memory: hide memory_region_sync_dirty_bitmap behind DirtyBitmapSnapshot
[qemu/ar7.git] / include / exec / memory.h
blobfff9b1d871cca3f71a00b75f003c2655b4b63d9c
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
52 struct MemoryRegionMmio {
53 CPUReadMemoryFunc *read[3];
54 CPUWriteMemoryFunc *write[3];
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
59 /* See address_space_translate: bit 0 is read, bit 1 is write. */
60 typedef enum {
61 IOMMU_NONE = 0,
62 IOMMU_RO = 1,
63 IOMMU_WO = 2,
64 IOMMU_RW = 3,
65 } IOMMUAccessFlags;
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
69 struct IOMMUTLBEntry {
70 AddressSpace *target_as;
71 hwaddr iova;
72 hwaddr translated_addr;
73 hwaddr addr_mask; /* 0xfff = 4k translation */
74 IOMMUAccessFlags perm;
78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79 * register with one or multiple IOMMU Notifier capability bit(s).
81 typedef enum {
82 IOMMU_NOTIFIER_NONE = 0,
83 /* Notify cache invalidations */
84 IOMMU_NOTIFIER_UNMAP = 0x1,
85 /* Notify entry changes (newly created entries) */
86 IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93 IOMMUTLBEntry *data);
95 struct IOMMUNotifier {
96 IOMMUNotify notify;
97 IOMMUNotifierFlag notifier_flags;
98 /* Notify for address space range start <= addr <= end */
99 hwaddr start;
100 hwaddr end;
101 QLIST_ENTRY(IOMMUNotifier) node;
103 typedef struct IOMMUNotifier IOMMUNotifier;
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106 IOMMUNotifierFlag flags,
107 hwaddr start, hwaddr end)
109 n->notify = fn;
110 n->notifier_flags = flags;
111 n->start = start;
112 n->end = end;
116 * Memory region callbacks
118 struct MemoryRegionOps {
119 /* Read from the memory region. @addr is relative to @mr; @size is
120 * in bytes. */
121 uint64_t (*read)(void *opaque,
122 hwaddr addr,
123 unsigned size);
124 /* Write to the memory region. @addr is relative to @mr; @size is
125 * in bytes. */
126 void (*write)(void *opaque,
127 hwaddr addr,
128 uint64_t data,
129 unsigned size);
131 MemTxResult (*read_with_attrs)(void *opaque,
132 hwaddr addr,
133 uint64_t *data,
134 unsigned size,
135 MemTxAttrs attrs);
136 MemTxResult (*write_with_attrs)(void *opaque,
137 hwaddr addr,
138 uint64_t data,
139 unsigned size,
140 MemTxAttrs attrs);
141 /* Instruction execution pre-callback:
142 * @addr is the address of the access relative to the @mr.
143 * @size is the size of the area returned by the callback.
144 * @offset is the location of the pointer inside @mr.
146 * Returns a pointer to a location which contains guest code.
148 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
149 unsigned *offset);
151 enum device_endian endianness;
152 /* Guest-visible constraints: */
153 struct {
154 /* If nonzero, specify bounds on access sizes beyond which a machine
155 * check is thrown.
157 unsigned min_access_size;
158 unsigned max_access_size;
159 /* If true, unaligned accesses are supported. Otherwise unaligned
160 * accesses throw machine checks.
162 bool unaligned;
164 * If present, and returns #false, the transaction is not accepted
165 * by the device (and results in machine dependent behaviour such
166 * as a machine check exception).
168 bool (*accepts)(void *opaque, hwaddr addr,
169 unsigned size, bool is_write);
170 } valid;
171 /* Internal implementation constraints: */
172 struct {
173 /* If nonzero, specifies the minimum size implemented. Smaller sizes
174 * will be rounded upwards and a partial result will be returned.
176 unsigned min_access_size;
177 /* If nonzero, specifies the maximum size implemented. Larger sizes
178 * will be done as a series of accesses with smaller sizes.
180 unsigned max_access_size;
181 /* If true, unaligned accesses are supported. Otherwise all accesses
182 * are converted to (possibly multiple) naturally aligned accesses.
184 bool unaligned;
185 } impl;
187 /* If .read and .write are not present, old_mmio may be used for
188 * backwards compatibility with old mmio registration
190 const MemoryRegionMmio old_mmio;
193 enum IOMMUMemoryRegionAttr {
194 IOMMU_ATTR_SPAPR_TCE_FD
197 typedef struct IOMMUMemoryRegionClass {
198 /* private */
199 struct DeviceClass parent_class;
202 * Return a TLB entry that contains a given address. Flag should
203 * be the access permission of this translation operation. We can
204 * set flag to IOMMU_NONE to mean that we don't need any
205 * read/write permission checks, like, when for region replay.
207 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
208 IOMMUAccessFlags flag);
209 /* Returns minimum supported page size */
210 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
211 /* Called when IOMMU Notifier flag changed */
212 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
213 IOMMUNotifierFlag old_flags,
214 IOMMUNotifierFlag new_flags);
215 /* Set this up to provide customized IOMMU replay function */
216 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
218 /* Get IOMMU misc attributes */
219 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr,
220 void *data);
221 } IOMMUMemoryRegionClass;
223 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
224 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
226 struct MemoryRegion {
227 Object parent_obj;
229 /* All fields are private - violators will be prosecuted */
231 /* The following fields should fit in a cache line */
232 bool romd_mode;
233 bool ram;
234 bool subpage;
235 bool readonly; /* For RAM regions */
236 bool rom_device;
237 bool flush_coalesced_mmio;
238 bool global_locking;
239 uint8_t dirty_log_mask;
240 bool is_iommu;
241 RAMBlock *ram_block;
242 Object *owner;
244 const MemoryRegionOps *ops;
245 void *opaque;
246 MemoryRegion *container;
247 Int128 size;
248 hwaddr addr;
249 void (*destructor)(MemoryRegion *mr);
250 uint64_t align;
251 bool terminates;
252 bool ram_device;
253 bool enabled;
254 bool warning_printed; /* For reservations */
255 uint8_t vga_logging_count;
256 MemoryRegion *alias;
257 hwaddr alias_offset;
258 int32_t priority;
259 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
260 QTAILQ_ENTRY(MemoryRegion) subregions_link;
261 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
262 const char *name;
263 unsigned ioeventfd_nb;
264 MemoryRegionIoeventfd *ioeventfds;
267 struct IOMMUMemoryRegion {
268 MemoryRegion parent_obj;
270 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
271 IOMMUNotifierFlag iommu_notify_flags;
274 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
275 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
278 * MemoryListener: callbacks structure for updates to the physical memory map
280 * Allows a component to adjust to changes in the guest-visible memory map.
281 * Use with memory_listener_register() and memory_listener_unregister().
283 struct MemoryListener {
284 void (*begin)(MemoryListener *listener);
285 void (*commit)(MemoryListener *listener);
286 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
287 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
288 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
289 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
290 int old, int new);
291 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
292 int old, int new);
293 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
294 void (*log_global_start)(MemoryListener *listener);
295 void (*log_global_stop)(MemoryListener *listener);
296 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
297 bool match_data, uint64_t data, EventNotifier *e);
298 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
299 bool match_data, uint64_t data, EventNotifier *e);
300 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
301 hwaddr addr, hwaddr len);
302 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
303 hwaddr addr, hwaddr len);
304 /* Lower = earlier (during add), later (during del) */
305 unsigned priority;
306 AddressSpace *address_space;
307 QTAILQ_ENTRY(MemoryListener) link;
308 QTAILQ_ENTRY(MemoryListener) link_as;
312 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
314 struct AddressSpace {
315 /* All fields are private. */
316 struct rcu_head rcu;
317 char *name;
318 MemoryRegion *root;
320 /* Accessed via RCU. */
321 struct FlatView *current_map;
323 int ioeventfd_nb;
324 struct MemoryRegionIoeventfd *ioeventfds;
325 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
326 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
329 FlatView *address_space_to_flatview(AddressSpace *as);
332 * MemoryRegionSection: describes a fragment of a #MemoryRegion
334 * @mr: the region, or %NULL if empty
335 * @fv: the flat view of the address space the region is mapped in
336 * @offset_within_region: the beginning of the section, relative to @mr's start
337 * @size: the size of the section; will not exceed @mr's boundaries
338 * @offset_within_address_space: the address of the first byte of the section
339 * relative to the region's address space
340 * @readonly: writes to this section are ignored
342 struct MemoryRegionSection {
343 MemoryRegion *mr;
344 FlatView *fv;
345 hwaddr offset_within_region;
346 Int128 size;
347 hwaddr offset_within_address_space;
348 bool readonly;
352 * memory_region_init: Initialize a memory region
354 * The region typically acts as a container for other memory regions. Use
355 * memory_region_add_subregion() to add subregions.
357 * @mr: the #MemoryRegion to be initialized
358 * @owner: the object that tracks the region's reference count
359 * @name: used for debugging; not visible to the user or ABI
360 * @size: size of the region; any subregions beyond this size will be clipped
362 void memory_region_init(MemoryRegion *mr,
363 struct Object *owner,
364 const char *name,
365 uint64_t size);
368 * memory_region_ref: Add 1 to a memory region's reference count
370 * Whenever memory regions are accessed outside the BQL, they need to be
371 * preserved against hot-unplug. MemoryRegions actually do not have their
372 * own reference count; they piggyback on a QOM object, their "owner".
373 * This function adds a reference to the owner.
375 * All MemoryRegions must have an owner if they can disappear, even if the
376 * device they belong to operates exclusively under the BQL. This is because
377 * the region could be returned at any time by memory_region_find, and this
378 * is usually under guest control.
380 * @mr: the #MemoryRegion
382 void memory_region_ref(MemoryRegion *mr);
385 * memory_region_unref: Remove 1 to a memory region's reference count
387 * Whenever memory regions are accessed outside the BQL, they need to be
388 * preserved against hot-unplug. MemoryRegions actually do not have their
389 * own reference count; they piggyback on a QOM object, their "owner".
390 * This function removes a reference to the owner and possibly destroys it.
392 * @mr: the #MemoryRegion
394 void memory_region_unref(MemoryRegion *mr);
397 * memory_region_init_io: Initialize an I/O memory region.
399 * Accesses into the region will cause the callbacks in @ops to be called.
400 * if @size is nonzero, subregions will be clipped to @size.
402 * @mr: the #MemoryRegion to be initialized.
403 * @owner: the object that tracks the region's reference count
404 * @ops: a structure containing read and write callbacks to be used when
405 * I/O is performed on the region.
406 * @opaque: passed to the read and write callbacks of the @ops structure.
407 * @name: used for debugging; not visible to the user or ABI
408 * @size: size of the region.
410 void memory_region_init_io(MemoryRegion *mr,
411 struct Object *owner,
412 const MemoryRegionOps *ops,
413 void *opaque,
414 const char *name,
415 uint64_t size);
418 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
419 * into the region will modify memory
420 * directly.
422 * @mr: the #MemoryRegion to be initialized.
423 * @owner: the object that tracks the region's reference count
424 * @name: Region name, becomes part of RAMBlock name used in migration stream
425 * must be unique within any device
426 * @size: size of the region.
427 * @errp: pointer to Error*, to store an error if it happens.
429 * Note that this function does not do anything to cause the data in the
430 * RAM memory region to be migrated; that is the responsibility of the caller.
432 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
433 struct Object *owner,
434 const char *name,
435 uint64_t size,
436 Error **errp);
439 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
440 * RAM. Accesses into the region will
441 * modify memory directly. Only an initial
442 * portion of this RAM is actually used.
443 * The used size can change across reboots.
445 * @mr: the #MemoryRegion to be initialized.
446 * @owner: the object that tracks the region's reference count
447 * @name: Region name, becomes part of RAMBlock name used in migration stream
448 * must be unique within any device
449 * @size: used size of the region.
450 * @max_size: max size of the region.
451 * @resized: callback to notify owner about used size change.
452 * @errp: pointer to Error*, to store an error if it happens.
454 * Note that this function does not do anything to cause the data in the
455 * RAM memory region to be migrated; that is the responsibility of the caller.
457 void memory_region_init_resizeable_ram(MemoryRegion *mr,
458 struct Object *owner,
459 const char *name,
460 uint64_t size,
461 uint64_t max_size,
462 void (*resized)(const char*,
463 uint64_t length,
464 void *host),
465 Error **errp);
466 #ifdef __linux__
468 * memory_region_init_ram_from_file: Initialize RAM memory region with a
469 * mmap-ed backend.
471 * @mr: the #MemoryRegion to be initialized.
472 * @owner: the object that tracks the region's reference count
473 * @name: Region name, becomes part of RAMBlock name used in migration stream
474 * must be unique within any device
475 * @size: size of the region.
476 * @align: alignment of the region base address; if 0, the default alignment
477 * (getpagesize()) will be used.
478 * @share: %true if memory must be mmaped with the MAP_SHARED flag
479 * @path: the path in which to allocate the RAM.
480 * @errp: pointer to Error*, to store an error if it happens.
482 * Note that this function does not do anything to cause the data in the
483 * RAM memory region to be migrated; that is the responsibility of the caller.
485 void memory_region_init_ram_from_file(MemoryRegion *mr,
486 struct Object *owner,
487 const char *name,
488 uint64_t size,
489 uint64_t align,
490 bool share,
491 const char *path,
492 Error **errp);
495 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
496 * mmap-ed backend.
498 * @mr: the #MemoryRegion to be initialized.
499 * @owner: the object that tracks the region's reference count
500 * @name: the name of the region.
501 * @size: size of the region.
502 * @share: %true if memory must be mmaped with the MAP_SHARED flag
503 * @fd: the fd to mmap.
504 * @errp: pointer to Error*, to store an error if it happens.
506 * Note that this function does not do anything to cause the data in the
507 * RAM memory region to be migrated; that is the responsibility of the caller.
509 void memory_region_init_ram_from_fd(MemoryRegion *mr,
510 struct Object *owner,
511 const char *name,
512 uint64_t size,
513 bool share,
514 int fd,
515 Error **errp);
516 #endif
519 * memory_region_init_ram_ptr: Initialize RAM memory region from a
520 * user-provided pointer. Accesses into the
521 * region will modify memory directly.
523 * @mr: the #MemoryRegion to be initialized.
524 * @owner: the object that tracks the region's reference count
525 * @name: Region name, becomes part of RAMBlock name used in migration stream
526 * must be unique within any device
527 * @size: size of the region.
528 * @ptr: memory to be mapped; must contain at least @size bytes.
530 * Note that this function does not do anything to cause the data in the
531 * RAM memory region to be migrated; that is the responsibility of the caller.
533 void memory_region_init_ram_ptr(MemoryRegion *mr,
534 struct Object *owner,
535 const char *name,
536 uint64_t size,
537 void *ptr);
540 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
541 * a user-provided pointer.
543 * A RAM device represents a mapping to a physical device, such as to a PCI
544 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
545 * into the VM address space and access to the region will modify memory
546 * directly. However, the memory region should not be included in a memory
547 * dump (device may not be enabled/mapped at the time of the dump), and
548 * operations incompatible with manipulating MMIO should be avoided. Replaces
549 * skip_dump flag.
551 * @mr: the #MemoryRegion to be initialized.
552 * @owner: the object that tracks the region's reference count
553 * @name: the name of the region.
554 * @size: size of the region.
555 * @ptr: memory to be mapped; must contain at least @size bytes.
557 * Note that this function does not do anything to cause the data in the
558 * RAM memory region to be migrated; that is the responsibility of the caller.
559 * (For RAM device memory regions, migrating the contents rarely makes sense.)
561 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
562 struct Object *owner,
563 const char *name,
564 uint64_t size,
565 void *ptr);
568 * memory_region_init_alias: Initialize a memory region that aliases all or a
569 * part of another memory region.
571 * @mr: the #MemoryRegion to be initialized.
572 * @owner: the object that tracks the region's reference count
573 * @name: used for debugging; not visible to the user or ABI
574 * @orig: the region to be referenced; @mr will be equivalent to
575 * @orig between @offset and @offset + @size - 1.
576 * @offset: start of the section in @orig to be referenced.
577 * @size: size of the region.
579 void memory_region_init_alias(MemoryRegion *mr,
580 struct Object *owner,
581 const char *name,
582 MemoryRegion *orig,
583 hwaddr offset,
584 uint64_t size);
587 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
589 * This has the same effect as calling memory_region_init_ram_nomigrate()
590 * and then marking the resulting region read-only with
591 * memory_region_set_readonly().
593 * Note that this function does not do anything to cause the data in the
594 * RAM side of the memory region to be migrated; that is the responsibility
595 * of the caller.
597 * @mr: the #MemoryRegion to be initialized.
598 * @owner: the object that tracks the region's reference count
599 * @name: Region name, becomes part of RAMBlock name used in migration stream
600 * must be unique within any device
601 * @size: size of the region.
602 * @errp: pointer to Error*, to store an error if it happens.
604 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
605 struct Object *owner,
606 const char *name,
607 uint64_t size,
608 Error **errp);
611 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
612 * Writes are handled via callbacks.
614 * Note that this function does not do anything to cause the data in the
615 * RAM side of the memory region to be migrated; that is the responsibility
616 * of the caller.
618 * @mr: the #MemoryRegion to be initialized.
619 * @owner: the object that tracks the region's reference count
620 * @ops: callbacks for write access handling (must not be NULL).
621 * @opaque: passed to the read and write callbacks of the @ops structure.
622 * @name: Region name, becomes part of RAMBlock name used in migration stream
623 * must be unique within any device
624 * @size: size of the region.
625 * @errp: pointer to Error*, to store an error if it happens.
627 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
628 struct Object *owner,
629 const MemoryRegionOps *ops,
630 void *opaque,
631 const char *name,
632 uint64_t size,
633 Error **errp);
636 * memory_region_init_reservation: Initialize a memory region that reserves
637 * I/O space.
639 * A reservation region primariy serves debugging purposes. It claims I/O
640 * space that is not supposed to be handled by QEMU itself. Any access via
641 * the memory API will cause an abort().
642 * This function is deprecated. Use memory_region_init_io() with NULL
643 * callbacks instead.
645 * @mr: the #MemoryRegion to be initialized
646 * @owner: the object that tracks the region's reference count
647 * @name: used for debugging; not visible to the user or ABI
648 * @size: size of the region.
650 static inline void memory_region_init_reservation(MemoryRegion *mr,
651 Object *owner,
652 const char *name,
653 uint64_t size)
655 memory_region_init_io(mr, owner, NULL, mr, name, size);
659 * memory_region_init_iommu: Initialize a memory region of a custom type
660 * that translates addresses
662 * An IOMMU region translates addresses and forwards accesses to a target
663 * memory region.
665 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
666 * @instance_size: the IOMMUMemoryRegion subclass instance size
667 * @mrtypename: the type name of the #IOMMUMemoryRegion
668 * @owner: the object that tracks the region's reference count
669 * @name: used for debugging; not visible to the user or ABI
670 * @size: size of the region.
672 void memory_region_init_iommu(void *_iommu_mr,
673 size_t instance_size,
674 const char *mrtypename,
675 Object *owner,
676 const char *name,
677 uint64_t size);
680 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
681 * region will modify memory directly.
683 * @mr: the #MemoryRegion to be initialized
684 * @owner: the object that tracks the region's reference count (must be
685 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
686 * @name: name of the memory region
687 * @size: size of the region in bytes
688 * @errp: pointer to Error*, to store an error if it happens.
690 * This function allocates RAM for a board model or device, and
691 * arranges for it to be migrated (by calling vmstate_register_ram()
692 * if @owner is a DeviceState, or vmstate_register_ram_global() if
693 * @owner is NULL).
695 * TODO: Currently we restrict @owner to being either NULL (for
696 * global RAM regions with no owner) or devices, so that we can
697 * give the RAM block a unique name for migration purposes.
698 * We should lift this restriction and allow arbitrary Objects.
699 * If you pass a non-NULL non-device @owner then we will assert.
701 void memory_region_init_ram(MemoryRegion *mr,
702 struct Object *owner,
703 const char *name,
704 uint64_t size,
705 Error **errp);
708 * memory_region_init_rom: Initialize a ROM memory region.
710 * This has the same effect as calling memory_region_init_ram()
711 * and then marking the resulting region read-only with
712 * memory_region_set_readonly(). This includes arranging for the
713 * contents to be migrated.
715 * TODO: Currently we restrict @owner to being either NULL (for
716 * global RAM regions with no owner) or devices, so that we can
717 * give the RAM block a unique name for migration purposes.
718 * We should lift this restriction and allow arbitrary Objects.
719 * If you pass a non-NULL non-device @owner then we will assert.
721 * @mr: the #MemoryRegion to be initialized.
722 * @owner: the object that tracks the region's reference count
723 * @name: Region name, becomes part of RAMBlock name used in migration stream
724 * must be unique within any device
725 * @size: size of the region.
726 * @errp: pointer to Error*, to store an error if it happens.
728 void memory_region_init_rom(MemoryRegion *mr,
729 struct Object *owner,
730 const char *name,
731 uint64_t size,
732 Error **errp);
735 * memory_region_init_rom_device: Initialize a ROM memory region.
736 * Writes are handled via callbacks.
738 * This function initializes a memory region backed by RAM for reads
739 * and callbacks for writes, and arranges for the RAM backing to
740 * be migrated (by calling vmstate_register_ram()
741 * if @owner is a DeviceState, or vmstate_register_ram_global() if
742 * @owner is NULL).
744 * TODO: Currently we restrict @owner to being either NULL (for
745 * global RAM regions with no owner) or devices, so that we can
746 * give the RAM block a unique name for migration purposes.
747 * We should lift this restriction and allow arbitrary Objects.
748 * If you pass a non-NULL non-device @owner then we will assert.
750 * @mr: the #MemoryRegion to be initialized.
751 * @owner: the object that tracks the region's reference count
752 * @ops: callbacks for write access handling (must not be NULL).
753 * @name: Region name, becomes part of RAMBlock name used in migration stream
754 * must be unique within any device
755 * @size: size of the region.
756 * @errp: pointer to Error*, to store an error if it happens.
758 void memory_region_init_rom_device(MemoryRegion *mr,
759 struct Object *owner,
760 const MemoryRegionOps *ops,
761 void *opaque,
762 const char *name,
763 uint64_t size,
764 Error **errp);
768 * memory_region_owner: get a memory region's owner.
770 * @mr: the memory region being queried.
772 struct Object *memory_region_owner(MemoryRegion *mr);
775 * memory_region_size: get a memory region's size.
777 * @mr: the memory region being queried.
779 uint64_t memory_region_size(MemoryRegion *mr);
782 * memory_region_is_ram: check whether a memory region is random access
784 * Returns %true is a memory region is random access.
786 * @mr: the memory region being queried
788 static inline bool memory_region_is_ram(MemoryRegion *mr)
790 return mr->ram;
794 * memory_region_is_ram_device: check whether a memory region is a ram device
796 * Returns %true is a memory region is a device backed ram region
798 * @mr: the memory region being queried
800 bool memory_region_is_ram_device(MemoryRegion *mr);
803 * memory_region_is_romd: check whether a memory region is in ROMD mode
805 * Returns %true if a memory region is a ROM device and currently set to allow
806 * direct reads.
808 * @mr: the memory region being queried
810 static inline bool memory_region_is_romd(MemoryRegion *mr)
812 return mr->rom_device && mr->romd_mode;
816 * memory_region_get_iommu: check whether a memory region is an iommu
818 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
819 * otherwise NULL.
821 * @mr: the memory region being queried
823 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
825 if (mr->alias) {
826 return memory_region_get_iommu(mr->alias);
828 if (mr->is_iommu) {
829 return (IOMMUMemoryRegion *) mr;
831 return NULL;
835 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
836 * if an iommu or NULL if not
838 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
839 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
841 * @mr: the memory region being queried
843 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
844 IOMMUMemoryRegion *iommu_mr)
846 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
849 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
852 * memory_region_iommu_get_min_page_size: get minimum supported page size
853 * for an iommu
855 * Returns minimum supported page size for an iommu.
857 * @iommu_mr: the memory region being queried
859 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
862 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
864 * The notification type will be decided by entry.perm bits:
866 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
867 * - For MAP (newly added entry) notifies: set entry.perm to the
868 * permission of the page (which is definitely !IOMMU_NONE).
870 * Note: for any IOMMU implementation, an in-place mapping change
871 * should be notified with an UNMAP followed by a MAP.
873 * @iommu_mr: the memory region that was changed
874 * @entry: the new entry in the IOMMU translation table. The entry
875 * replaces all old entries for the same virtual I/O address range.
876 * Deleted entries have .@perm == 0.
878 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
879 IOMMUTLBEntry entry);
882 * memory_region_notify_one: notify a change in an IOMMU translation
883 * entry to a single notifier
885 * This works just like memory_region_notify_iommu(), but it only
886 * notifies a specific notifier, not all of them.
888 * @notifier: the notifier to be notified
889 * @entry: the new entry in the IOMMU translation table. The entry
890 * replaces all old entries for the same virtual I/O address range.
891 * Deleted entries have .@perm == 0.
893 void memory_region_notify_one(IOMMUNotifier *notifier,
894 IOMMUTLBEntry *entry);
897 * memory_region_register_iommu_notifier: register a notifier for changes to
898 * IOMMU translation entries.
900 * @mr: the memory region to observe
901 * @n: the IOMMUNotifier to be added; the notify callback receives a
902 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
903 * ceases to be valid on exit from the notifier.
905 void memory_region_register_iommu_notifier(MemoryRegion *mr,
906 IOMMUNotifier *n);
909 * memory_region_iommu_replay: replay existing IOMMU translations to
910 * a notifier with the minimum page granularity returned by
911 * mr->iommu_ops->get_page_size().
913 * @iommu_mr: the memory region to observe
914 * @n: the notifier to which to replay iommu mappings
916 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
919 * memory_region_iommu_replay_all: replay existing IOMMU translations
920 * to all the notifiers registered.
922 * @iommu_mr: the memory region to observe
924 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
927 * memory_region_unregister_iommu_notifier: unregister a notifier for
928 * changes to IOMMU translation entries.
930 * @mr: the memory region which was observed and for which notity_stopped()
931 * needs to be called
932 * @n: the notifier to be removed.
934 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
935 IOMMUNotifier *n);
938 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
939 * defined on the IOMMU.
941 * Returns 0 if succeded, error code otherwise.
943 * @iommu_mr: the memory region
944 * @attr: the requested attribute
945 * @data: a pointer to the requested attribute data
947 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
948 enum IOMMUMemoryRegionAttr attr,
949 void *data);
952 * memory_region_name: get a memory region's name
954 * Returns the string that was used to initialize the memory region.
956 * @mr: the memory region being queried
958 const char *memory_region_name(const MemoryRegion *mr);
961 * memory_region_is_logging: return whether a memory region is logging writes
963 * Returns %true if the memory region is logging writes for the given client
965 * @mr: the memory region being queried
966 * @client: the client being queried
968 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
971 * memory_region_get_dirty_log_mask: return the clients for which a
972 * memory region is logging writes.
974 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
975 * are the bit indices.
977 * @mr: the memory region being queried
979 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
982 * memory_region_is_rom: check whether a memory region is ROM
984 * Returns %true is a memory region is read-only memory.
986 * @mr: the memory region being queried
988 static inline bool memory_region_is_rom(MemoryRegion *mr)
990 return mr->ram && mr->readonly;
995 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
997 * Returns a file descriptor backing a file-based RAM memory region,
998 * or -1 if the region is not a file-based RAM memory region.
1000 * @mr: the RAM or alias memory region being queried.
1002 int memory_region_get_fd(MemoryRegion *mr);
1005 * memory_region_from_host: Convert a pointer into a RAM memory region
1006 * and an offset within it.
1008 * Given a host pointer inside a RAM memory region (created with
1009 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1010 * the MemoryRegion and the offset within it.
1012 * Use with care; by the time this function returns, the returned pointer is
1013 * not protected by RCU anymore. If the caller is not within an RCU critical
1014 * section and does not hold the iothread lock, it must have other means of
1015 * protecting the pointer, such as a reference to the region that includes
1016 * the incoming ram_addr_t.
1018 * @ptr: the host pointer to be converted
1019 * @offset: the offset within memory region
1021 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1024 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1026 * Returns a host pointer to a RAM memory region (created with
1027 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1029 * Use with care; by the time this function returns, the returned pointer is
1030 * not protected by RCU anymore. If the caller is not within an RCU critical
1031 * section and does not hold the iothread lock, it must have other means of
1032 * protecting the pointer, such as a reference to the region that includes
1033 * the incoming ram_addr_t.
1035 * @mr: the memory region being queried.
1037 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1039 /* memory_region_ram_resize: Resize a RAM region.
1041 * Only legal before guest might have detected the memory size: e.g. on
1042 * incoming migration, or right after reset.
1044 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1045 * @newsize: the new size the region
1046 * @errp: pointer to Error*, to store an error if it happens.
1048 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1049 Error **errp);
1052 * memory_region_set_log: Turn dirty logging on or off for a region.
1054 * Turns dirty logging on or off for a specified client (display, migration).
1055 * Only meaningful for RAM regions.
1057 * @mr: the memory region being updated.
1058 * @log: whether dirty logging is to be enabled or disabled.
1059 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1061 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1064 * memory_region_get_dirty: Check whether a range of bytes is dirty
1065 * for a specified client.
1067 * Checks whether a range of bytes has been written to since the last
1068 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1069 * must be enabled.
1071 * @mr: the memory region being queried.
1072 * @addr: the address (relative to the start of the region) being queried.
1073 * @size: the size of the range being queried.
1074 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1075 * %DIRTY_MEMORY_VGA.
1077 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1078 hwaddr size, unsigned client);
1081 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1083 * Marks a range of bytes as dirty, after it has been dirtied outside
1084 * guest code.
1086 * @mr: the memory region being dirtied.
1087 * @addr: the address (relative to the start of the region) being dirtied.
1088 * @size: size of the range being dirtied.
1090 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1091 hwaddr size);
1094 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1095 * bitmap and clear it.
1097 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1098 * returns the snapshot. The snapshot can then be used to query dirty
1099 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1100 * querying the same page multiple times, which is especially useful for
1101 * display updates where the scanlines often are not page aligned.
1103 * The dirty bitmap region which gets copyed into the snapshot (and
1104 * cleared afterwards) can be larger than requested. The boundaries
1105 * are rounded up/down so complete bitmap longs (covering 64 pages on
1106 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1107 * isn't a problem for display updates as the extra pages are outside
1108 * the visible area, and in case the visible area changes a full
1109 * display redraw is due anyway. Should other use cases for this
1110 * function emerge we might have to revisit this implementation
1111 * detail.
1113 * Use g_free to release DirtyBitmapSnapshot.
1115 * @mr: the memory region being queried.
1116 * @addr: the address (relative to the start of the region) being queried.
1117 * @size: the size of the range being queried.
1118 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1120 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1121 hwaddr addr,
1122 hwaddr size,
1123 unsigned client);
1126 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1127 * in the specified dirty bitmap snapshot.
1129 * @mr: the memory region being queried.
1130 * @snap: the dirty bitmap snapshot
1131 * @addr: the address (relative to the start of the region) being queried.
1132 * @size: the size of the range being queried.
1134 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1135 DirtyBitmapSnapshot *snap,
1136 hwaddr addr, hwaddr size);
1139 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1140 * client.
1142 * Marks a range of pages as no longer dirty.
1144 * @mr: the region being updated.
1145 * @addr: the start of the subrange being cleaned.
1146 * @size: the size of the subrange being cleaned.
1147 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1148 * %DIRTY_MEMORY_VGA.
1150 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1151 hwaddr size, unsigned client);
1154 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1156 * Allows a memory region to be marked as read-only (turning it into a ROM).
1157 * only useful on RAM regions.
1159 * @mr: the region being updated.
1160 * @readonly: whether rhe region is to be ROM or RAM.
1162 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1165 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1167 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1168 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1169 * device is mapped to guest memory and satisfies read access directly.
1170 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1171 * Writes are always handled by the #MemoryRegion.write function.
1173 * @mr: the memory region to be updated
1174 * @romd_mode: %true to put the region into ROMD mode
1176 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1179 * memory_region_set_coalescing: Enable memory coalescing for the region.
1181 * Enabled writes to a region to be queued for later processing. MMIO ->write
1182 * callbacks may be delayed until a non-coalesced MMIO is issued.
1183 * Only useful for IO regions. Roughly similar to write-combining hardware.
1185 * @mr: the memory region to be write coalesced
1187 void memory_region_set_coalescing(MemoryRegion *mr);
1190 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1191 * a region.
1193 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1194 * Multiple calls can be issued coalesced disjoint ranges.
1196 * @mr: the memory region to be updated.
1197 * @offset: the start of the range within the region to be coalesced.
1198 * @size: the size of the subrange to be coalesced.
1200 void memory_region_add_coalescing(MemoryRegion *mr,
1201 hwaddr offset,
1202 uint64_t size);
1205 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1207 * Disables any coalescing caused by memory_region_set_coalescing() or
1208 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1209 * hardware.
1211 * @mr: the memory region to be updated.
1213 void memory_region_clear_coalescing(MemoryRegion *mr);
1216 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1217 * accesses.
1219 * Ensure that pending coalesced MMIO request are flushed before the memory
1220 * region is accessed. This property is automatically enabled for all regions
1221 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1223 * @mr: the memory region to be updated.
1225 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1228 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1229 * accesses.
1231 * Clear the automatic coalesced MMIO flushing enabled via
1232 * memory_region_set_flush_coalesced. Note that this service has no effect on
1233 * memory regions that have MMIO coalescing enabled for themselves. For them,
1234 * automatic flushing will stop once coalescing is disabled.
1236 * @mr: the memory region to be updated.
1238 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1241 * memory_region_clear_global_locking: Declares that access processing does
1242 * not depend on the QEMU global lock.
1244 * By clearing this property, accesses to the memory region will be processed
1245 * outside of QEMU's global lock (unless the lock is held on when issuing the
1246 * access request). In this case, the device model implementing the access
1247 * handlers is responsible for synchronization of concurrency.
1249 * @mr: the memory region to be updated.
1251 void memory_region_clear_global_locking(MemoryRegion *mr);
1254 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1255 * is written to a location.
1257 * Marks a word in an IO region (initialized with memory_region_init_io())
1258 * as a trigger for an eventfd event. The I/O callback will not be called.
1259 * The caller must be prepared to handle failure (that is, take the required
1260 * action if the callback _is_ called).
1262 * @mr: the memory region being updated.
1263 * @addr: the address within @mr that is to be monitored
1264 * @size: the size of the access to trigger the eventfd
1265 * @match_data: whether to match against @data, instead of just @addr
1266 * @data: the data to match against the guest write
1267 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1269 void memory_region_add_eventfd(MemoryRegion *mr,
1270 hwaddr addr,
1271 unsigned size,
1272 bool match_data,
1273 uint64_t data,
1274 EventNotifier *e);
1277 * memory_region_del_eventfd: Cancel an eventfd.
1279 * Cancels an eventfd trigger requested by a previous
1280 * memory_region_add_eventfd() call.
1282 * @mr: the memory region being updated.
1283 * @addr: the address within @mr that is to be monitored
1284 * @size: the size of the access to trigger the eventfd
1285 * @match_data: whether to match against @data, instead of just @addr
1286 * @data: the data to match against the guest write
1287 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1289 void memory_region_del_eventfd(MemoryRegion *mr,
1290 hwaddr addr,
1291 unsigned size,
1292 bool match_data,
1293 uint64_t data,
1294 EventNotifier *e);
1297 * memory_region_add_subregion: Add a subregion to a container.
1299 * Adds a subregion at @offset. The subregion may not overlap with other
1300 * subregions (except for those explicitly marked as overlapping). A region
1301 * may only be added once as a subregion (unless removed with
1302 * memory_region_del_subregion()); use memory_region_init_alias() if you
1303 * want a region to be a subregion in multiple locations.
1305 * @mr: the region to contain the new subregion; must be a container
1306 * initialized with memory_region_init().
1307 * @offset: the offset relative to @mr where @subregion is added.
1308 * @subregion: the subregion to be added.
1310 void memory_region_add_subregion(MemoryRegion *mr,
1311 hwaddr offset,
1312 MemoryRegion *subregion);
1314 * memory_region_add_subregion_overlap: Add a subregion to a container
1315 * with overlap.
1317 * Adds a subregion at @offset. The subregion may overlap with other
1318 * subregions. Conflicts are resolved by having a higher @priority hide a
1319 * lower @priority. Subregions without priority are taken as @priority 0.
1320 * A region may only be added once as a subregion (unless removed with
1321 * memory_region_del_subregion()); use memory_region_init_alias() if you
1322 * want a region to be a subregion in multiple locations.
1324 * @mr: the region to contain the new subregion; must be a container
1325 * initialized with memory_region_init().
1326 * @offset: the offset relative to @mr where @subregion is added.
1327 * @subregion: the subregion to be added.
1328 * @priority: used for resolving overlaps; highest priority wins.
1330 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1331 hwaddr offset,
1332 MemoryRegion *subregion,
1333 int priority);
1336 * memory_region_get_ram_addr: Get the ram address associated with a memory
1337 * region
1339 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1341 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1343 * memory_region_del_subregion: Remove a subregion.
1345 * Removes a subregion from its container.
1347 * @mr: the container to be updated.
1348 * @subregion: the region being removed; must be a current subregion of @mr.
1350 void memory_region_del_subregion(MemoryRegion *mr,
1351 MemoryRegion *subregion);
1354 * memory_region_set_enabled: dynamically enable or disable a region
1356 * Enables or disables a memory region. A disabled memory region
1357 * ignores all accesses to itself and its subregions. It does not
1358 * obscure sibling subregions with lower priority - it simply behaves as
1359 * if it was removed from the hierarchy.
1361 * Regions default to being enabled.
1363 * @mr: the region to be updated
1364 * @enabled: whether to enable or disable the region
1366 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1369 * memory_region_set_address: dynamically update the address of a region
1371 * Dynamically updates the address of a region, relative to its container.
1372 * May be used on regions are currently part of a memory hierarchy.
1374 * @mr: the region to be updated
1375 * @addr: new address, relative to container region
1377 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1380 * memory_region_set_size: dynamically update the size of a region.
1382 * Dynamically updates the size of a region.
1384 * @mr: the region to be updated
1385 * @size: used size of the region.
1387 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1390 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1392 * Dynamically updates the offset into the target region that an alias points
1393 * to, as if the fourth argument to memory_region_init_alias() has changed.
1395 * @mr: the #MemoryRegion to be updated; should be an alias.
1396 * @offset: the new offset into the target memory region
1398 void memory_region_set_alias_offset(MemoryRegion *mr,
1399 hwaddr offset);
1402 * memory_region_present: checks if an address relative to a @container
1403 * translates into #MemoryRegion within @container
1405 * Answer whether a #MemoryRegion within @container covers the address
1406 * @addr.
1408 * @container: a #MemoryRegion within which @addr is a relative address
1409 * @addr: the area within @container to be searched
1411 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1414 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1415 * into any address space.
1417 * @mr: a #MemoryRegion which should be checked if it's mapped
1419 bool memory_region_is_mapped(MemoryRegion *mr);
1422 * memory_region_find: translate an address/size relative to a
1423 * MemoryRegion into a #MemoryRegionSection.
1425 * Locates the first #MemoryRegion within @mr that overlaps the range
1426 * given by @addr and @size.
1428 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1429 * It will have the following characteristics:
1430 * .@size = 0 iff no overlap was found
1431 * .@mr is non-%NULL iff an overlap was found
1433 * Remember that in the return value the @offset_within_region is
1434 * relative to the returned region (in the .@mr field), not to the
1435 * @mr argument.
1437 * Similarly, the .@offset_within_address_space is relative to the
1438 * address space that contains both regions, the passed and the
1439 * returned one. However, in the special case where the @mr argument
1440 * has no container (and thus is the root of the address space), the
1441 * following will hold:
1442 * .@offset_within_address_space >= @addr
1443 * .@offset_within_address_space + .@size <= @addr + @size
1445 * @mr: a MemoryRegion within which @addr is a relative address
1446 * @addr: start of the area within @as to be searched
1447 * @size: size of the area to be searched
1449 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1450 hwaddr addr, uint64_t size);
1453 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1455 * Synchronizes the dirty page log for all address spaces.
1457 void memory_global_dirty_log_sync(void);
1460 * memory_region_transaction_begin: Start a transaction.
1462 * During a transaction, changes will be accumulated and made visible
1463 * only when the transaction ends (is committed).
1465 void memory_region_transaction_begin(void);
1468 * memory_region_transaction_commit: Commit a transaction and make changes
1469 * visible to the guest.
1471 void memory_region_transaction_commit(void);
1474 * memory_listener_register: register callbacks to be called when memory
1475 * sections are mapped or unmapped into an address
1476 * space
1478 * @listener: an object containing the callbacks to be called
1479 * @filter: if non-%NULL, only regions in this address space will be observed
1481 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1484 * memory_listener_unregister: undo the effect of memory_listener_register()
1486 * @listener: an object containing the callbacks to be removed
1488 void memory_listener_unregister(MemoryListener *listener);
1491 * memory_global_dirty_log_start: begin dirty logging for all regions
1493 void memory_global_dirty_log_start(void);
1496 * memory_global_dirty_log_stop: end dirty logging for all regions
1498 void memory_global_dirty_log_stop(void);
1500 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1501 bool dispatch_tree);
1504 * memory_region_request_mmio_ptr: request a pointer to an mmio
1505 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1506 * When the device wants to invalidate the pointer it will call
1507 * memory_region_invalidate_mmio_ptr.
1509 * @mr: #MemoryRegion to check
1510 * @addr: address within that region
1512 * Returns true on success, false otherwise.
1514 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1517 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1518 * previously requested.
1519 * In the end that means that if something wants to execute from this area it
1520 * will need to request the pointer again.
1522 * @mr: #MemoryRegion associated to the pointer.
1523 * @offset: offset within the memory region
1524 * @size: size of that area.
1526 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1527 unsigned size);
1530 * memory_region_dispatch_read: perform a read directly to the specified
1531 * MemoryRegion.
1533 * @mr: #MemoryRegion to access
1534 * @addr: address within that region
1535 * @pval: pointer to uint64_t which the data is written to
1536 * @size: size of the access in bytes
1537 * @attrs: memory transaction attributes to use for the access
1539 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1540 hwaddr addr,
1541 uint64_t *pval,
1542 unsigned size,
1543 MemTxAttrs attrs);
1545 * memory_region_dispatch_write: perform a write directly to the specified
1546 * MemoryRegion.
1548 * @mr: #MemoryRegion to access
1549 * @addr: address within that region
1550 * @data: data to write
1551 * @size: size of the access in bytes
1552 * @attrs: memory transaction attributes to use for the access
1554 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1555 hwaddr addr,
1556 uint64_t data,
1557 unsigned size,
1558 MemTxAttrs attrs);
1561 * address_space_init: initializes an address space
1563 * @as: an uninitialized #AddressSpace
1564 * @root: a #MemoryRegion that routes addresses for the address space
1565 * @name: an address space name. The name is only used for debugging
1566 * output.
1568 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1571 * address_space_destroy: destroy an address space
1573 * Releases all resources associated with an address space. After an address space
1574 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1575 * as well.
1577 * @as: address space to be destroyed
1579 void address_space_destroy(AddressSpace *as);
1582 * address_space_rw: read from or write to an address space.
1584 * Return a MemTxResult indicating whether the operation succeeded
1585 * or failed (eg unassigned memory, device rejected the transaction,
1586 * IOMMU fault).
1588 * @as: #AddressSpace to be accessed
1589 * @addr: address within that address space
1590 * @attrs: memory transaction attributes
1591 * @buf: buffer with the data transferred
1592 * @len: the number of bytes to read or write
1593 * @is_write: indicates the transfer direction
1595 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1596 MemTxAttrs attrs, uint8_t *buf,
1597 int len, bool is_write);
1600 * address_space_write: write to address space.
1602 * Return a MemTxResult indicating whether the operation succeeded
1603 * or failed (eg unassigned memory, device rejected the transaction,
1604 * IOMMU fault).
1606 * @as: #AddressSpace to be accessed
1607 * @addr: address within that address space
1608 * @attrs: memory transaction attributes
1609 * @buf: buffer with the data transferred
1610 * @len: the number of bytes to write
1612 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1613 MemTxAttrs attrs,
1614 const uint8_t *buf, int len);
1616 /* address_space_ld*: load from an address space
1617 * address_space_st*: store to an address space
1619 * These functions perform a load or store of the byte, word,
1620 * longword or quad to the specified address within the AddressSpace.
1621 * The _le suffixed functions treat the data as little endian;
1622 * _be indicates big endian; no suffix indicates "same endianness
1623 * as guest CPU".
1625 * The "guest CPU endianness" accessors are deprecated for use outside
1626 * target-* code; devices should be CPU-agnostic and use either the LE
1627 * or the BE accessors.
1629 * @as #AddressSpace to be accessed
1630 * @addr: address within that address space
1631 * @val: data value, for stores
1632 * @attrs: memory transaction attributes
1633 * @result: location to write the success/failure of the transaction;
1634 * if NULL, this information is discarded
1636 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1637 MemTxAttrs attrs, MemTxResult *result);
1638 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1639 MemTxAttrs attrs, MemTxResult *result);
1640 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1641 MemTxAttrs attrs, MemTxResult *result);
1642 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1643 MemTxAttrs attrs, MemTxResult *result);
1644 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1645 MemTxAttrs attrs, MemTxResult *result);
1646 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1647 MemTxAttrs attrs, MemTxResult *result);
1648 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1649 MemTxAttrs attrs, MemTxResult *result);
1650 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1651 MemTxAttrs attrs, MemTxResult *result);
1652 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1653 MemTxAttrs attrs, MemTxResult *result);
1654 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1655 MemTxAttrs attrs, MemTxResult *result);
1656 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1657 MemTxAttrs attrs, MemTxResult *result);
1658 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1659 MemTxAttrs attrs, MemTxResult *result);
1660 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1661 MemTxAttrs attrs, MemTxResult *result);
1662 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1663 MemTxAttrs attrs, MemTxResult *result);
1665 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1666 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1667 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1668 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1669 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1670 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1671 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1672 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1673 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1674 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1675 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1676 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1677 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1678 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1680 struct MemoryRegionCache {
1681 hwaddr xlat;
1682 hwaddr len;
1683 AddressSpace *as;
1686 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1688 /* address_space_cache_init: prepare for repeated access to a physical
1689 * memory region
1691 * @cache: #MemoryRegionCache to be filled
1692 * @as: #AddressSpace to be accessed
1693 * @addr: address within that address space
1694 * @len: length of buffer
1695 * @is_write: indicates the transfer direction
1697 * Will only work with RAM, and may map a subset of the requested range by
1698 * returning a value that is less than @len. On failure, return a negative
1699 * errno value.
1701 * Because it only works with RAM, this function can be used for
1702 * read-modify-write operations. In this case, is_write should be %true.
1704 * Note that addresses passed to the address_space_*_cached functions
1705 * are relative to @addr.
1707 int64_t address_space_cache_init(MemoryRegionCache *cache,
1708 AddressSpace *as,
1709 hwaddr addr,
1710 hwaddr len,
1711 bool is_write);
1714 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1716 * @cache: The #MemoryRegionCache to operate on.
1717 * @addr: The first physical address that was written, relative to the
1718 * address that was passed to @address_space_cache_init.
1719 * @access_len: The number of bytes that were written starting at @addr.
1721 void address_space_cache_invalidate(MemoryRegionCache *cache,
1722 hwaddr addr,
1723 hwaddr access_len);
1726 * address_space_cache_destroy: free a #MemoryRegionCache
1728 * @cache: The #MemoryRegionCache whose memory should be released.
1730 void address_space_cache_destroy(MemoryRegionCache *cache);
1732 /* address_space_ld*_cached: load from a cached #MemoryRegion
1733 * address_space_st*_cached: store into a cached #MemoryRegion
1735 * These functions perform a load or store of the byte, word,
1736 * longword or quad to the specified address. The address is
1737 * a physical address in the AddressSpace, but it must lie within
1738 * a #MemoryRegion that was mapped with address_space_cache_init.
1740 * The _le suffixed functions treat the data as little endian;
1741 * _be indicates big endian; no suffix indicates "same endianness
1742 * as guest CPU".
1744 * The "guest CPU endianness" accessors are deprecated for use outside
1745 * target-* code; devices should be CPU-agnostic and use either the LE
1746 * or the BE accessors.
1748 * @cache: previously initialized #MemoryRegionCache to be accessed
1749 * @addr: address within the address space
1750 * @val: data value, for stores
1751 * @attrs: memory transaction attributes
1752 * @result: location to write the success/failure of the transaction;
1753 * if NULL, this information is discarded
1755 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1756 MemTxAttrs attrs, MemTxResult *result);
1757 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1758 MemTxAttrs attrs, MemTxResult *result);
1759 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1760 MemTxAttrs attrs, MemTxResult *result);
1761 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1762 MemTxAttrs attrs, MemTxResult *result);
1763 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1764 MemTxAttrs attrs, MemTxResult *result);
1765 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1766 MemTxAttrs attrs, MemTxResult *result);
1767 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1768 MemTxAttrs attrs, MemTxResult *result);
1769 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1770 MemTxAttrs attrs, MemTxResult *result);
1771 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1772 MemTxAttrs attrs, MemTxResult *result);
1773 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1774 MemTxAttrs attrs, MemTxResult *result);
1775 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1776 MemTxAttrs attrs, MemTxResult *result);
1777 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1778 MemTxAttrs attrs, MemTxResult *result);
1779 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1780 MemTxAttrs attrs, MemTxResult *result);
1781 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1782 MemTxAttrs attrs, MemTxResult *result);
1784 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1785 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1786 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1787 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1788 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1789 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1790 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1791 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1792 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1793 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1794 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1795 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1796 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1797 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1798 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1799 * entry. Should be called from an RCU critical section.
1801 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1802 bool is_write);
1804 /* address_space_translate: translate an address range into an address space
1805 * into a MemoryRegion and an address range into that section. Should be
1806 * called from an RCU critical section, to avoid that the last reference
1807 * to the returned region disappears after address_space_translate returns.
1809 * @fv: #FlatView to be accessed
1810 * @addr: address within that address space
1811 * @xlat: pointer to address within the returned memory region section's
1812 * #MemoryRegion.
1813 * @len: pointer to length
1814 * @is_write: indicates the transfer direction
1816 MemoryRegion *flatview_translate(FlatView *fv,
1817 hwaddr addr, hwaddr *xlat,
1818 hwaddr *len, bool is_write);
1820 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1821 hwaddr addr, hwaddr *xlat,
1822 hwaddr *len, bool is_write)
1824 return flatview_translate(address_space_to_flatview(as),
1825 addr, xlat, len, is_write);
1828 /* address_space_access_valid: check for validity of accessing an address
1829 * space range
1831 * Check whether memory is assigned to the given address space range, and
1832 * access is permitted by any IOMMU regions that are active for the address
1833 * space.
1835 * For now, addr and len should be aligned to a page size. This limitation
1836 * will be lifted in the future.
1838 * @as: #AddressSpace to be accessed
1839 * @addr: address within that address space
1840 * @len: length of the area to be checked
1841 * @is_write: indicates the transfer direction
1843 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1845 /* address_space_map: map a physical memory region into a host virtual address
1847 * May map a subset of the requested range, given by and returned in @plen.
1848 * May return %NULL if resources needed to perform the mapping are exhausted.
1849 * Use only for reads OR writes - not for read-modify-write operations.
1850 * Use cpu_register_map_client() to know when retrying the map operation is
1851 * likely to succeed.
1853 * @as: #AddressSpace to be accessed
1854 * @addr: address within that address space
1855 * @plen: pointer to length of buffer; updated on return
1856 * @is_write: indicates the transfer direction
1858 void *address_space_map(AddressSpace *as, hwaddr addr,
1859 hwaddr *plen, bool is_write);
1861 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1863 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1864 * the amount of memory that was actually read or written by the caller.
1866 * @as: #AddressSpace used
1867 * @buffer: host pointer as returned by address_space_map()
1868 * @len: buffer length as returned by address_space_map()
1869 * @access_len: amount of data actually transferred
1870 * @is_write: indicates the transfer direction
1872 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1873 int is_write, hwaddr access_len);
1876 /* Internal functions, part of the implementation of address_space_read. */
1877 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1878 MemTxAttrs attrs, uint8_t *buf,
1879 int len, hwaddr addr1, hwaddr l,
1880 MemoryRegion *mr);
1882 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
1883 MemTxAttrs attrs, uint8_t *buf, int len);
1884 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1886 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1888 if (is_write) {
1889 return memory_region_is_ram(mr) &&
1890 !mr->readonly && !memory_region_is_ram_device(mr);
1891 } else {
1892 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1893 memory_region_is_romd(mr);
1898 * address_space_read: read from an address space.
1900 * Return a MemTxResult indicating whether the operation succeeded
1901 * or failed (eg unassigned memory, device rejected the transaction,
1902 * IOMMU fault).
1904 * @fv: #FlatView to be accessed
1905 * @addr: address within that address space
1906 * @attrs: memory transaction attributes
1907 * @buf: buffer with the data transferred
1909 static inline __attribute__((__always_inline__))
1910 MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
1911 uint8_t *buf, int len)
1913 MemTxResult result = MEMTX_OK;
1914 hwaddr l, addr1;
1915 void *ptr;
1916 MemoryRegion *mr;
1918 if (__builtin_constant_p(len)) {
1919 if (len) {
1920 rcu_read_lock();
1921 l = len;
1922 mr = flatview_translate(fv, addr, &addr1, &l, false);
1923 if (len == l && memory_access_is_direct(mr, false)) {
1924 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1925 memcpy(buf, ptr, len);
1926 } else {
1927 result = flatview_read_continue(fv, addr, attrs, buf, len,
1928 addr1, l, mr);
1930 rcu_read_unlock();
1932 } else {
1933 result = flatview_read_full(fv, addr, attrs, buf, len);
1935 return result;
1938 static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1939 MemTxAttrs attrs, uint8_t *buf,
1940 int len)
1942 return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len);
1946 * address_space_read_cached: read from a cached RAM region
1948 * @cache: Cached region to be addressed
1949 * @addr: address relative to the base of the RAM region
1950 * @buf: buffer with the data transferred
1951 * @len: length of the data transferred
1953 static inline void
1954 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1955 void *buf, int len)
1957 assert(addr < cache->len && len <= cache->len - addr);
1958 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1962 * address_space_write_cached: write to a cached RAM region
1964 * @cache: Cached region to be addressed
1965 * @addr: address relative to the base of the RAM region
1966 * @buf: buffer with the data transferred
1967 * @len: length of the data transferred
1969 static inline void
1970 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1971 void *buf, int len)
1973 assert(addr < cache->len && len <= cache->len - addr);
1974 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1977 #endif
1979 #endif