1279 } else if (vms->virt) {
1280 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1281 } else {
1282 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1285 /* The maximum number of CPUs depends on the GIC version, or on how
1286 * many redistributors we can fit into the memory map.
1288 if (vms->gic_version == 3) {
1289 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1290 } else {
1291 virt_max_cpus = GIC_NCPU;
1294 if (max_cpus > virt_max_cpus) {
1295 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1296 "supported by machine 'mach-virt' (%d)",
1297 max_cpus, virt_max_cpus);
1298 exit(1);
1301 vms->smp_cpus = smp_cpus;
1303 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1304 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1305 exit(1);
1308 if (vms->virt && kvm_enabled()) {
1309 error_report("mach-virt: KVM does not support providing "
1310 "Virtualization extensions to the guest CPU");
1311 exit(1);
1314 if (vms->secure) {
1315 if (kvm_enabled()) {
1316 error_report("mach-virt: KVM does not support Security extensions");
1317 exit(1);
1320 /* The Secure view of the world is the same as the NonSecure,
1321 * but with a few extra devices. Create it as a container region
1322 * containing the system memory at low priority; any secure-only
1323 * devices go in at higher priority and take precedence.
1325 secure_sysmem = g_new(MemoryRegion, 1);
1326 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1327 UINT64_MAX);
1328 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1331 create_fdt(vms);
1333 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1334 if (!oc) {
1335 error_report("Unable to find CPU definition");
1336 exit(1);
1338 typename = object_class_get_name(oc);
1340 /* convert -smp CPU options specified by the user into global props */
1341 cc = CPU_CLASS(oc);
1342 cc->parse_features(typename, cpustr[1], &err);
1343 g_strfreev(cpustr);
1344 if (err) {
1345 error_report_err(err);
1346 exit(1);
1349 possible_cpus = mc->possible_cpu_arch_ids(machine);
1350 for (n = 0; n < possible_cpus->len; n++) {
1351 Object *cpuobj;
1353 if (n >= smp_cpus) {
1354 break;
1357 cpuobj = object_new(typename);
1358 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1359 "mp-affinity", NULL);
1361 if (!vms->secure) {
1362 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1365 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1366 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1369 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1370 object_property_set_int(cpuobj, vms->psci_conduit,
1371 "psci-conduit", NULL);
1373 /* Secondary CPUs start in PSCI powered-down state */
1374 if (n > 0) {
1375 object_property_set_bool(cpuobj, true,
1376 "start-powered-off", NULL);
1380 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1381 object_property_set_bool(cpuobj, false, "pmu", NULL);
1384 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1385 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1386 "reset-cbar", &error_abort);
1389 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1390 &error_abort);
1391 if (vms->secure) {
1392 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1393 "secure-memory", &error_abort);
1396 object_property_set_bool(cpuobj, true, "realized", NULL);
1397 object_unref(cpuobj);
1399 fdt_add_timer_nodes(vms);
1400 fdt_add_cpu_nodes(vms);
1401 fdt_add_psci_node(vms);
1403 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1404 machine->ram_size);
1405 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1407 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1409 create_gic(vms, pic);
1411 fdt_add_pmu_nodes(vms);
1413 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1415 if (vms->secure) {
1416 create_secure_ram(vms, secure_sysmem);
1417 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1420 create_rtc(vms, pic);
1422 create_pcie(vms, pic);
1424 create_gpio(vms, pic);
1426 /* Create mmio transports, so the user can create virtio backends
1427 * (which will be automatically plugged in to the transports). If
1428 * no backend is created the transport will just sit harmlessly idle.
1430 create_virtio_devices(vms, pic);
1432 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1433 rom_set_fw(vms->fw_cfg);
1435 vms->machine_done.notify = virt_machine_done;
1436 qemu_add_machine_init_done_notifier(&vms->machine_done);
1438 vms->bootinfo.ram_size = machine->ram_size;
1439 vms->bootinfo.kernel_filename = machine->kernel_filename;
1440 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1441 vms->bootinfo.initrd_filename = machine->initrd_filename;
1442 vms->bootinfo.nb_cpus = smp_cpus;
1443 vms->bootinfo.board_id = -1;
1444 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1445 vms->bootinfo.get_dtb = machvirt_dtb;
1446 vms->bootinfo.firmware_loaded = firmware_loaded;
1447 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1450 * arm_load_kernel machine init done notifier registration must
1451 * happen before the platform_bus_create call. In this latter,
1452 * another notifier is registered which adds platform bus nodes.
1453 * Notifiers are executed in registration reverse order.
1455 create_platform_bus(vms, pic);
1458 static bool virt_get_secure(Object *obj, Error **errp)
1460 VirtMachineState *vms = VIRT_MACHINE(obj);
1462 return vms->secure;
1465 static void virt_set_secure(Object *obj, bool value, Error **errp)
1467 VirtMachineState *vms = VIRT_MACHINE(obj);
1469 vms->secure = value;
1472 static bool virt_get_virt(Object *obj, Error **errp)
1474 VirtMachineState *vms = VIRT_MACHINE(obj);
1476 return vms->virt;
1479 static void virt_set_virt(Object *obj, bool value, Error **errp)
1481 VirtMachineState *vms = VIRT_MACHINE(obj);
1483 vms->virt = value;
1486 static bool virt_get_highmem(Object *obj, Error **errp)
1488 VirtMachineState *vms = VIRT_MACHINE(obj);
1490 return vms->highmem;
1493 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1495 VirtMachineState *vms = VIRT_MACHINE(obj);
1497 vms->highmem = value;
1500 static bool virt_get_its(Object *obj, Error **errp)
1502 VirtMachineState *vms = VIRT_MACHINE(obj);
1504 return vms->its;
1507 static void virt_set_its(Object *obj, bool value, Error **errp)
1509 VirtMachineState *vms = VIRT_MACHINE(obj);
1511 vms->its = value;
1514 static char *virt_get_gic_version(Object *obj, Error **errp)
1516 VirtMachineState *vms = VIRT_MACHINE(obj);
1517 const char *val = vms->gic_version == 3 ? "3" : "2";
1519 return g_strdup(val);
1522 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1524 VirtMachineState *vms = VIRT_MACHINE(obj);
1526 if (!strcmp(value, "3")) {
1527 vms->gic_version = 3;
1528 } else if (!strcmp(value, "2")) {
1529 vms->gic_version = 2;
1530 } else if (!strcmp(value, "host")) {
1531 vms->gic_version = 0; /* Will probe later */
1532 } else {
1533 error_setg(errp, "Invalid gic-version value");
1534 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1538 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1540 int n;
1541 VirtMachineState *vms = VIRT_MACHINE(ms);
1543 if (ms->possible_cpus) {
1544 assert(ms->possible_cpus->len == max_cpus);
1545 return ms->possible_cpus;
1548 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1549 sizeof(CPUArchId) * max_cpus);
1550 ms->possible_cpus->len = max_cpus;
1551 for (n = 0; n < ms->possible_cpus->len; n++) {
1552 ms->possible_cpus->cpus[n].arch_id =
1553 virt_cpu_mp_affinity(vms, n);
1554 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1555 ms->possible_cpus->cpus[n].props.thread_id = n;
1557 /* TODO: add 'has_node/node' here to describe
1558 to which node core belongs */
1560 return ms->possible_cpus;
1563 static void virt_machine_class_init(ObjectClass *oc, void *data)
1565 MachineClass *mc = MACHINE_CLASS(oc);
1567 mc->init = machvirt_init;
1568 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1569 * it later in machvirt_init, where we have more information about the
1570 * configuration of the particular instance.
1572 mc->max_cpus = 255;
1573 mc->has_dynamic_sysbus = true;
1574 mc->block_default_type = IF_VIRTIO;
1575 mc->no_cdrom = 1;
1576 mc->pci_allow_0_address = true;
1577 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1578 mc->minimum_page_bits = 12;
1579 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1582 static const TypeInfo virt_machine_info = {
1583 .name = TYPE_VIRT_MACHINE,
1584 .parent = TYPE_MACHINE,
1585 .abstract = true,
1586 .instance_size = sizeof(VirtMachineState),
1587 .class_size = sizeof(VirtMachineClass),
1588 .class_init = virt_machine_class_init,
1591 static void machvirt_machine_init(void)
1593 type_register_static(&virt_machine_info);
1595 type_init(machvirt_machine_init);
1597 static void virt_2_9_instance_init(Object *obj)
1599 VirtMachineState *vms = VIRT_MACHINE(obj);
1600 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1602 /* EL3 is disabled by default on virt: this makes us consistent
1603 * between KVM and TCG for this board, and it also allows us to
1604 * boot UEFI blobs which assume no TrustZone support.
1606 vms->secure = false;
1607 object_property_add_bool(obj, "secure", virt_get_secure,
1608 virt_set_secure, NULL);
1609 object_property_set_description(obj, "secure",
1610 "Set on/off to enable/disable the ARM "
1611 "Security Extensions (TrustZone)",
1612 NULL);
1614 /* EL2 is also disabled by default, for similar reasons */
1615 vms->virt = false;
1616 object_property_add_bool(obj, "virtualization", virt_get_virt,
1617 virt_set_virt, NULL);
1618 object_property_set_description(obj, "virtualization",
1619 "Set on/off to enable/disable emulating a "
1620 "guest CPU which implements the ARM "
1621 "Virtualization Extensions",
1622 NULL);
1624 /* High memory is enabled by default */
1625 vms->highmem = true;
1626 object_property_add_bool(obj, "highmem", virt_get_highmem,
1627 virt_set_highmem, NULL);
1628 object_property_set_description(obj, "highmem",
1629 "Set on/off to enable/disable using "
1630 "physical address space above 32 bits",
1631 NULL);
1632 /* Default GIC type is v2 */
1633 vms->gic_version = 2;
1634 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1635 virt_set_gic_version, NULL);
1636 object_property_set_description(obj, "gic-version",
1637 "Set GIC version. "
1638 "Valid values are 2, 3 and host", NULL);
1640 if (vmc->no_its) {
1641 vms->its = false;
1642 } else {
1643 /* Default allows ITS instantiation */
1644 vms->its = true;
1645 object_property_add_bool(obj, "its", virt_get_its,
1646 virt_set_its, NULL);
1647 object_property_set_description(obj, "its",
1648 "Set on/off to enable/disable "
1649 "ITS instantiation",
1650 NULL);
1653 vms->memmap = a15memmap;
1654 vms->irqmap = a15irqmap;
1657 static void virt_machine_2_9_options(MachineClass *mc)
1660 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1662 #define VIRT_COMPAT_2_8 \
1663 HW_COMPAT_2_8
1665 static void virt_2_8_instance_init(Object *obj)
1667 virt_2_9_instance_init(obj);
1670 static void virt_machine_2_8_options(MachineClass *mc)
1672 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1674 virt_machine_2_9_options(mc);
1675 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1676 /* For 2.8 and earlier we falsely claimed in the DT that
1677 * our timers were edge-triggered, not level-triggered.
1679 vmc->claim_edge_triggered_timers = true;
1681 DEFINE_VIRT_MACHINE(2, 8)
1683 #define VIRT_COMPAT_2_7 \
1684 HW_COMPAT_2_7
1686 static void virt_2_7_instance_init(Object *obj)
1688 virt_2_8_instance_init(obj);
1691 static void virt_machine_2_7_options(MachineClass *mc)
1693 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1695 virt_machine_2_8_options(mc);
1696 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1697 /* ITS was introduced with 2.8 */
1698 vmc->no_its = true;
1699 /* Stick with 1K pages for migration compatibility */
1700 mc->minimum_page_bits = 0;
1702 DEFINE_VIRT_MACHINE(2, 7)
1704 #define VIRT_COMPAT_2_6 \
1705 HW_COMPAT_2_6
1707 static void virt_2_6_instance_init(Object *obj)
1709 virt_2_7_instance_init(obj);
1712 static void virt_machine_2_6_options(MachineClass *mc)
1714 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1716 virt_machine_2_7_options(mc);
1717 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1718 vmc->disallow_affinity_adjustment = true;
1719 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1720 vmc->no_pmu = true;
1722 DEFINE_VIRT_MACHINE(2, 6)