ar7: Remove conditional compilation
[qemu/ar7.git] / exec.c
blob6f3f9d82de3d1e53e2f55222a50c589f8516b996
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include "qemu.h"
42 #else /* !CONFIG_USER_ONLY */
43 #include "hw/hw.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <fcntl.h>
55 #include <linux/falloc.h>
56 #endif
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
103 #define RAM_RESIZEABLE (1 << 2)
105 #endif
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
121 uintptr_t qemu_host_page_size;
122 intptr_t qemu_host_page_mask;
124 bool set_preferred_target_page_bits(int bits)
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
131 #ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
137 target_page_bits = bits;
139 #endif
140 return true;
143 #if !defined(CONFIG_USER_ONLY)
145 static void finalize_target_page_bits(void)
147 #ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
151 target_page_bits_decided = true;
152 #endif
155 typedef struct PhysPageEntry PhysPageEntry;
157 struct PhysPageEntry {
158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
159 uint32_t skip : 6;
160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161 uint32_t ptr : 26;
164 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define ADDR_SPACE_BITS 64
169 #define P_L2_BITS 9
170 #define P_L2_SIZE (1 << P_L2_BITS)
172 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
174 typedef PhysPageEntry Node[P_L2_SIZE];
176 typedef struct PhysPageMap {
177 struct rcu_head rcu;
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185 } PhysPageMap;
187 struct AddressSpaceDispatch {
188 MemoryRegionSection *mru_section;
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
192 PhysPageEntry phys_map;
193 PhysPageMap map;
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 MemoryRegion iomem;
199 FlatView *fv;
200 hwaddr base;
201 uint16_t sub_section[];
202 } subpage_t;
204 #define PHYS_SECTION_UNASSIGNED 0
205 #define PHYS_SECTION_NOTDIRTY 1
206 #define PHYS_SECTION_ROM 2
207 #define PHYS_SECTION_WATCH 3
209 static void io_mem_init(void);
210 static void memory_map_init(void);
211 static void tcg_commit(MemoryListener *listener);
213 static MemoryRegion io_mem_watch;
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
222 struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
229 struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
235 #endif
237 #if !defined(CONFIG_USER_ONLY)
239 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
241 static unsigned alloc_hint = 16;
242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246 alloc_hint = map->nodes_nb_alloc;
250 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
252 unsigned i;
253 uint32_t ret;
254 PhysPageEntry e;
255 PhysPageEntry *p;
257 ret = map->nodes_nb++;
258 p = map->nodes[ret];
259 assert(ret != PHYS_MAP_NODE_NIL);
260 assert(ret != map->nodes_nb_alloc);
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264 for (i = 0; i < P_L2_SIZE; ++i) {
265 memcpy(&p[i], &e, sizeof(e));
267 return ret;
270 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
272 int level)
274 PhysPageEntry *p;
275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278 lp->ptr = phys_map_node_alloc(map, level == 0);
280 p = map->nodes[lp->ptr];
281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
283 while (*nb && lp < &p[P_L2_SIZE]) {
284 if ((*index & (step - 1)) == 0 && *nb >= step) {
285 lp->skip = 0;
286 lp->ptr = leaf;
287 *index += step;
288 *nb -= step;
289 } else {
290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
292 ++lp;
296 static void phys_page_set(AddressSpaceDispatch *d,
297 hwaddr index, hwaddr nb,
298 uint16_t leaf)
300 /* Wildly overreserve - it doesn't matter much. */
301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
306 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
309 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
329 phys_page_compact(&p[i], nodes);
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
338 assert(valid_ptr < P_L2_SIZE);
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
359 void address_space_dispatch_compact(AddressSpaceDispatch *d)
361 if (d->phys_map.skip) {
362 phys_page_compact(&d->phys_map, d->map.nodes);
366 static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
372 return int128_gethi(section->size) ||
373 range_covers_byte(section->offset_within_address_space,
374 int128_getlo(section->size), addr);
377 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
382 hwaddr index = addr >> TARGET_PAGE_BITS;
383 int i;
385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
387 return &sections[PHYS_SECTION_UNASSIGNED];
389 p = nodes[lp.ptr];
390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
393 if (section_covers_addr(&sections[lp.ptr], addr)) {
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
400 bool memory_region_is_unassigned(MemoryRegion *mr)
402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403 && mr != &io_mem_watch;
406 /* Called from RCU critical section */
407 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 hwaddr addr,
409 bool resolve_subpage)
411 MemoryRegionSection *section = atomic_read(&d->mru_section);
412 subpage_t *subpage;
413 bool update;
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
419 section = phys_page_find(d, addr);
420 update = true;
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
426 if (update) {
427 atomic_set(&d->mru_section, section);
429 return section;
432 /* Called from RCU critical section */
433 static MemoryRegionSection *
434 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
435 hwaddr *plen, bool resolve_subpage)
437 MemoryRegionSection *section;
438 MemoryRegion *mr;
439 Int128 diff;
441 section = address_space_lookup_region(d, addr, resolve_subpage);
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
448 mr = section->mr;
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
461 if (memory_region_is_ram(mr)) {
462 diff = int128_sub(section->size, int128_make64(addr));
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
465 return section;
468 /* Called from RCU critical section */
469 static MemoryRegionSection flatview_do_translate(FlatView *fv,
470 hwaddr addr,
471 hwaddr *xlat,
472 hwaddr *plen,
473 bool is_write,
474 bool is_mmio,
475 AddressSpace **target_as)
477 IOMMUTLBEntry iotlb;
478 MemoryRegionSection *section;
479 IOMMUMemoryRegion *iommu_mr;
480 IOMMUMemoryRegionClass *imrc;
482 for (;;) {
483 section = address_space_translate_internal(
484 flatview_to_dispatch(fv), addr, &addr,
485 plen, is_mmio);
487 iommu_mr = memory_region_get_iommu(section->mr);
488 if (!iommu_mr) {
489 break;
491 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
493 iotlb = imrc->translate(iommu_mr, addr, is_write ?
494 IOMMU_WO : IOMMU_RO);
495 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
496 | (addr & iotlb.addr_mask));
497 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
498 if (!(iotlb.perm & (1 << is_write))) {
499 goto translate_fail;
502 fv = address_space_to_flatview(iotlb.target_as);
503 *target_as = iotlb.target_as;
506 *xlat = addr;
508 return *section;
510 translate_fail:
511 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
514 /* Called from RCU critical section */
515 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
516 bool is_write)
518 MemoryRegionSection section;
519 hwaddr xlat, plen;
521 /* Try to get maximum page mask during translation. */
522 plen = (hwaddr)-1;
524 /* This can never be MMIO. */
525 section = flatview_do_translate(address_space_to_flatview(as), addr,
526 &xlat, &plen, is_write, false, &as);
528 /* Illegal translation */
529 if (section.mr == &io_mem_unassigned) {
530 goto iotlb_fail;
533 /* Convert memory region offset into address space offset */
534 xlat += section.offset_within_address_space -
535 section.offset_within_region;
537 if (plen == (hwaddr)-1) {
539 * We use default page size here. Logically it only happens
540 * for identity mappings.
542 plen = TARGET_PAGE_SIZE;
545 /* Convert to address mask */
546 plen -= 1;
548 return (IOMMUTLBEntry) {
549 .target_as = as,
550 .iova = addr & ~plen,
551 .translated_addr = xlat & ~plen,
552 .addr_mask = plen,
553 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
554 .perm = IOMMU_RW,
557 iotlb_fail:
558 return (IOMMUTLBEntry) {0};
561 /* Called from RCU critical section */
562 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
563 hwaddr *plen, bool is_write)
565 MemoryRegion *mr;
566 MemoryRegionSection section;
567 AddressSpace *as = NULL;
569 /* This can be MMIO, so setup MMIO bit. */
570 section = flatview_do_translate(fv, addr, xlat, plen, is_write, true, &as);
571 mr = section.mr;
573 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
574 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
575 *plen = MIN(page, *plen);
578 return mr;
581 /* Called from RCU critical section */
582 MemoryRegionSection *
583 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
584 hwaddr *xlat, hwaddr *plen)
586 MemoryRegionSection *section;
587 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
589 section = address_space_translate_internal(d, addr, xlat, plen, false);
591 assert(!memory_region_is_iommu(section->mr));
592 return section;
594 #endif
596 #if !defined(CONFIG_USER_ONLY)
598 static int cpu_common_post_load(void *opaque, int version_id)
600 CPUState *cpu = opaque;
602 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
603 version_id is increased. */
604 cpu->interrupt_request &= ~0x01;
605 tlb_flush(cpu);
607 return 0;
610 static int cpu_common_pre_load(void *opaque)
612 CPUState *cpu = opaque;
614 cpu->exception_index = -1;
616 return 0;
619 static bool cpu_common_exception_index_needed(void *opaque)
621 CPUState *cpu = opaque;
623 return tcg_enabled() && cpu->exception_index != -1;
626 static const VMStateDescription vmstate_cpu_common_exception_index = {
627 .name = "cpu_common/exception_index",
628 .version_id = 1,
629 .minimum_version_id = 1,
630 .needed = cpu_common_exception_index_needed,
631 .fields = (VMStateField[]) {
632 VMSTATE_INT32(exception_index, CPUState),
633 VMSTATE_END_OF_LIST()
637 static bool cpu_common_crash_occurred_needed(void *opaque)
639 CPUState *cpu = opaque;
641 return cpu->crash_occurred;
644 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
645 .name = "cpu_common/crash_occurred",
646 .version_id = 1,
647 .minimum_version_id = 1,
648 .needed = cpu_common_crash_occurred_needed,
649 .fields = (VMStateField[]) {
650 VMSTATE_BOOL(crash_occurred, CPUState),
651 VMSTATE_END_OF_LIST()
655 const VMStateDescription vmstate_cpu_common = {
656 .name = "cpu_common",
657 .version_id = 1,
658 .minimum_version_id = 1,
659 .pre_load = cpu_common_pre_load,
660 .post_load = cpu_common_post_load,
661 .fields = (VMStateField[]) {
662 VMSTATE_UINT32(halted, CPUState),
663 VMSTATE_UINT32(interrupt_request, CPUState),
664 VMSTATE_END_OF_LIST()
666 .subsections = (const VMStateDescription*[]) {
667 &vmstate_cpu_common_exception_index,
668 &vmstate_cpu_common_crash_occurred,
669 NULL
673 #endif
675 CPUState *qemu_get_cpu(int index)
677 CPUState *cpu;
679 CPU_FOREACH(cpu) {
680 if (cpu->cpu_index == index) {
681 return cpu;
685 return NULL;
688 #if !defined(CONFIG_USER_ONLY)
689 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
691 CPUAddressSpace *newas;
693 /* Target code should have set num_ases before calling us */
694 assert(asidx < cpu->num_ases);
696 if (asidx == 0) {
697 /* address space 0 gets the convenience alias */
698 cpu->as = as;
701 /* KVM cannot currently support multiple address spaces. */
702 assert(asidx == 0 || !kvm_enabled());
704 if (!cpu->cpu_ases) {
705 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
708 newas = &cpu->cpu_ases[asidx];
709 newas->cpu = cpu;
710 newas->as = as;
711 if (tcg_enabled()) {
712 newas->tcg_as_listener.commit = tcg_commit;
713 memory_listener_register(&newas->tcg_as_listener, as);
717 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
719 /* Return the AddressSpace corresponding to the specified index */
720 return cpu->cpu_ases[asidx].as;
722 #endif
724 void cpu_exec_unrealizefn(CPUState *cpu)
726 CPUClass *cc = CPU_GET_CLASS(cpu);
728 cpu_list_remove(cpu);
730 if (cc->vmsd != NULL) {
731 vmstate_unregister(NULL, cc->vmsd, cpu);
733 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
734 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
738 Property cpu_common_props[] = {
739 #ifndef CONFIG_USER_ONLY
740 /* Create a memory property for softmmu CPU object,
741 * so users can wire up its memory. (This can't go in qom/cpu.c
742 * because that file is compiled only once for both user-mode
743 * and system builds.) The default if no link is set up is to use
744 * the system address space.
746 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
747 MemoryRegion *),
748 #endif
749 DEFINE_PROP_END_OF_LIST(),
752 void cpu_exec_initfn(CPUState *cpu)
754 #ifdef TARGET_WORDS_BIGENDIAN
755 cpu->bigendian = true;
756 #else
757 cpu->bigendian = false;
758 #endif
759 cpu->as = NULL;
760 cpu->num_ases = 0;
762 #ifndef CONFIG_USER_ONLY
763 cpu->thread_id = qemu_get_thread_id();
764 cpu->memory = system_memory;
765 object_ref(OBJECT(cpu->memory));
766 #endif
769 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
771 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
773 cpu_list_add(cpu);
775 #ifndef CONFIG_USER_ONLY
776 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
777 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
779 if (cc->vmsd != NULL) {
780 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
782 #endif
785 #if defined(CONFIG_USER_ONLY)
786 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
788 mmap_lock();
789 tb_lock();
790 tb_invalidate_phys_page_range(pc, pc + 1, 0);
791 tb_unlock();
792 mmap_unlock();
794 #else
795 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
797 MemTxAttrs attrs;
798 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
799 int asidx = cpu_asidx_from_attrs(cpu, attrs);
800 if (phys != -1) {
801 /* Locks grabbed by tb_invalidate_phys_addr */
802 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
803 phys | (pc & ~TARGET_PAGE_MASK));
806 #endif
808 #if defined(CONFIG_USER_ONLY)
809 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
814 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
815 int flags)
817 return -ENOSYS;
820 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
824 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
825 int flags, CPUWatchpoint **watchpoint)
827 return -ENOSYS;
829 #else
830 /* Add a watchpoint. */
831 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
832 int flags, CPUWatchpoint **watchpoint)
834 CPUWatchpoint *wp;
836 /* forbid ranges which are empty or run off the end of the address space */
837 if (len == 0 || (addr + len - 1) < addr) {
838 error_report("tried to set invalid watchpoint at %"
839 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
840 return -EINVAL;
842 wp = g_malloc(sizeof(*wp));
844 wp->vaddr = addr;
845 wp->len = len;
846 wp->flags = flags;
848 /* keep all GDB-injected watchpoints in front */
849 if (flags & BP_GDB) {
850 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
851 } else {
852 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
855 tlb_flush_page(cpu, addr);
857 if (watchpoint)
858 *watchpoint = wp;
859 return 0;
862 /* Remove a specific watchpoint. */
863 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
864 int flags)
866 CPUWatchpoint *wp;
868 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
869 if (addr == wp->vaddr && len == wp->len
870 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
871 cpu_watchpoint_remove_by_ref(cpu, wp);
872 return 0;
875 return -ENOENT;
878 /* Remove a specific watchpoint by reference. */
879 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
881 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
883 tlb_flush_page(cpu, watchpoint->vaddr);
885 g_free(watchpoint);
888 /* Remove all matching watchpoints. */
889 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
891 CPUWatchpoint *wp, *next;
893 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
894 if (wp->flags & mask) {
895 cpu_watchpoint_remove_by_ref(cpu, wp);
900 /* Return true if this watchpoint address matches the specified
901 * access (ie the address range covered by the watchpoint overlaps
902 * partially or completely with the address range covered by the
903 * access).
905 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
906 vaddr addr,
907 vaddr len)
909 /* We know the lengths are non-zero, but a little caution is
910 * required to avoid errors in the case where the range ends
911 * exactly at the top of the address space and so addr + len
912 * wraps round to zero.
914 vaddr wpend = wp->vaddr + wp->len - 1;
915 vaddr addrend = addr + len - 1;
917 return !(addr > wpend || wp->vaddr > addrend);
920 #endif
922 /* Add a breakpoint. */
923 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
924 CPUBreakpoint **breakpoint)
926 CPUBreakpoint *bp;
928 bp = g_malloc(sizeof(*bp));
930 bp->pc = pc;
931 bp->flags = flags;
933 /* keep all GDB-injected breakpoints in front */
934 if (flags & BP_GDB) {
935 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
936 } else {
937 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
940 breakpoint_invalidate(cpu, pc);
942 if (breakpoint) {
943 *breakpoint = bp;
945 return 0;
948 /* Remove a specific breakpoint. */
949 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
951 CPUBreakpoint *bp;
953 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
954 if (bp->pc == pc && bp->flags == flags) {
955 cpu_breakpoint_remove_by_ref(cpu, bp);
956 return 0;
959 return -ENOENT;
962 /* Remove a specific breakpoint by reference. */
963 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
965 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
967 breakpoint_invalidate(cpu, breakpoint->pc);
969 g_free(breakpoint);
972 /* Remove all matching breakpoints. */
973 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
975 CPUBreakpoint *bp, *next;
977 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
978 if (bp->flags & mask) {
979 cpu_breakpoint_remove_by_ref(cpu, bp);
984 /* enable or disable single step mode. EXCP_DEBUG is returned by the
985 CPU loop after each instruction */
986 void cpu_single_step(CPUState *cpu, int enabled)
988 if (cpu->singlestep_enabled != enabled) {
989 cpu->singlestep_enabled = enabled;
990 if (kvm_enabled()) {
991 kvm_update_guest_debug(cpu, 0);
992 } else {
993 /* must flush all the translated code to avoid inconsistencies */
994 /* XXX: only flush what is necessary */
995 tb_flush(cpu);
1000 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1002 va_list ap;
1003 va_list ap2;
1005 va_start(ap, fmt);
1006 va_copy(ap2, ap);
1007 fprintf(stderr, "qemu: fatal: ");
1008 vfprintf(stderr, fmt, ap);
1009 fprintf(stderr, "\n");
1010 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1011 if (qemu_log_separate()) {
1012 qemu_log_lock();
1013 qemu_log("qemu: fatal: ");
1014 qemu_log_vprintf(fmt, ap2);
1015 qemu_log("\n");
1016 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1017 qemu_log_flush();
1018 qemu_log_unlock();
1019 qemu_log_close();
1021 va_end(ap2);
1022 va_end(ap);
1023 replay_finish();
1024 #if defined(CONFIG_USER_ONLY)
1026 struct sigaction act;
1027 sigfillset(&act.sa_mask);
1028 act.sa_handler = SIG_DFL;
1029 sigaction(SIGABRT, &act, NULL);
1031 #endif
1032 abort();
1035 #if !defined(CONFIG_USER_ONLY)
1036 /* Called from RCU critical section */
1037 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1039 RAMBlock *block;
1041 block = atomic_rcu_read(&ram_list.mru_block);
1042 if (block && addr - block->offset < block->max_length) {
1043 return block;
1045 RAMBLOCK_FOREACH(block) {
1046 if (addr - block->offset < block->max_length) {
1047 goto found;
1051 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1052 abort();
1054 found:
1055 /* It is safe to write mru_block outside the iothread lock. This
1056 * is what happens:
1058 * mru_block = xxx
1059 * rcu_read_unlock()
1060 * xxx removed from list
1061 * rcu_read_lock()
1062 * read mru_block
1063 * mru_block = NULL;
1064 * call_rcu(reclaim_ramblock, xxx);
1065 * rcu_read_unlock()
1067 * atomic_rcu_set is not needed here. The block was already published
1068 * when it was placed into the list. Here we're just making an extra
1069 * copy of the pointer.
1071 ram_list.mru_block = block;
1072 return block;
1075 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1077 CPUState *cpu;
1078 ram_addr_t start1;
1079 RAMBlock *block;
1080 ram_addr_t end;
1082 end = TARGET_PAGE_ALIGN(start + length);
1083 start &= TARGET_PAGE_MASK;
1085 rcu_read_lock();
1086 block = qemu_get_ram_block(start);
1087 assert(block == qemu_get_ram_block(end - 1));
1088 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1089 CPU_FOREACH(cpu) {
1090 tlb_reset_dirty(cpu, start1, length);
1092 rcu_read_unlock();
1095 /* Note: start and end must be within the same ram block. */
1096 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1097 ram_addr_t length,
1098 unsigned client)
1100 DirtyMemoryBlocks *blocks;
1101 unsigned long end, page;
1102 bool dirty = false;
1104 if (length == 0) {
1105 return false;
1108 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1109 page = start >> TARGET_PAGE_BITS;
1111 rcu_read_lock();
1113 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1115 while (page < end) {
1116 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1117 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1118 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1120 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1121 offset, num);
1122 page += num;
1125 rcu_read_unlock();
1127 if (dirty && tcg_enabled()) {
1128 tlb_reset_dirty_range_all(start, length);
1131 return dirty;
1134 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1135 (ram_addr_t start, ram_addr_t length, unsigned client)
1137 DirtyMemoryBlocks *blocks;
1138 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1139 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1140 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1141 DirtyBitmapSnapshot *snap;
1142 unsigned long page, end, dest;
1144 snap = g_malloc0(sizeof(*snap) +
1145 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1146 snap->start = first;
1147 snap->end = last;
1149 page = first >> TARGET_PAGE_BITS;
1150 end = last >> TARGET_PAGE_BITS;
1151 dest = 0;
1153 rcu_read_lock();
1155 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1157 while (page < end) {
1158 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1159 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1160 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1162 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1163 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1164 offset >>= BITS_PER_LEVEL;
1166 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1167 blocks->blocks[idx] + offset,
1168 num);
1169 page += num;
1170 dest += num >> BITS_PER_LEVEL;
1173 rcu_read_unlock();
1175 if (tcg_enabled()) {
1176 tlb_reset_dirty_range_all(start, length);
1179 return snap;
1182 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1183 ram_addr_t start,
1184 ram_addr_t length)
1186 unsigned long page, end;
1188 assert(start >= snap->start);
1189 assert(start + length <= snap->end);
1191 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1192 page = (start - snap->start) >> TARGET_PAGE_BITS;
1194 while (page < end) {
1195 if (test_bit(page, snap->dirty)) {
1196 return true;
1198 page++;
1200 return false;
1203 /* Called from RCU critical section */
1204 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1205 MemoryRegionSection *section,
1206 target_ulong vaddr,
1207 hwaddr paddr, hwaddr xlat,
1208 int prot,
1209 target_ulong *address)
1211 hwaddr iotlb;
1212 CPUWatchpoint *wp;
1214 if (memory_region_is_ram(section->mr)) {
1215 /* Normal RAM. */
1216 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1217 if (!section->readonly) {
1218 iotlb |= PHYS_SECTION_NOTDIRTY;
1219 } else {
1220 iotlb |= PHYS_SECTION_ROM;
1222 } else {
1223 AddressSpaceDispatch *d;
1225 d = flatview_to_dispatch(section->fv);
1226 iotlb = section - d->map.sections;
1227 iotlb += xlat;
1230 /* Make accesses to pages with watchpoints go via the
1231 watchpoint trap routines. */
1232 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1233 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1234 /* Avoid trapping reads of pages with a write breakpoint. */
1235 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1236 iotlb = PHYS_SECTION_WATCH + paddr;
1237 *address |= TLB_MMIO;
1238 break;
1243 return iotlb;
1245 #endif /* defined(CONFIG_USER_ONLY) */
1247 #if !defined(CONFIG_USER_ONLY)
1249 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1250 uint16_t section);
1251 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1253 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1254 qemu_anon_ram_alloc;
1257 * Set a custom physical guest memory alloator.
1258 * Accelerators with unusual needs may need this. Hopefully, we can
1259 * get rid of it eventually.
1261 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1263 phys_mem_alloc = alloc;
1266 static uint16_t phys_section_add(PhysPageMap *map,
1267 MemoryRegionSection *section)
1269 /* The physical section number is ORed with a page-aligned
1270 * pointer to produce the iotlb entries. Thus it should
1271 * never overflow into the page-aligned value.
1273 assert(map->sections_nb < TARGET_PAGE_SIZE);
1275 if (map->sections_nb == map->sections_nb_alloc) {
1276 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1277 map->sections = g_renew(MemoryRegionSection, map->sections,
1278 map->sections_nb_alloc);
1280 map->sections[map->sections_nb] = *section;
1281 memory_region_ref(section->mr);
1282 return map->sections_nb++;
1285 static void phys_section_destroy(MemoryRegion *mr)
1287 bool have_sub_page = mr->subpage;
1289 memory_region_unref(mr);
1291 if (have_sub_page) {
1292 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1293 object_unref(OBJECT(&subpage->iomem));
1294 g_free(subpage);
1298 static void phys_sections_free(PhysPageMap *map)
1300 while (map->sections_nb > 0) {
1301 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1302 phys_section_destroy(section->mr);
1304 g_free(map->sections);
1305 g_free(map->nodes);
1308 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1310 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1311 subpage_t *subpage;
1312 hwaddr base = section->offset_within_address_space
1313 & TARGET_PAGE_MASK;
1314 MemoryRegionSection *existing = phys_page_find(d, base);
1315 MemoryRegionSection subsection = {
1316 .offset_within_address_space = base,
1317 .size = int128_make64(TARGET_PAGE_SIZE),
1319 hwaddr start, end;
1321 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1323 if (!(existing->mr->subpage)) {
1324 subpage = subpage_init(fv, base);
1325 subsection.fv = fv;
1326 subsection.mr = &subpage->iomem;
1327 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1328 phys_section_add(&d->map, &subsection));
1329 } else {
1330 subpage = container_of(existing->mr, subpage_t, iomem);
1332 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1333 end = start + int128_get64(section->size) - 1;
1334 subpage_register(subpage, start, end,
1335 phys_section_add(&d->map, section));
1339 static void register_multipage(FlatView *fv,
1340 MemoryRegionSection *section)
1342 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1343 hwaddr start_addr = section->offset_within_address_space;
1344 uint16_t section_index = phys_section_add(&d->map, section);
1345 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1346 TARGET_PAGE_BITS));
1348 assert(num_pages);
1349 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1352 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1354 MemoryRegionSection now = *section, remain = *section;
1355 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1357 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1358 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1359 - now.offset_within_address_space;
1361 now.size = int128_min(int128_make64(left), now.size);
1362 register_subpage(fv, &now);
1363 } else {
1364 now.size = int128_zero();
1366 while (int128_ne(remain.size, now.size)) {
1367 remain.size = int128_sub(remain.size, now.size);
1368 remain.offset_within_address_space += int128_get64(now.size);
1369 remain.offset_within_region += int128_get64(now.size);
1370 now = remain;
1371 if (int128_lt(remain.size, page_size)) {
1372 register_subpage(fv, &now);
1373 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1374 now.size = page_size;
1375 register_subpage(fv, &now);
1376 } else {
1377 now.size = int128_and(now.size, int128_neg(page_size));
1378 register_multipage(fv, &now);
1383 void qemu_flush_coalesced_mmio_buffer(void)
1385 if (kvm_enabled())
1386 kvm_flush_coalesced_mmio_buffer();
1389 void qemu_mutex_lock_ramlist(void)
1391 qemu_mutex_lock(&ram_list.mutex);
1394 void qemu_mutex_unlock_ramlist(void)
1396 qemu_mutex_unlock(&ram_list.mutex);
1399 void ram_block_dump(Monitor *mon)
1401 RAMBlock *block;
1402 char *psize;
1404 rcu_read_lock();
1405 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1406 "Block Name", "PSize", "Offset", "Used", "Total");
1407 RAMBLOCK_FOREACH(block) {
1408 psize = size_to_str(block->page_size);
1409 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1410 " 0x%016" PRIx64 "\n", block->idstr, psize,
1411 (uint64_t)block->offset,
1412 (uint64_t)block->used_length,
1413 (uint64_t)block->max_length);
1414 g_free(psize);
1416 rcu_read_unlock();
1419 #ifdef __linux__
1421 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1422 * may or may not name the same files / on the same filesystem now as
1423 * when we actually open and map them. Iterate over the file
1424 * descriptors instead, and use qemu_fd_getpagesize().
1426 static int find_max_supported_pagesize(Object *obj, void *opaque)
1428 char *mem_path;
1429 long *hpsize_min = opaque;
1431 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1432 mem_path = object_property_get_str(obj, "mem-path", NULL);
1433 if (mem_path) {
1434 long hpsize = qemu_mempath_getpagesize(mem_path);
1435 if (hpsize < *hpsize_min) {
1436 *hpsize_min = hpsize;
1438 } else {
1439 *hpsize_min = getpagesize();
1443 return 0;
1446 long qemu_getrampagesize(void)
1448 long hpsize = LONG_MAX;
1449 long mainrampagesize;
1450 Object *memdev_root;
1452 if (mem_path) {
1453 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1454 } else {
1455 mainrampagesize = getpagesize();
1458 /* it's possible we have memory-backend objects with
1459 * hugepage-backed RAM. these may get mapped into system
1460 * address space via -numa parameters or memory hotplug
1461 * hooks. we want to take these into account, but we
1462 * also want to make sure these supported hugepage
1463 * sizes are applicable across the entire range of memory
1464 * we may boot from, so we take the min across all
1465 * backends, and assume normal pages in cases where a
1466 * backend isn't backed by hugepages.
1468 memdev_root = object_resolve_path("/objects", NULL);
1469 if (memdev_root) {
1470 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1472 if (hpsize == LONG_MAX) {
1473 /* No additional memory regions found ==> Report main RAM page size */
1474 return mainrampagesize;
1477 /* If NUMA is disabled or the NUMA nodes are not backed with a
1478 * memory-backend, then there is at least one node using "normal" RAM,
1479 * so if its page size is smaller we have got to report that size instead.
1481 if (hpsize > mainrampagesize &&
1482 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1483 static bool warned;
1484 if (!warned) {
1485 error_report("Huge page support disabled (n/a for main memory).");
1486 warned = true;
1488 return mainrampagesize;
1491 return hpsize;
1493 #else
1494 long qemu_getrampagesize(void)
1496 return getpagesize();
1498 #endif
1500 #ifdef __linux__
1501 static int64_t get_file_size(int fd)
1503 int64_t size = lseek(fd, 0, SEEK_END);
1504 if (size < 0) {
1505 return -errno;
1507 return size;
1510 static int file_ram_open(const char *path,
1511 const char *region_name,
1512 bool *created,
1513 Error **errp)
1515 char *filename;
1516 char *sanitized_name;
1517 char *c;
1518 int fd = -1;
1520 *created = false;
1521 for (;;) {
1522 fd = open(path, O_RDWR);
1523 if (fd >= 0) {
1524 /* @path names an existing file, use it */
1525 break;
1527 if (errno == ENOENT) {
1528 /* @path names a file that doesn't exist, create it */
1529 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1530 if (fd >= 0) {
1531 *created = true;
1532 break;
1534 } else if (errno == EISDIR) {
1535 /* @path names a directory, create a file there */
1536 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1537 sanitized_name = g_strdup(region_name);
1538 for (c = sanitized_name; *c != '\0'; c++) {
1539 if (*c == '/') {
1540 *c = '_';
1544 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1545 sanitized_name);
1546 g_free(sanitized_name);
1548 fd = mkstemp(filename);
1549 if (fd >= 0) {
1550 unlink(filename);
1551 g_free(filename);
1552 break;
1554 g_free(filename);
1556 if (errno != EEXIST && errno != EINTR) {
1557 error_setg_errno(errp, errno,
1558 "can't open backing store %s for guest RAM",
1559 path);
1560 return -1;
1563 * Try again on EINTR and EEXIST. The latter happens when
1564 * something else creates the file between our two open().
1568 return fd;
1571 static void *file_ram_alloc(RAMBlock *block,
1572 ram_addr_t memory,
1573 int fd,
1574 bool truncate,
1575 Error **errp)
1577 void *area;
1579 block->page_size = qemu_fd_getpagesize(fd);
1580 block->mr->align = block->page_size;
1581 #if defined(__s390x__)
1582 if (kvm_enabled()) {
1583 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1585 #endif
1587 if (memory < block->page_size) {
1588 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1589 "or larger than page size 0x%zx",
1590 memory, block->page_size);
1591 return NULL;
1594 memory = ROUND_UP(memory, block->page_size);
1597 * ftruncate is not supported by hugetlbfs in older
1598 * hosts, so don't bother bailing out on errors.
1599 * If anything goes wrong with it under other filesystems,
1600 * mmap will fail.
1602 * Do not truncate the non-empty backend file to avoid corrupting
1603 * the existing data in the file. Disabling shrinking is not
1604 * enough. For example, the current vNVDIMM implementation stores
1605 * the guest NVDIMM labels at the end of the backend file. If the
1606 * backend file is later extended, QEMU will not be able to find
1607 * those labels. Therefore, extending the non-empty backend file
1608 * is disabled as well.
1610 if (truncate && ftruncate(fd, memory)) {
1611 perror("ftruncate");
1614 area = qemu_ram_mmap(fd, memory, block->mr->align,
1615 block->flags & RAM_SHARED);
1616 if (area == MAP_FAILED) {
1617 error_setg_errno(errp, errno,
1618 "unable to map backing store for guest RAM");
1619 return NULL;
1622 if (mem_prealloc) {
1623 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1624 if (errp && *errp) {
1625 qemu_ram_munmap(area, memory);
1626 return NULL;
1630 block->fd = fd;
1631 return area;
1633 #endif
1635 /* Called with the ramlist lock held. */
1636 static ram_addr_t find_ram_offset(ram_addr_t size)
1638 RAMBlock *block, *next_block;
1639 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1641 assert(size != 0); /* it would hand out same offset multiple times */
1643 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1644 return 0;
1647 RAMBLOCK_FOREACH(block) {
1648 ram_addr_t end, next = RAM_ADDR_MAX;
1650 end = block->offset + block->max_length;
1652 RAMBLOCK_FOREACH(next_block) {
1653 if (next_block->offset >= end) {
1654 next = MIN(next, next_block->offset);
1657 if (next - end >= size && next - end < mingap) {
1658 offset = end;
1659 mingap = next - end;
1663 if (offset == RAM_ADDR_MAX) {
1664 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1665 (uint64_t)size);
1666 abort();
1669 return offset;
1672 unsigned long last_ram_page(void)
1674 RAMBlock *block;
1675 ram_addr_t last = 0;
1677 rcu_read_lock();
1678 RAMBLOCK_FOREACH(block) {
1679 last = MAX(last, block->offset + block->max_length);
1681 rcu_read_unlock();
1682 return last >> TARGET_PAGE_BITS;
1685 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1687 int ret;
1689 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1690 if (!machine_dump_guest_core(current_machine)) {
1691 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1692 if (ret) {
1693 perror("qemu_madvise");
1694 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1695 "but dump_guest_core=off specified\n");
1700 const char *qemu_ram_get_idstr(RAMBlock *rb)
1702 return rb->idstr;
1705 bool qemu_ram_is_shared(RAMBlock *rb)
1707 return rb->flags & RAM_SHARED;
1710 /* Called with iothread lock held. */
1711 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1713 RAMBlock *block;
1715 assert(new_block);
1716 assert(!new_block->idstr[0]);
1718 if (dev) {
1719 char *id = qdev_get_dev_path(dev);
1720 if (id) {
1721 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1722 g_free(id);
1725 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1727 rcu_read_lock();
1728 RAMBLOCK_FOREACH(block) {
1729 if (block != new_block &&
1730 !strcmp(block->idstr, new_block->idstr)) {
1731 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1732 new_block->idstr);
1733 abort();
1736 rcu_read_unlock();
1739 /* Called with iothread lock held. */
1740 void qemu_ram_unset_idstr(RAMBlock *block)
1742 /* FIXME: arch_init.c assumes that this is not called throughout
1743 * migration. Ignore the problem since hot-unplug during migration
1744 * does not work anyway.
1746 if (block) {
1747 memset(block->idstr, 0, sizeof(block->idstr));
1751 size_t qemu_ram_pagesize(RAMBlock *rb)
1753 return rb->page_size;
1756 /* Returns the largest size of page in use */
1757 size_t qemu_ram_pagesize_largest(void)
1759 RAMBlock *block;
1760 size_t largest = 0;
1762 RAMBLOCK_FOREACH(block) {
1763 largest = MAX(largest, qemu_ram_pagesize(block));
1766 return largest;
1769 static int memory_try_enable_merging(void *addr, size_t len)
1771 if (!machine_mem_merge(current_machine)) {
1772 /* disabled by the user */
1773 return 0;
1776 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1779 /* Only legal before guest might have detected the memory size: e.g. on
1780 * incoming migration, or right after reset.
1782 * As memory core doesn't know how is memory accessed, it is up to
1783 * resize callback to update device state and/or add assertions to detect
1784 * misuse, if necessary.
1786 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1788 assert(block);
1790 newsize = HOST_PAGE_ALIGN(newsize);
1792 if (block->used_length == newsize) {
1793 return 0;
1796 if (!(block->flags & RAM_RESIZEABLE)) {
1797 error_setg_errno(errp, EINVAL,
1798 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1799 " in != 0x" RAM_ADDR_FMT, block->idstr,
1800 newsize, block->used_length);
1801 return -EINVAL;
1804 if (block->max_length < newsize) {
1805 error_setg_errno(errp, EINVAL,
1806 "Length too large: %s: 0x" RAM_ADDR_FMT
1807 " > 0x" RAM_ADDR_FMT, block->idstr,
1808 newsize, block->max_length);
1809 return -EINVAL;
1812 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1813 block->used_length = newsize;
1814 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1815 DIRTY_CLIENTS_ALL);
1816 memory_region_set_size(block->mr, newsize);
1817 if (block->resized) {
1818 block->resized(block->idstr, newsize, block->host);
1820 return 0;
1823 /* Called with ram_list.mutex held */
1824 static void dirty_memory_extend(ram_addr_t old_ram_size,
1825 ram_addr_t new_ram_size)
1827 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1828 DIRTY_MEMORY_BLOCK_SIZE);
1829 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1830 DIRTY_MEMORY_BLOCK_SIZE);
1831 int i;
1833 /* Only need to extend if block count increased */
1834 if (new_num_blocks <= old_num_blocks) {
1835 return;
1838 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1839 DirtyMemoryBlocks *old_blocks;
1840 DirtyMemoryBlocks *new_blocks;
1841 int j;
1843 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1844 new_blocks = g_malloc(sizeof(*new_blocks) +
1845 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1847 if (old_num_blocks) {
1848 memcpy(new_blocks->blocks, old_blocks->blocks,
1849 old_num_blocks * sizeof(old_blocks->blocks[0]));
1852 for (j = old_num_blocks; j < new_num_blocks; j++) {
1853 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1856 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1858 if (old_blocks) {
1859 g_free_rcu(old_blocks, rcu);
1864 static void ram_block_add(RAMBlock *new_block, Error **errp)
1866 RAMBlock *block;
1867 RAMBlock *last_block = NULL;
1868 ram_addr_t old_ram_size, new_ram_size;
1869 Error *err = NULL;
1871 old_ram_size = last_ram_page();
1873 qemu_mutex_lock_ramlist();
1874 new_block->offset = find_ram_offset(new_block->max_length);
1876 if (!new_block->host) {
1877 if (xen_enabled()) {
1878 xen_ram_alloc(new_block->offset, new_block->max_length,
1879 new_block->mr, &err);
1880 if (err) {
1881 error_propagate(errp, err);
1882 qemu_mutex_unlock_ramlist();
1883 return;
1885 } else {
1886 new_block->host = phys_mem_alloc(new_block->max_length,
1887 &new_block->mr->align);
1888 if (!new_block->host) {
1889 error_setg_errno(errp, errno,
1890 "cannot set up guest memory '%s'",
1891 memory_region_name(new_block->mr));
1892 qemu_mutex_unlock_ramlist();
1893 return;
1895 memory_try_enable_merging(new_block->host, new_block->max_length);
1899 new_ram_size = MAX(old_ram_size,
1900 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1901 if (new_ram_size > old_ram_size) {
1902 dirty_memory_extend(old_ram_size, new_ram_size);
1904 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1905 * QLIST (which has an RCU-friendly variant) does not have insertion at
1906 * tail, so save the last element in last_block.
1908 RAMBLOCK_FOREACH(block) {
1909 last_block = block;
1910 if (block->max_length < new_block->max_length) {
1911 break;
1914 if (block) {
1915 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1916 } else if (last_block) {
1917 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1918 } else { /* list is empty */
1919 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1921 ram_list.mru_block = NULL;
1923 /* Write list before version */
1924 smp_wmb();
1925 ram_list.version++;
1926 qemu_mutex_unlock_ramlist();
1928 cpu_physical_memory_set_dirty_range(new_block->offset,
1929 new_block->used_length,
1930 DIRTY_CLIENTS_ALL);
1932 if (new_block->host) {
1933 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1934 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1935 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1936 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1937 ram_block_notify_add(new_block->host, new_block->max_length);
1941 #ifdef __linux__
1942 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1943 bool share, int fd,
1944 Error **errp)
1946 RAMBlock *new_block;
1947 Error *local_err = NULL;
1948 int64_t file_size;
1950 if (xen_enabled()) {
1951 error_setg(errp, "-mem-path not supported with Xen");
1952 return NULL;
1955 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1956 error_setg(errp,
1957 "host lacks kvm mmu notifiers, -mem-path unsupported");
1958 return NULL;
1961 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1963 * file_ram_alloc() needs to allocate just like
1964 * phys_mem_alloc, but we haven't bothered to provide
1965 * a hook there.
1967 error_setg(errp,
1968 "-mem-path not supported with this accelerator");
1969 return NULL;
1972 size = HOST_PAGE_ALIGN(size);
1973 file_size = get_file_size(fd);
1974 if (file_size > 0 && file_size < size) {
1975 error_setg(errp, "backing store %s size 0x%" PRIx64
1976 " does not match 'size' option 0x" RAM_ADDR_FMT,
1977 mem_path, file_size, size);
1978 return NULL;
1981 new_block = g_malloc0(sizeof(*new_block));
1982 new_block->mr = mr;
1983 new_block->used_length = size;
1984 new_block->max_length = size;
1985 new_block->flags = share ? RAM_SHARED : 0;
1986 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
1987 if (!new_block->host) {
1988 g_free(new_block);
1989 return NULL;
1992 ram_block_add(new_block, &local_err);
1993 if (local_err) {
1994 g_free(new_block);
1995 error_propagate(errp, local_err);
1996 return NULL;
1998 return new_block;
2003 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2004 bool share, const char *mem_path,
2005 Error **errp)
2007 int fd;
2008 bool created;
2009 RAMBlock *block;
2011 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2012 if (fd < 0) {
2013 return NULL;
2016 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2017 if (!block) {
2018 if (created) {
2019 unlink(mem_path);
2021 close(fd);
2022 return NULL;
2025 return block;
2027 #endif
2029 static
2030 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2031 void (*resized)(const char*,
2032 uint64_t length,
2033 void *host),
2034 void *host, bool resizeable,
2035 MemoryRegion *mr, Error **errp)
2037 RAMBlock *new_block;
2038 Error *local_err = NULL;
2040 size = HOST_PAGE_ALIGN(size);
2041 max_size = HOST_PAGE_ALIGN(max_size);
2042 new_block = g_malloc0(sizeof(*new_block));
2043 new_block->mr = mr;
2044 new_block->resized = resized;
2045 new_block->used_length = size;
2046 new_block->max_length = max_size;
2047 assert(max_size >= size);
2048 new_block->fd = -1;
2049 new_block->page_size = getpagesize();
2050 new_block->host = host;
2051 if (host) {
2052 new_block->flags |= RAM_PREALLOC;
2054 if (resizeable) {
2055 new_block->flags |= RAM_RESIZEABLE;
2057 ram_block_add(new_block, &local_err);
2058 if (local_err) {
2059 g_free(new_block);
2060 error_propagate(errp, local_err);
2061 return NULL;
2063 return new_block;
2066 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2067 MemoryRegion *mr, Error **errp)
2069 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2072 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2074 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2077 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2078 void (*resized)(const char*,
2079 uint64_t length,
2080 void *host),
2081 MemoryRegion *mr, Error **errp)
2083 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2086 static void reclaim_ramblock(RAMBlock *block)
2088 if (block->flags & RAM_PREALLOC) {
2090 } else if (xen_enabled()) {
2091 xen_invalidate_map_cache_entry(block->host);
2092 #ifndef _WIN32
2093 } else if (block->fd >= 0) {
2094 qemu_ram_munmap(block->host, block->max_length);
2095 close(block->fd);
2096 #endif
2097 } else {
2098 qemu_anon_ram_free(block->host, block->max_length);
2100 g_free(block);
2103 void qemu_ram_free(RAMBlock *block)
2105 if (!block) {
2106 return;
2109 if (block->host) {
2110 ram_block_notify_remove(block->host, block->max_length);
2113 qemu_mutex_lock_ramlist();
2114 QLIST_REMOVE_RCU(block, next);
2115 ram_list.mru_block = NULL;
2116 /* Write list before version */
2117 smp_wmb();
2118 ram_list.version++;
2119 call_rcu(block, reclaim_ramblock, rcu);
2120 qemu_mutex_unlock_ramlist();
2123 #ifndef _WIN32
2124 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2126 RAMBlock *block;
2127 ram_addr_t offset;
2128 int flags;
2129 void *area, *vaddr;
2131 RAMBLOCK_FOREACH(block) {
2132 offset = addr - block->offset;
2133 if (offset < block->max_length) {
2134 vaddr = ramblock_ptr(block, offset);
2135 if (block->flags & RAM_PREALLOC) {
2137 } else if (xen_enabled()) {
2138 abort();
2139 } else {
2140 flags = MAP_FIXED;
2141 if (block->fd >= 0) {
2142 flags |= (block->flags & RAM_SHARED ?
2143 MAP_SHARED : MAP_PRIVATE);
2144 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2145 flags, block->fd, offset);
2146 } else {
2148 * Remap needs to match alloc. Accelerators that
2149 * set phys_mem_alloc never remap. If they did,
2150 * we'd need a remap hook here.
2152 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2154 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2155 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2156 flags, -1, 0);
2158 if (area != vaddr) {
2159 fprintf(stderr, "Could not remap addr: "
2160 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2161 length, addr);
2162 exit(1);
2164 memory_try_enable_merging(vaddr, length);
2165 qemu_ram_setup_dump(vaddr, length);
2170 #endif /* !_WIN32 */
2172 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2173 * This should not be used for general purpose DMA. Use address_space_map
2174 * or address_space_rw instead. For local memory (e.g. video ram) that the
2175 * device owns, use memory_region_get_ram_ptr.
2177 * Called within RCU critical section.
2179 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2181 RAMBlock *block = ram_block;
2183 if (block == NULL) {
2184 block = qemu_get_ram_block(addr);
2185 addr -= block->offset;
2188 if (xen_enabled() && block->host == NULL) {
2189 /* We need to check if the requested address is in the RAM
2190 * because we don't want to map the entire memory in QEMU.
2191 * In that case just map until the end of the page.
2193 if (block->offset == 0) {
2194 return xen_map_cache(addr, 0, 0, false);
2197 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2199 return ramblock_ptr(block, addr);
2202 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2203 * but takes a size argument.
2205 * Called within RCU critical section.
2207 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2208 hwaddr *size, bool lock)
2210 RAMBlock *block = ram_block;
2211 if (*size == 0) {
2212 return NULL;
2215 if (block == NULL) {
2216 block = qemu_get_ram_block(addr);
2217 addr -= block->offset;
2219 *size = MIN(*size, block->max_length - addr);
2221 if (xen_enabled() && block->host == NULL) {
2222 /* We need to check if the requested address is in the RAM
2223 * because we don't want to map the entire memory in QEMU.
2224 * In that case just map the requested area.
2226 if (block->offset == 0) {
2227 return xen_map_cache(addr, *size, lock, lock);
2230 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2233 return ramblock_ptr(block, addr);
2237 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2238 * in that RAMBlock.
2240 * ptr: Host pointer to look up
2241 * round_offset: If true round the result offset down to a page boundary
2242 * *ram_addr: set to result ram_addr
2243 * *offset: set to result offset within the RAMBlock
2245 * Returns: RAMBlock (or NULL if not found)
2247 * By the time this function returns, the returned pointer is not protected
2248 * by RCU anymore. If the caller is not within an RCU critical section and
2249 * does not hold the iothread lock, it must have other means of protecting the
2250 * pointer, such as a reference to the region that includes the incoming
2251 * ram_addr_t.
2253 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2254 ram_addr_t *offset)
2256 RAMBlock *block;
2257 uint8_t *host = ptr;
2259 if (xen_enabled()) {
2260 ram_addr_t ram_addr;
2261 rcu_read_lock();
2262 ram_addr = xen_ram_addr_from_mapcache(ptr);
2263 block = qemu_get_ram_block(ram_addr);
2264 if (block) {
2265 *offset = ram_addr - block->offset;
2267 rcu_read_unlock();
2268 return block;
2271 rcu_read_lock();
2272 block = atomic_rcu_read(&ram_list.mru_block);
2273 if (block && block->host && host - block->host < block->max_length) {
2274 goto found;
2277 RAMBLOCK_FOREACH(block) {
2278 /* This case append when the block is not mapped. */
2279 if (block->host == NULL) {
2280 continue;
2282 if (host - block->host < block->max_length) {
2283 goto found;
2287 rcu_read_unlock();
2288 return NULL;
2290 found:
2291 *offset = (host - block->host);
2292 if (round_offset) {
2293 *offset &= TARGET_PAGE_MASK;
2295 rcu_read_unlock();
2296 return block;
2300 * Finds the named RAMBlock
2302 * name: The name of RAMBlock to find
2304 * Returns: RAMBlock (or NULL if not found)
2306 RAMBlock *qemu_ram_block_by_name(const char *name)
2308 RAMBlock *block;
2310 RAMBLOCK_FOREACH(block) {
2311 if (!strcmp(name, block->idstr)) {
2312 return block;
2316 return NULL;
2319 /* Some of the softmmu routines need to translate from a host pointer
2320 (typically a TLB entry) back to a ram offset. */
2321 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2323 RAMBlock *block;
2324 ram_addr_t offset;
2326 block = qemu_ram_block_from_host(ptr, false, &offset);
2327 if (!block) {
2328 return RAM_ADDR_INVALID;
2331 return block->offset + offset;
2334 /* Called within RCU critical section. */
2335 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2336 uint64_t val, unsigned size)
2338 bool locked = false;
2340 assert(tcg_enabled());
2341 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2342 locked = true;
2343 tb_lock();
2344 tb_invalidate_phys_page_fast(ram_addr, size);
2346 switch (size) {
2347 case 1:
2348 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2349 break;
2350 case 2:
2351 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2352 break;
2353 case 4:
2354 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2355 break;
2356 default:
2357 abort();
2360 if (locked) {
2361 tb_unlock();
2364 /* Set both VGA and migration bits for simplicity and to remove
2365 * the notdirty callback faster.
2367 cpu_physical_memory_set_dirty_range(ram_addr, size,
2368 DIRTY_CLIENTS_NOCODE);
2369 /* we remove the notdirty callback only if the code has been
2370 flushed */
2371 if (!cpu_physical_memory_is_clean(ram_addr)) {
2372 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2376 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2377 unsigned size, bool is_write)
2379 return is_write;
2382 static const MemoryRegionOps notdirty_mem_ops = {
2383 .write = notdirty_mem_write,
2384 .valid.accepts = notdirty_mem_accepts,
2385 .endianness = DEVICE_NATIVE_ENDIAN,
2388 /* Generate a debug exception if a watchpoint has been hit. */
2389 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2391 CPUState *cpu = current_cpu;
2392 CPUClass *cc = CPU_GET_CLASS(cpu);
2393 CPUArchState *env = cpu->env_ptr;
2394 target_ulong pc, cs_base;
2395 target_ulong vaddr;
2396 CPUWatchpoint *wp;
2397 uint32_t cpu_flags;
2399 assert(tcg_enabled());
2400 if (cpu->watchpoint_hit) {
2401 /* We re-entered the check after replacing the TB. Now raise
2402 * the debug interrupt so that is will trigger after the
2403 * current instruction. */
2404 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2405 return;
2407 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2408 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2409 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2410 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2411 && (wp->flags & flags)) {
2412 if (flags == BP_MEM_READ) {
2413 wp->flags |= BP_WATCHPOINT_HIT_READ;
2414 } else {
2415 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2417 wp->hitaddr = vaddr;
2418 wp->hitattrs = attrs;
2419 if (!cpu->watchpoint_hit) {
2420 if (wp->flags & BP_CPU &&
2421 !cc->debug_check_watchpoint(cpu, wp)) {
2422 wp->flags &= ~BP_WATCHPOINT_HIT;
2423 continue;
2425 cpu->watchpoint_hit = wp;
2427 /* Both tb_lock and iothread_mutex will be reset when
2428 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2429 * back into the cpu_exec main loop.
2431 tb_lock();
2432 tb_check_watchpoint(cpu);
2433 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2434 cpu->exception_index = EXCP_DEBUG;
2435 cpu_loop_exit(cpu);
2436 } else {
2437 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2438 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2439 cpu_loop_exit_noexc(cpu);
2442 } else {
2443 wp->flags &= ~BP_WATCHPOINT_HIT;
2448 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2449 so these check for a hit then pass through to the normal out-of-line
2450 phys routines. */
2451 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2452 unsigned size, MemTxAttrs attrs)
2454 MemTxResult res;
2455 uint64_t data;
2456 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2457 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2459 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2460 switch (size) {
2461 case 1:
2462 data = address_space_ldub(as, addr, attrs, &res);
2463 break;
2464 case 2:
2465 data = address_space_lduw(as, addr, attrs, &res);
2466 break;
2467 case 4:
2468 data = address_space_ldl(as, addr, attrs, &res);
2469 break;
2470 default: abort();
2472 *pdata = data;
2473 return res;
2476 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2477 uint64_t val, unsigned size,
2478 MemTxAttrs attrs)
2480 MemTxResult res;
2481 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2482 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2484 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2485 switch (size) {
2486 case 1:
2487 address_space_stb(as, addr, val, attrs, &res);
2488 break;
2489 case 2:
2490 address_space_stw(as, addr, val, attrs, &res);
2491 break;
2492 case 4:
2493 address_space_stl(as, addr, val, attrs, &res);
2494 break;
2495 default: abort();
2497 return res;
2500 static const MemoryRegionOps watch_mem_ops = {
2501 .read_with_attrs = watch_mem_read,
2502 .write_with_attrs = watch_mem_write,
2503 .endianness = DEVICE_NATIVE_ENDIAN,
2506 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2507 const uint8_t *buf, int len);
2508 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2509 bool is_write);
2511 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2512 unsigned len, MemTxAttrs attrs)
2514 subpage_t *subpage = opaque;
2515 uint8_t buf[8];
2516 MemTxResult res;
2518 #if defined(DEBUG_SUBPAGE)
2519 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2520 subpage, len, addr);
2521 #endif
2522 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2523 if (res) {
2524 return res;
2526 switch (len) {
2527 case 1:
2528 *data = ldub_p(buf);
2529 return MEMTX_OK;
2530 case 2:
2531 *data = lduw_p(buf);
2532 return MEMTX_OK;
2533 case 4:
2534 *data = ldl_p(buf);
2535 return MEMTX_OK;
2536 case 8:
2537 *data = ldq_p(buf);
2538 return MEMTX_OK;
2539 default:
2540 abort();
2544 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2545 uint64_t value, unsigned len, MemTxAttrs attrs)
2547 subpage_t *subpage = opaque;
2548 uint8_t buf[8];
2550 #if defined(DEBUG_SUBPAGE)
2551 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2552 " value %"PRIx64"\n",
2553 __func__, subpage, len, addr, value);
2554 #endif
2555 switch (len) {
2556 case 1:
2557 stb_p(buf, value);
2558 break;
2559 case 2:
2560 stw_p(buf, value);
2561 break;
2562 case 4:
2563 stl_p(buf, value);
2564 break;
2565 case 8:
2566 stq_p(buf, value);
2567 break;
2568 default:
2569 abort();
2571 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2574 static bool subpage_accepts(void *opaque, hwaddr addr,
2575 unsigned len, bool is_write)
2577 subpage_t *subpage = opaque;
2578 #if defined(DEBUG_SUBPAGE)
2579 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2580 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2581 #endif
2583 return flatview_access_valid(subpage->fv, addr + subpage->base,
2584 len, is_write);
2587 static const MemoryRegionOps subpage_ops = {
2588 .read_with_attrs = subpage_read,
2589 .write_with_attrs = subpage_write,
2590 .impl.min_access_size = 1,
2591 .impl.max_access_size = 8,
2592 .valid.min_access_size = 1,
2593 .valid.max_access_size = 8,
2594 .valid.accepts = subpage_accepts,
2595 .endianness = DEVICE_NATIVE_ENDIAN,
2598 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2599 uint16_t section)
2601 int idx, eidx;
2603 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2604 return -1;
2605 idx = SUBPAGE_IDX(start);
2606 eidx = SUBPAGE_IDX(end);
2607 #if defined(DEBUG_SUBPAGE)
2608 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2609 __func__, mmio, start, end, idx, eidx, section);
2610 #endif
2611 for (; idx <= eidx; idx++) {
2612 mmio->sub_section[idx] = section;
2615 return 0;
2618 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2620 subpage_t *mmio;
2622 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2623 mmio->fv = fv;
2624 mmio->base = base;
2625 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2626 NULL, TARGET_PAGE_SIZE);
2627 mmio->iomem.subpage = true;
2628 #if defined(DEBUG_SUBPAGE)
2629 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2630 mmio, base, TARGET_PAGE_SIZE);
2631 #endif
2632 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2634 return mmio;
2637 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2639 assert(fv);
2640 MemoryRegionSection section = {
2641 .fv = fv,
2642 .mr = mr,
2643 .offset_within_address_space = 0,
2644 .offset_within_region = 0,
2645 .size = int128_2_64(),
2648 return phys_section_add(map, &section);
2651 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2653 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2654 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2655 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2656 MemoryRegionSection *sections = d->map.sections;
2658 return sections[index & ~TARGET_PAGE_MASK].mr;
2661 static void io_mem_init(void)
2663 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2664 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2665 NULL, UINT64_MAX);
2667 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2668 * which can be called without the iothread mutex.
2670 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2671 NULL, UINT64_MAX);
2672 memory_region_clear_global_locking(&io_mem_notdirty);
2674 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2675 NULL, UINT64_MAX);
2678 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2680 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2681 uint16_t n;
2683 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2684 assert(n == PHYS_SECTION_UNASSIGNED);
2685 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2686 assert(n == PHYS_SECTION_NOTDIRTY);
2687 n = dummy_section(&d->map, fv, &io_mem_rom);
2688 assert(n == PHYS_SECTION_ROM);
2689 n = dummy_section(&d->map, fv, &io_mem_watch);
2690 assert(n == PHYS_SECTION_WATCH);
2692 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2694 return d;
2697 void address_space_dispatch_free(AddressSpaceDispatch *d)
2699 phys_sections_free(&d->map);
2700 g_free(d);
2703 static void tcg_commit(MemoryListener *listener)
2705 CPUAddressSpace *cpuas;
2706 AddressSpaceDispatch *d;
2708 /* since each CPU stores ram addresses in its TLB cache, we must
2709 reset the modified entries */
2710 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2711 cpu_reloading_memory_map();
2712 /* The CPU and TLB are protected by the iothread lock.
2713 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2714 * may have split the RCU critical section.
2716 d = address_space_to_dispatch(cpuas->as);
2717 atomic_rcu_set(&cpuas->memory_dispatch, d);
2718 tlb_flush(cpuas->cpu);
2721 static void memory_map_init(void)
2723 system_memory = g_malloc(sizeof(*system_memory));
2725 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2726 address_space_init(&address_space_memory, system_memory, "memory");
2728 system_io = g_malloc(sizeof(*system_io));
2729 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2730 65536);
2731 address_space_init(&address_space_io, system_io, "I/O");
2734 MemoryRegion *get_system_memory(void)
2736 return system_memory;
2739 MemoryRegion *get_system_io(void)
2741 return system_io;
2744 #endif /* !defined(CONFIG_USER_ONLY) */
2746 /* physical memory access (slow version, mainly for debug) */
2747 #if defined(CONFIG_USER_ONLY)
2748 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2749 uint8_t *buf, int len, int is_write)
2751 int l, flags;
2752 target_ulong page;
2753 void * p;
2755 while (len > 0) {
2756 page = addr & TARGET_PAGE_MASK;
2757 l = (page + TARGET_PAGE_SIZE) - addr;
2758 if (l > len)
2759 l = len;
2760 flags = page_get_flags(page);
2761 if (!(flags & PAGE_VALID))
2762 return -1;
2763 if (is_write) {
2764 if (!(flags & PAGE_WRITE))
2765 return -1;
2766 /* XXX: this code should not depend on lock_user */
2767 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2768 return -1;
2769 memcpy(p, buf, l);
2770 unlock_user(p, addr, l);
2771 } else {
2772 if (!(flags & PAGE_READ))
2773 return -1;
2774 /* XXX: this code should not depend on lock_user */
2775 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2776 return -1;
2777 memcpy(buf, p, l);
2778 unlock_user(p, addr, 0);
2780 len -= l;
2781 buf += l;
2782 addr += l;
2784 return 0;
2787 #else
2789 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2790 hwaddr length)
2792 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2793 addr += memory_region_get_ram_addr(mr);
2795 /* No early return if dirty_log_mask is or becomes 0, because
2796 * cpu_physical_memory_set_dirty_range will still call
2797 * xen_modified_memory.
2799 if (dirty_log_mask) {
2800 dirty_log_mask =
2801 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2803 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2804 assert(tcg_enabled());
2805 tb_lock();
2806 tb_invalidate_phys_range(addr, addr + length);
2807 tb_unlock();
2808 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2810 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2813 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2815 unsigned access_size_max = mr->ops->valid.max_access_size;
2817 /* Regions are assumed to support 1-4 byte accesses unless
2818 otherwise specified. */
2819 if (access_size_max == 0) {
2820 access_size_max = 4;
2823 /* Bound the maximum access by the alignment of the address. */
2824 if (!mr->ops->impl.unaligned) {
2825 unsigned align_size_max = addr & -addr;
2826 if (align_size_max != 0 && align_size_max < access_size_max) {
2827 access_size_max = align_size_max;
2831 /* Don't attempt accesses larger than the maximum. */
2832 if (l > access_size_max) {
2833 l = access_size_max;
2835 l = pow2floor(l);
2837 return l;
2840 static bool prepare_mmio_access(MemoryRegion *mr)
2842 bool unlocked = !qemu_mutex_iothread_locked();
2843 bool release_lock = false;
2845 if (unlocked && mr->global_locking) {
2846 qemu_mutex_lock_iothread();
2847 unlocked = false;
2848 release_lock = true;
2850 if (mr->flush_coalesced_mmio) {
2851 if (unlocked) {
2852 qemu_mutex_lock_iothread();
2854 qemu_flush_coalesced_mmio_buffer();
2855 if (unlocked) {
2856 qemu_mutex_unlock_iothread();
2860 return release_lock;
2863 /* Called within RCU critical section. */
2864 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2865 MemTxAttrs attrs,
2866 const uint8_t *buf,
2867 int len, hwaddr addr1,
2868 hwaddr l, MemoryRegion *mr)
2870 uint8_t *ptr;
2871 uint64_t val;
2872 MemTxResult result = MEMTX_OK;
2873 bool release_lock = false;
2875 for (;;) {
2876 if (!memory_access_is_direct(mr, true)) {
2877 release_lock |= prepare_mmio_access(mr);
2878 l = memory_access_size(mr, l, addr1);
2879 /* XXX: could force current_cpu to NULL to avoid
2880 potential bugs */
2881 switch (l) {
2882 case 8:
2883 /* 64 bit write access */
2884 val = ldq_p(buf);
2885 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2886 attrs);
2887 break;
2888 case 4:
2889 /* 32 bit write access */
2890 val = (uint32_t)ldl_p(buf);
2891 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2892 attrs);
2893 break;
2894 case 2:
2895 /* 16 bit write access */
2896 val = lduw_p(buf);
2897 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2898 attrs);
2899 break;
2900 case 1:
2901 /* 8 bit write access */
2902 val = ldub_p(buf);
2903 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2904 attrs);
2905 break;
2906 default:
2907 abort();
2909 } else {
2910 /* RAM case */
2911 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2912 memcpy(ptr, buf, l);
2913 invalidate_and_set_dirty(mr, addr1, l);
2916 if (release_lock) {
2917 qemu_mutex_unlock_iothread();
2918 release_lock = false;
2921 len -= l;
2922 buf += l;
2923 addr += l;
2925 if (!len) {
2926 break;
2929 l = len;
2930 mr = flatview_translate(fv, addr, &addr1, &l, true);
2933 return result;
2936 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2937 const uint8_t *buf, int len)
2939 hwaddr l;
2940 hwaddr addr1;
2941 MemoryRegion *mr;
2942 MemTxResult result = MEMTX_OK;
2944 if (len > 0) {
2945 rcu_read_lock();
2946 l = len;
2947 mr = flatview_translate(fv, addr, &addr1, &l, true);
2948 result = flatview_write_continue(fv, addr, attrs, buf, len,
2949 addr1, l, mr);
2950 rcu_read_unlock();
2953 return result;
2956 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2957 MemTxAttrs attrs,
2958 const uint8_t *buf, int len)
2960 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
2963 /* Called within RCU critical section. */
2964 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2965 MemTxAttrs attrs, uint8_t *buf,
2966 int len, hwaddr addr1, hwaddr l,
2967 MemoryRegion *mr)
2969 uint8_t *ptr;
2970 uint64_t val;
2971 MemTxResult result = MEMTX_OK;
2972 bool release_lock = false;
2974 for (;;) {
2975 if (!memory_access_is_direct(mr, false)) {
2976 /* I/O case */
2977 release_lock |= prepare_mmio_access(mr);
2978 l = memory_access_size(mr, l, addr1);
2979 switch (l) {
2980 case 8:
2981 /* 64 bit read access */
2982 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2983 attrs);
2984 stq_p(buf, val);
2985 break;
2986 case 4:
2987 /* 32 bit read access */
2988 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2989 attrs);
2990 stl_p(buf, val);
2991 break;
2992 case 2:
2993 /* 16 bit read access */
2994 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2995 attrs);
2996 stw_p(buf, val);
2997 break;
2998 case 1:
2999 /* 8 bit read access */
3000 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3001 attrs);
3002 stb_p(buf, val);
3003 break;
3004 default:
3005 abort();
3007 } else {
3008 /* RAM case */
3009 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3010 memcpy(buf, ptr, l);
3013 if (release_lock) {
3014 qemu_mutex_unlock_iothread();
3015 release_lock = false;
3018 len -= l;
3019 buf += l;
3020 addr += l;
3022 if (!len) {
3023 break;
3026 l = len;
3027 mr = flatview_translate(fv, addr, &addr1, &l, false);
3030 return result;
3033 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3034 MemTxAttrs attrs, uint8_t *buf, int len)
3036 hwaddr l;
3037 hwaddr addr1;
3038 MemoryRegion *mr;
3039 MemTxResult result = MEMTX_OK;
3041 if (len > 0) {
3042 rcu_read_lock();
3043 l = len;
3044 mr = flatview_translate(fv, addr, &addr1, &l, false);
3045 result = flatview_read_continue(fv, addr, attrs, buf, len,
3046 addr1, l, mr);
3047 rcu_read_unlock();
3050 return result;
3053 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3054 uint8_t *buf, int len, bool is_write)
3056 if (is_write) {
3057 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3058 } else {
3059 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3063 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3064 MemTxAttrs attrs, uint8_t *buf,
3065 int len, bool is_write)
3067 return flatview_rw(address_space_to_flatview(as),
3068 addr, attrs, buf, len, is_write);
3071 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3072 int len, int is_write)
3074 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3075 buf, len, is_write);
3078 enum write_rom_type {
3079 WRITE_DATA,
3080 FLUSH_CACHE,
3083 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3084 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3086 hwaddr l;
3087 uint8_t *ptr;
3088 hwaddr addr1;
3089 MemoryRegion *mr;
3091 rcu_read_lock();
3092 while (len > 0) {
3093 l = len;
3094 mr = address_space_translate(as, addr, &addr1, &l, true);
3096 if (!(memory_region_is_ram(mr) ||
3097 memory_region_is_romd(mr))) {
3098 l = memory_access_size(mr, l, addr1);
3099 } else {
3100 /* ROM/RAM case */
3101 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3102 switch (type) {
3103 case WRITE_DATA:
3104 memcpy(ptr, buf, l);
3105 invalidate_and_set_dirty(mr, addr1, l);
3106 break;
3107 case FLUSH_CACHE:
3108 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3109 break;
3112 len -= l;
3113 buf += l;
3114 addr += l;
3116 rcu_read_unlock();
3119 /* used for ROM loading : can write in RAM and ROM */
3120 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3121 const uint8_t *buf, int len)
3123 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3126 void cpu_flush_icache_range(hwaddr start, int len)
3129 * This function should do the same thing as an icache flush that was
3130 * triggered from within the guest. For TCG we are always cache coherent,
3131 * so there is no need to flush anything. For KVM / Xen we need to flush
3132 * the host's instruction cache at least.
3134 if (tcg_enabled()) {
3135 return;
3138 cpu_physical_memory_write_rom_internal(&address_space_memory,
3139 start, NULL, len, FLUSH_CACHE);
3142 typedef struct {
3143 MemoryRegion *mr;
3144 void *buffer;
3145 hwaddr addr;
3146 hwaddr len;
3147 bool in_use;
3148 } BounceBuffer;
3150 static BounceBuffer bounce;
3152 typedef struct MapClient {
3153 QEMUBH *bh;
3154 QLIST_ENTRY(MapClient) link;
3155 } MapClient;
3157 QemuMutex map_client_list_lock;
3158 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3159 = QLIST_HEAD_INITIALIZER(map_client_list);
3161 static void cpu_unregister_map_client_do(MapClient *client)
3163 QLIST_REMOVE(client, link);
3164 g_free(client);
3167 static void cpu_notify_map_clients_locked(void)
3169 MapClient *client;
3171 while (!QLIST_EMPTY(&map_client_list)) {
3172 client = QLIST_FIRST(&map_client_list);
3173 qemu_bh_schedule(client->bh);
3174 cpu_unregister_map_client_do(client);
3178 void cpu_register_map_client(QEMUBH *bh)
3180 MapClient *client = g_malloc(sizeof(*client));
3182 qemu_mutex_lock(&map_client_list_lock);
3183 client->bh = bh;
3184 QLIST_INSERT_HEAD(&map_client_list, client, link);
3185 if (!atomic_read(&bounce.in_use)) {
3186 cpu_notify_map_clients_locked();
3188 qemu_mutex_unlock(&map_client_list_lock);
3191 void cpu_exec_init_all(void)
3193 qemu_mutex_init(&ram_list.mutex);
3194 /* The data structures we set up here depend on knowing the page size,
3195 * so no more changes can be made after this point.
3196 * In an ideal world, nothing we did before we had finished the
3197 * machine setup would care about the target page size, and we could
3198 * do this much later, rather than requiring board models to state
3199 * up front what their requirements are.
3201 finalize_target_page_bits();
3202 io_mem_init();
3203 memory_map_init();
3204 qemu_mutex_init(&map_client_list_lock);
3207 void cpu_unregister_map_client(QEMUBH *bh)
3209 MapClient *client;
3211 qemu_mutex_lock(&map_client_list_lock);
3212 QLIST_FOREACH(client, &map_client_list, link) {
3213 if (client->bh == bh) {
3214 cpu_unregister_map_client_do(client);
3215 break;
3218 qemu_mutex_unlock(&map_client_list_lock);
3221 static void cpu_notify_map_clients(void)
3223 qemu_mutex_lock(&map_client_list_lock);
3224 cpu_notify_map_clients_locked();
3225 qemu_mutex_unlock(&map_client_list_lock);
3228 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3229 bool is_write)
3231 MemoryRegion *mr;
3232 hwaddr l, xlat;
3234 rcu_read_lock();
3235 while (len > 0) {
3236 l = len;
3237 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3238 if (!memory_access_is_direct(mr, is_write)) {
3239 l = memory_access_size(mr, l, addr);
3240 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3241 rcu_read_unlock();
3242 return false;
3246 len -= l;
3247 addr += l;
3249 rcu_read_unlock();
3250 return true;
3253 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3254 int len, bool is_write)
3256 return flatview_access_valid(address_space_to_flatview(as),
3257 addr, len, is_write);
3260 static hwaddr
3261 flatview_extend_translation(FlatView *fv, hwaddr addr,
3262 hwaddr target_len,
3263 MemoryRegion *mr, hwaddr base, hwaddr len,
3264 bool is_write)
3266 hwaddr done = 0;
3267 hwaddr xlat;
3268 MemoryRegion *this_mr;
3270 for (;;) {
3271 target_len -= len;
3272 addr += len;
3273 done += len;
3274 if (target_len == 0) {
3275 return done;
3278 len = target_len;
3279 this_mr = flatview_translate(fv, addr, &xlat,
3280 &len, is_write);
3281 if (this_mr != mr || xlat != base + done) {
3282 return done;
3287 /* Map a physical memory region into a host virtual address.
3288 * May map a subset of the requested range, given by and returned in *plen.
3289 * May return NULL if resources needed to perform the mapping are exhausted.
3290 * Use only for reads OR writes - not for read-modify-write operations.
3291 * Use cpu_register_map_client() to know when retrying the map operation is
3292 * likely to succeed.
3294 void *address_space_map(AddressSpace *as,
3295 hwaddr addr,
3296 hwaddr *plen,
3297 bool is_write)
3299 hwaddr len = *plen;
3300 hwaddr l, xlat;
3301 MemoryRegion *mr;
3302 void *ptr;
3303 FlatView *fv = address_space_to_flatview(as);
3305 if (len == 0) {
3306 return NULL;
3309 l = len;
3310 rcu_read_lock();
3311 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3313 if (!memory_access_is_direct(mr, is_write)) {
3314 if (atomic_xchg(&bounce.in_use, true)) {
3315 rcu_read_unlock();
3316 return NULL;
3318 /* Avoid unbounded allocations */
3319 l = MIN(l, TARGET_PAGE_SIZE);
3320 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3321 bounce.addr = addr;
3322 bounce.len = l;
3324 memory_region_ref(mr);
3325 bounce.mr = mr;
3326 if (!is_write) {
3327 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3328 bounce.buffer, l);
3331 rcu_read_unlock();
3332 *plen = l;
3333 return bounce.buffer;
3337 memory_region_ref(mr);
3338 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3339 l, is_write);
3340 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3341 rcu_read_unlock();
3343 return ptr;
3346 /* Unmaps a memory region previously mapped by address_space_map().
3347 * Will also mark the memory as dirty if is_write == 1. access_len gives
3348 * the amount of memory that was actually read or written by the caller.
3350 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3351 int is_write, hwaddr access_len)
3353 if (buffer != bounce.buffer) {
3354 MemoryRegion *mr;
3355 ram_addr_t addr1;
3357 mr = memory_region_from_host(buffer, &addr1);
3358 assert(mr != NULL);
3359 if (is_write) {
3360 invalidate_and_set_dirty(mr, addr1, access_len);
3362 if (xen_enabled()) {
3363 xen_invalidate_map_cache_entry(buffer);
3365 memory_region_unref(mr);
3366 return;
3368 if (is_write) {
3369 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3370 bounce.buffer, access_len);
3372 qemu_vfree(bounce.buffer);
3373 bounce.buffer = NULL;
3374 memory_region_unref(bounce.mr);
3375 atomic_mb_set(&bounce.in_use, false);
3376 cpu_notify_map_clients();
3379 void *cpu_physical_memory_map(hwaddr addr,
3380 hwaddr *plen,
3381 int is_write)
3383 return address_space_map(&address_space_memory, addr, plen, is_write);
3386 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3387 int is_write, hwaddr access_len)
3389 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3392 #define ARG1_DECL AddressSpace *as
3393 #define ARG1 as
3394 #define SUFFIX
3395 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3396 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3397 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3398 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3399 #define RCU_READ_LOCK(...) rcu_read_lock()
3400 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3401 #include "memory_ldst.inc.c"
3403 int64_t address_space_cache_init(MemoryRegionCache *cache,
3404 AddressSpace *as,
3405 hwaddr addr,
3406 hwaddr len,
3407 bool is_write)
3409 cache->len = len;
3410 cache->as = as;
3411 cache->xlat = addr;
3412 return len;
3415 void address_space_cache_invalidate(MemoryRegionCache *cache,
3416 hwaddr addr,
3417 hwaddr access_len)
3421 void address_space_cache_destroy(MemoryRegionCache *cache)
3423 cache->as = NULL;
3426 #define ARG1_DECL MemoryRegionCache *cache
3427 #define ARG1 cache
3428 #define SUFFIX _cached
3429 #define TRANSLATE(addr, ...) \
3430 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3431 #define IS_DIRECT(mr, is_write) true
3432 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3433 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3434 #define RCU_READ_LOCK() rcu_read_lock()
3435 #define RCU_READ_UNLOCK() rcu_read_unlock()
3436 #include "memory_ldst.inc.c"
3438 /* virtual memory access for debug (includes writing to ROM) */
3439 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3440 uint8_t *buf, int len, int is_write)
3442 int l;
3443 hwaddr phys_addr;
3444 target_ulong page;
3446 cpu_synchronize_state(cpu);
3447 while (len > 0) {
3448 int asidx;
3449 MemTxAttrs attrs;
3451 page = addr & TARGET_PAGE_MASK;
3452 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3453 asidx = cpu_asidx_from_attrs(cpu, attrs);
3454 /* if no physical page mapped, return an error */
3455 if (phys_addr == -1)
3456 return -1;
3457 l = (page + TARGET_PAGE_SIZE) - addr;
3458 if (l > len)
3459 l = len;
3460 phys_addr += (addr & ~TARGET_PAGE_MASK);
3461 if (is_write) {
3462 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3463 phys_addr, buf, l);
3464 } else {
3465 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3466 MEMTXATTRS_UNSPECIFIED,
3467 buf, l, 0);
3469 len -= l;
3470 buf += l;
3471 addr += l;
3473 return 0;
3477 * Allows code that needs to deal with migration bitmaps etc to still be built
3478 * target independent.
3480 size_t qemu_target_page_size(void)
3482 return TARGET_PAGE_SIZE;
3485 int qemu_target_page_bits(void)
3487 return TARGET_PAGE_BITS;
3490 int qemu_target_page_bits_min(void)
3492 return TARGET_PAGE_BITS_MIN;
3494 #endif
3497 * A helper function for the _utterly broken_ virtio device model to find out if
3498 * it's running on a big endian machine. Don't do this at home kids!
3500 bool target_words_bigendian(void);
3501 bool target_words_bigendian(void)
3503 #if defined(TARGET_WORDS_BIGENDIAN)
3504 return true;
3505 #else
3506 return false;
3507 #endif
3510 #ifndef CONFIG_USER_ONLY
3511 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3513 MemoryRegion*mr;
3514 hwaddr l = 1;
3515 bool res;
3517 rcu_read_lock();
3518 mr = address_space_translate(&address_space_memory,
3519 phys_addr, &phys_addr, &l, false);
3521 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3522 rcu_read_unlock();
3523 return res;
3526 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3528 RAMBlock *block;
3529 int ret = 0;
3531 rcu_read_lock();
3532 RAMBLOCK_FOREACH(block) {
3533 ret = func(block->idstr, block->host, block->offset,
3534 block->used_length, opaque);
3535 if (ret) {
3536 break;
3539 rcu_read_unlock();
3540 return ret;
3544 * Unmap pages of memory from start to start+length such that
3545 * they a) read as 0, b) Trigger whatever fault mechanism
3546 * the OS provides for postcopy.
3547 * The pages must be unmapped by the end of the function.
3548 * Returns: 0 on success, none-0 on failure
3551 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3553 int ret = -1;
3555 uint8_t *host_startaddr = rb->host + start;
3557 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3558 error_report("ram_block_discard_range: Unaligned start address: %p",
3559 host_startaddr);
3560 goto err;
3563 if ((start + length) <= rb->used_length) {
3564 uint8_t *host_endaddr = host_startaddr + length;
3565 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3566 error_report("ram_block_discard_range: Unaligned end address: %p",
3567 host_endaddr);
3568 goto err;
3571 errno = ENOTSUP; /* If we are missing MADVISE etc */
3573 if (rb->page_size == qemu_host_page_size) {
3574 #if defined(CONFIG_MADVISE)
3575 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3576 * freeing the page.
3578 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3579 #endif
3580 } else {
3581 /* Huge page case - unfortunately it can't do DONTNEED, but
3582 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3583 * huge page file.
3585 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3586 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3587 start, length);
3588 #endif
3590 if (ret) {
3591 ret = -errno;
3592 error_report("ram_block_discard_range: Failed to discard range "
3593 "%s:%" PRIx64 " +%zx (%d)",
3594 rb->idstr, start, length, ret);
3596 } else {
3597 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3598 "/%zx/" RAM_ADDR_FMT")",
3599 rb->idstr, start, length, rb->used_length);
3602 err:
3603 return ret;
3606 #endif
3608 void page_size_init(void)
3610 /* NOTE: we can always suppose that qemu_host_page_size >=
3611 TARGET_PAGE_SIZE */
3612 if (qemu_host_page_size == 0) {
3613 qemu_host_page_size = qemu_real_host_page_size;
3615 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3616 qemu_host_page_size = TARGET_PAGE_SIZE;
3618 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3621 #if !defined(CONFIG_USER_ONLY)
3623 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3624 int start, int end, int skip, int ptr)
3626 if (start == end - 1) {
3627 mon(f, "\t%3d ", start);
3628 } else {
3629 mon(f, "\t%3d..%-3d ", start, end - 1);
3631 mon(f, " skip=%d ", skip);
3632 if (ptr == PHYS_MAP_NODE_NIL) {
3633 mon(f, " ptr=NIL");
3634 } else if (!skip) {
3635 mon(f, " ptr=#%d", ptr);
3636 } else {
3637 mon(f, " ptr=[%d]", ptr);
3639 mon(f, "\n");
3642 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3643 int128_sub((size), int128_one())) : 0)
3645 void mtree_print_dispatch(fprintf_function mon, void *f,
3646 AddressSpaceDispatch *d, MemoryRegion *root)
3648 int i;
3650 mon(f, " Dispatch\n");
3651 mon(f, " Physical sections\n");
3653 for (i = 0; i < d->map.sections_nb; ++i) {
3654 MemoryRegionSection *s = d->map.sections + i;
3655 const char *names[] = { " [unassigned]", " [not dirty]",
3656 " [ROM]", " [watch]" };
3658 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3660 s->offset_within_address_space,
3661 s->offset_within_address_space + MR_SIZE(s->mr->size),
3662 s->mr->name ? s->mr->name : "(noname)",
3663 i < ARRAY_SIZE(names) ? names[i] : "",
3664 s->mr == root ? " [ROOT]" : "",
3665 s == d->mru_section ? " [MRU]" : "",
3666 s->mr->is_iommu ? " [iommu]" : "");
3668 if (s->mr->alias) {
3669 mon(f, " alias=%s", s->mr->alias->name ?
3670 s->mr->alias->name : "noname");
3672 mon(f, "\n");
3675 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3676 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3677 for (i = 0; i < d->map.nodes_nb; ++i) {
3678 int j, jprev;
3679 PhysPageEntry prev;
3680 Node *n = d->map.nodes + i;
3682 mon(f, " [%d]\n", i);
3684 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3685 PhysPageEntry *pe = *n + j;
3687 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3688 continue;
3691 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3693 jprev = j;
3694 prev = *pe;
3697 if (jprev != ARRAY_SIZE(*n)) {
3698 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3703 #endif