spapr: add node-id property to sPAPR core
[qemu/ar7.git] / hw / ppc / spapr.c
bloba952a3983691ddf482c6368ef2ccff6caa44760b
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "mmu-book3s-v3.h"
44 #include "qom/cpu.h"
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
50 #include "hw/ppc/fdt.h"
51 #include "hw/ppc/spapr.h"
52 #include "hw/ppc/spapr_vio.h"
53 #include "hw/pci-host/spapr.h"
54 #include "hw/ppc/xics.h"
55 #include "hw/pci/msi.h"
57 #include "hw/pci/pci.h"
58 #include "hw/scsi/scsi.h"
59 #include "hw/virtio/virtio-scsi.h"
61 #include "exec/address-spaces.h"
62 #include "hw/usb.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
65 #include "trace.h"
66 #include "hw/nmi.h"
67 #include "hw/intc/intc.h"
69 #include "hw/compat.h"
70 #include "qemu/cutils.h"
71 #include "hw/ppc/spapr_cpu_core.h"
72 #include "qmp-commands.h"
74 #include <libfdt.h>
76 /* SLOF memory layout:
78 * SLOF raw image loaded at 0, copies its romfs right below the flat
79 * device-tree, then position SLOF itself 31M below that
81 * So we set FW_OVERHEAD to 40MB which should account for all of that
82 * and more
84 * We load our kernel at 4M, leaving space for SLOF initial image
86 #define FDT_MAX_SIZE 0x100000
87 #define RTAS_MAX_SIZE 0x10000
88 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
89 #define FW_MAX_SIZE 0x400000
90 #define FW_FILE_NAME "slof.bin"
91 #define FW_OVERHEAD 0x2800000
92 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
94 #define MIN_RMA_SLOF 128UL
96 #define PHANDLE_XICP 0x00001111
98 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
100 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
101 const char *type_ics,
102 int nr_irqs, Error **errp)
104 Error *err = NULL, *local_err = NULL;
105 Object *obj;
107 obj = object_new(type_ics);
108 object_property_add_child(OBJECT(spapr), "ics", obj, NULL);
109 object_property_add_const_link(obj, "xics", OBJECT(spapr), &error_abort);
110 object_property_set_int(obj, nr_irqs, "nr-irqs", &err);
111 object_property_set_bool(obj, true, "realized", &local_err);
112 error_propagate(&err, local_err);
113 if (err) {
114 error_propagate(errp, err);
115 return NULL;
118 return ICS_SIMPLE(obj);
121 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
123 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
125 if (kvm_enabled()) {
126 Error *err = NULL;
128 if (machine_kernel_irqchip_allowed(machine) &&
129 !xics_kvm_init(spapr, errp)) {
130 spapr->icp_type = TYPE_KVM_ICP;
131 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, &err);
133 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
134 error_reportf_err(err,
135 "kernel_irqchip requested but unavailable: ");
136 } else {
137 error_free(err);
141 if (!spapr->ics) {
142 xics_spapr_init(spapr, errp);
143 spapr->icp_type = TYPE_ICP;
144 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
148 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
149 int smt_threads)
151 int i, ret = 0;
152 uint32_t servers_prop[smt_threads];
153 uint32_t gservers_prop[smt_threads * 2];
154 int index = ppc_get_vcpu_dt_id(cpu);
156 if (cpu->compat_pvr) {
157 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
158 if (ret < 0) {
159 return ret;
163 /* Build interrupt servers and gservers properties */
164 for (i = 0; i < smt_threads; i++) {
165 servers_prop[i] = cpu_to_be32(index + i);
166 /* Hack, direct the group queues back to cpu 0 */
167 gservers_prop[i*2] = cpu_to_be32(index + i);
168 gservers_prop[i*2 + 1] = 0;
170 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
171 servers_prop, sizeof(servers_prop));
172 if (ret < 0) {
173 return ret;
175 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
176 gservers_prop, sizeof(gservers_prop));
178 return ret;
181 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
183 int ret = 0;
184 PowerPCCPU *cpu = POWERPC_CPU(cs);
185 int index = ppc_get_vcpu_dt_id(cpu);
186 uint32_t associativity[] = {cpu_to_be32(0x5),
187 cpu_to_be32(0x0),
188 cpu_to_be32(0x0),
189 cpu_to_be32(0x0),
190 cpu_to_be32(cs->numa_node),
191 cpu_to_be32(index)};
193 /* Advertise NUMA via ibm,associativity */
194 if (nb_numa_nodes > 1) {
195 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
196 sizeof(associativity));
199 return ret;
202 /* Populate the "ibm,pa-features" property */
203 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
204 bool legacy_guest)
206 uint8_t pa_features_206[] = { 6, 0,
207 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
208 uint8_t pa_features_207[] = { 24, 0,
209 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
210 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
211 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
212 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
213 uint8_t pa_features_300[] = { 66, 0,
214 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
215 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
217 /* 6: DS207 */
218 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
219 /* 16: Vector */
220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
221 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
222 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
223 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
224 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
225 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
226 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
227 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
228 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
229 /* 42: PM, 44: PC RA, 46: SC vec'd */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
231 /* 48: SIMD, 50: QP BFP, 52: String */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
233 /* 54: DecFP, 56: DecI, 58: SHA */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
235 /* 60: NM atomic, 62: RNG */
236 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
238 uint8_t *pa_features;
239 size_t pa_size;
241 switch (POWERPC_MMU_VER(env->mmu_model)) {
242 case POWERPC_MMU_VER_2_06:
243 pa_features = pa_features_206;
244 pa_size = sizeof(pa_features_206);
245 break;
246 case POWERPC_MMU_VER_2_07:
247 pa_features = pa_features_207;
248 pa_size = sizeof(pa_features_207);
249 break;
250 case POWERPC_MMU_VER_3_00:
251 pa_features = pa_features_300;
252 pa_size = sizeof(pa_features_300);
253 break;
254 default:
255 return;
258 if (env->ci_large_pages) {
260 * Note: we keep CI large pages off by default because a 64K capable
261 * guest provisioned with large pages might otherwise try to map a qemu
262 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
263 * even if that qemu runs on a 4k host.
264 * We dd this bit back here if we are confident this is not an issue
266 pa_features[3] |= 0x20;
268 if (kvmppc_has_cap_htm() && pa_size > 24) {
269 pa_features[24] |= 0x80; /* Transactional memory support */
271 if (legacy_guest && pa_size > 40) {
272 /* Workaround for broken kernels that attempt (guest) radix
273 * mode when they can't handle it, if they see the radix bit set
274 * in pa-features. So hide it from them. */
275 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
278 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
281 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
283 int ret = 0, offset, cpus_offset;
284 CPUState *cs;
285 char cpu_model[32];
286 int smt = kvmppc_smt_threads();
287 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
289 CPU_FOREACH(cs) {
290 PowerPCCPU *cpu = POWERPC_CPU(cs);
291 CPUPPCState *env = &cpu->env;
292 DeviceClass *dc = DEVICE_GET_CLASS(cs);
293 int index = ppc_get_vcpu_dt_id(cpu);
294 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
296 if ((index % smt) != 0) {
297 continue;
300 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
302 cpus_offset = fdt_path_offset(fdt, "/cpus");
303 if (cpus_offset < 0) {
304 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
305 "cpus");
306 if (cpus_offset < 0) {
307 return cpus_offset;
310 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
311 if (offset < 0) {
312 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
313 if (offset < 0) {
314 return offset;
318 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
319 pft_size_prop, sizeof(pft_size_prop));
320 if (ret < 0) {
321 return ret;
324 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
325 if (ret < 0) {
326 return ret;
329 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
330 if (ret < 0) {
331 return ret;
334 spapr_populate_pa_features(env, fdt, offset,
335 spapr->cas_legacy_guest_workaround);
337 return ret;
340 static hwaddr spapr_node0_size(void)
342 MachineState *machine = MACHINE(qdev_get_machine());
344 if (nb_numa_nodes) {
345 int i;
346 for (i = 0; i < nb_numa_nodes; ++i) {
347 if (numa_info[i].node_mem) {
348 return MIN(pow2floor(numa_info[i].node_mem),
349 machine->ram_size);
353 return machine->ram_size;
356 static void add_str(GString *s, const gchar *s1)
358 g_string_append_len(s, s1, strlen(s1) + 1);
361 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
362 hwaddr size)
364 uint32_t associativity[] = {
365 cpu_to_be32(0x4), /* length */
366 cpu_to_be32(0x0), cpu_to_be32(0x0),
367 cpu_to_be32(0x0), cpu_to_be32(nodeid)
369 char mem_name[32];
370 uint64_t mem_reg_property[2];
371 int off;
373 mem_reg_property[0] = cpu_to_be64(start);
374 mem_reg_property[1] = cpu_to_be64(size);
376 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
377 off = fdt_add_subnode(fdt, 0, mem_name);
378 _FDT(off);
379 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
380 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
381 sizeof(mem_reg_property))));
382 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
383 sizeof(associativity))));
384 return off;
387 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
389 MachineState *machine = MACHINE(spapr);
390 hwaddr mem_start, node_size;
391 int i, nb_nodes = nb_numa_nodes;
392 NodeInfo *nodes = numa_info;
393 NodeInfo ramnode;
395 /* No NUMA nodes, assume there is just one node with whole RAM */
396 if (!nb_numa_nodes) {
397 nb_nodes = 1;
398 ramnode.node_mem = machine->ram_size;
399 nodes = &ramnode;
402 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
403 if (!nodes[i].node_mem) {
404 continue;
406 if (mem_start >= machine->ram_size) {
407 node_size = 0;
408 } else {
409 node_size = nodes[i].node_mem;
410 if (node_size > machine->ram_size - mem_start) {
411 node_size = machine->ram_size - mem_start;
414 if (!mem_start) {
415 /* ppc_spapr_init() checks for rma_size <= node0_size already */
416 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
417 mem_start += spapr->rma_size;
418 node_size -= spapr->rma_size;
420 for ( ; node_size; ) {
421 hwaddr sizetmp = pow2floor(node_size);
423 /* mem_start != 0 here */
424 if (ctzl(mem_start) < ctzl(sizetmp)) {
425 sizetmp = 1ULL << ctzl(mem_start);
428 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
429 node_size -= sizetmp;
430 mem_start += sizetmp;
434 return 0;
437 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
438 sPAPRMachineState *spapr)
440 PowerPCCPU *cpu = POWERPC_CPU(cs);
441 CPUPPCState *env = &cpu->env;
442 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
443 int index = ppc_get_vcpu_dt_id(cpu);
444 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
445 0xffffffff, 0xffffffff};
446 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
447 : SPAPR_TIMEBASE_FREQ;
448 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
449 uint32_t page_sizes_prop[64];
450 size_t page_sizes_prop_size;
451 uint32_t vcpus_per_socket = smp_threads * smp_cores;
452 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
453 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
454 sPAPRDRConnector *drc;
455 sPAPRDRConnectorClass *drck;
456 int drc_index;
457 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
458 int i;
460 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
461 if (drc) {
462 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
463 drc_index = drck->get_index(drc);
464 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
468 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
470 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
471 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
472 env->dcache_line_size)));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
476 env->icache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
478 env->icache_line_size)));
480 if (pcc->l1_dcache_size) {
481 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
482 pcc->l1_dcache_size)));
483 } else {
484 error_report("Warning: Unknown L1 dcache size for cpu");
486 if (pcc->l1_icache_size) {
487 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
488 pcc->l1_icache_size)));
489 } else {
490 error_report("Warning: Unknown L1 icache size for cpu");
493 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
494 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
495 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
496 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
497 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
498 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
500 if (env->spr_cb[SPR_PURR].oea_read) {
501 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
504 if (env->mmu_model & POWERPC_MMU_1TSEG) {
505 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
506 segs, sizeof(segs))));
509 /* Advertise VMX/VSX (vector extensions) if available
510 * 0 / no property == no vector extensions
511 * 1 == VMX / Altivec available
512 * 2 == VSX available */
513 if (env->insns_flags & PPC_ALTIVEC) {
514 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
516 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
519 /* Advertise DFP (Decimal Floating Point) if available
520 * 0 / no property == no DFP
521 * 1 == DFP available */
522 if (env->insns_flags2 & PPC2_DFP) {
523 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
526 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
527 sizeof(page_sizes_prop));
528 if (page_sizes_prop_size) {
529 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
530 page_sizes_prop, page_sizes_prop_size)));
533 spapr_populate_pa_features(env, fdt, offset, false);
535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
536 cs->cpu_index / vcpus_per_socket)));
538 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
539 pft_size_prop, sizeof(pft_size_prop))));
541 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
543 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
545 if (pcc->radix_page_info) {
546 for (i = 0; i < pcc->radix_page_info->count; i++) {
547 radix_AP_encodings[i] =
548 cpu_to_be32(pcc->radix_page_info->entries[i]);
550 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
551 radix_AP_encodings,
552 pcc->radix_page_info->count *
553 sizeof(radix_AP_encodings[0]))));
557 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
559 CPUState *cs;
560 int cpus_offset;
561 char *nodename;
562 int smt = kvmppc_smt_threads();
564 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
565 _FDT(cpus_offset);
566 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
567 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
570 * We walk the CPUs in reverse order to ensure that CPU DT nodes
571 * created by fdt_add_subnode() end up in the right order in FDT
572 * for the guest kernel the enumerate the CPUs correctly.
574 CPU_FOREACH_REVERSE(cs) {
575 PowerPCCPU *cpu = POWERPC_CPU(cs);
576 int index = ppc_get_vcpu_dt_id(cpu);
577 DeviceClass *dc = DEVICE_GET_CLASS(cs);
578 int offset;
580 if ((index % smt) != 0) {
581 continue;
584 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
585 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
586 g_free(nodename);
587 _FDT(offset);
588 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
594 * Adds ibm,dynamic-reconfiguration-memory node.
595 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
596 * of this device tree node.
598 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
600 MachineState *machine = MACHINE(spapr);
601 int ret, i, offset;
602 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
603 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
604 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
605 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
606 memory_region_size(&spapr->hotplug_memory.mr)) /
607 lmb_size;
608 uint32_t *int_buf, *cur_index, buf_len;
609 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
612 * Don't create the node if there is no hotpluggable memory
614 if (machine->ram_size == machine->maxram_size) {
615 return 0;
619 * Allocate enough buffer size to fit in ibm,dynamic-memory
620 * or ibm,associativity-lookup-arrays
622 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
623 * sizeof(uint32_t);
624 cur_index = int_buf = g_malloc0(buf_len);
626 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
628 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
629 sizeof(prop_lmb_size));
630 if (ret < 0) {
631 goto out;
634 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
635 if (ret < 0) {
636 goto out;
639 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
640 if (ret < 0) {
641 goto out;
644 /* ibm,dynamic-memory */
645 int_buf[0] = cpu_to_be32(nr_lmbs);
646 cur_index++;
647 for (i = 0; i < nr_lmbs; i++) {
648 uint64_t addr = i * lmb_size;
649 uint32_t *dynamic_memory = cur_index;
651 if (i >= hotplug_lmb_start) {
652 sPAPRDRConnector *drc;
653 sPAPRDRConnectorClass *drck;
655 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
656 g_assert(drc);
657 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
659 dynamic_memory[0] = cpu_to_be32(addr >> 32);
660 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
661 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
662 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
663 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
664 if (memory_region_present(get_system_memory(), addr)) {
665 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
666 } else {
667 dynamic_memory[5] = cpu_to_be32(0);
669 } else {
671 * LMB information for RMA, boot time RAM and gap b/n RAM and
672 * hotplug memory region -- all these are marked as reserved
673 * and as having no valid DRC.
675 dynamic_memory[0] = cpu_to_be32(addr >> 32);
676 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
677 dynamic_memory[2] = cpu_to_be32(0);
678 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
679 dynamic_memory[4] = cpu_to_be32(-1);
680 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
681 SPAPR_LMB_FLAGS_DRC_INVALID);
684 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
686 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
687 if (ret < 0) {
688 goto out;
691 /* ibm,associativity-lookup-arrays */
692 cur_index = int_buf;
693 int_buf[0] = cpu_to_be32(nr_nodes);
694 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
695 cur_index += 2;
696 for (i = 0; i < nr_nodes; i++) {
697 uint32_t associativity[] = {
698 cpu_to_be32(0x0),
699 cpu_to_be32(0x0),
700 cpu_to_be32(0x0),
701 cpu_to_be32(i)
703 memcpy(cur_index, associativity, sizeof(associativity));
704 cur_index += 4;
706 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
707 (cur_index - int_buf) * sizeof(uint32_t));
708 out:
709 g_free(int_buf);
710 return ret;
713 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
714 sPAPROptionVector *ov5_updates)
716 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
717 int ret = 0, offset;
719 /* Generate ibm,dynamic-reconfiguration-memory node if required */
720 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
721 g_assert(smc->dr_lmb_enabled);
722 ret = spapr_populate_drconf_memory(spapr, fdt);
723 if (ret) {
724 goto out;
728 offset = fdt_path_offset(fdt, "/chosen");
729 if (offset < 0) {
730 offset = fdt_add_subnode(fdt, 0, "chosen");
731 if (offset < 0) {
732 return offset;
735 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
736 "ibm,architecture-vec-5");
738 out:
739 return ret;
742 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
743 target_ulong addr, target_ulong size,
744 sPAPROptionVector *ov5_updates)
746 void *fdt, *fdt_skel;
747 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
749 size -= sizeof(hdr);
751 /* Create sceleton */
752 fdt_skel = g_malloc0(size);
753 _FDT((fdt_create(fdt_skel, size)));
754 _FDT((fdt_begin_node(fdt_skel, "")));
755 _FDT((fdt_end_node(fdt_skel)));
756 _FDT((fdt_finish(fdt_skel)));
757 fdt = g_malloc0(size);
758 _FDT((fdt_open_into(fdt_skel, fdt, size)));
759 g_free(fdt_skel);
761 /* Fixup cpu nodes */
762 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
764 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
765 return -1;
768 /* Pack resulting tree */
769 _FDT((fdt_pack(fdt)));
771 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
772 trace_spapr_cas_failed(size);
773 return -1;
776 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
777 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
778 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
779 g_free(fdt);
781 return 0;
784 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
786 int rtas;
787 GString *hypertas = g_string_sized_new(256);
788 GString *qemu_hypertas = g_string_sized_new(256);
789 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
790 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
791 memory_region_size(&spapr->hotplug_memory.mr);
792 uint32_t lrdr_capacity[] = {
793 cpu_to_be32(max_hotplug_addr >> 32),
794 cpu_to_be32(max_hotplug_addr & 0xffffffff),
795 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
796 cpu_to_be32(max_cpus / smp_threads),
799 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
801 /* hypertas */
802 add_str(hypertas, "hcall-pft");
803 add_str(hypertas, "hcall-term");
804 add_str(hypertas, "hcall-dabr");
805 add_str(hypertas, "hcall-interrupt");
806 add_str(hypertas, "hcall-tce");
807 add_str(hypertas, "hcall-vio");
808 add_str(hypertas, "hcall-splpar");
809 add_str(hypertas, "hcall-bulk");
810 add_str(hypertas, "hcall-set-mode");
811 add_str(hypertas, "hcall-sprg0");
812 add_str(hypertas, "hcall-copy");
813 add_str(hypertas, "hcall-debug");
814 add_str(qemu_hypertas, "hcall-memop1");
816 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
817 add_str(hypertas, "hcall-multi-tce");
819 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
820 hypertas->str, hypertas->len));
821 g_string_free(hypertas, TRUE);
822 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
823 qemu_hypertas->str, qemu_hypertas->len));
824 g_string_free(qemu_hypertas, TRUE);
826 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
827 refpoints, sizeof(refpoints)));
829 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
830 RTAS_ERROR_LOG_MAX));
831 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
832 RTAS_EVENT_SCAN_RATE));
834 if (msi_nonbroken) {
835 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
839 * According to PAPR, rtas ibm,os-term does not guarantee a return
840 * back to the guest cpu.
842 * While an additional ibm,extended-os-term property indicates
843 * that rtas call return will always occur. Set this property.
845 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
847 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
848 lrdr_capacity, sizeof(lrdr_capacity)));
850 spapr_dt_rtas_tokens(fdt, rtas);
853 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
854 * that the guest may request and thus the valid values for bytes 24..26 of
855 * option vector 5: */
856 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
858 char val[2 * 3] = {
859 24, 0x00, /* Hash/Radix, filled in below. */
860 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
861 26, 0x40, /* Radix options: GTSE == yes. */
864 if (kvm_enabled()) {
865 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
866 val[1] = 0x80; /* OV5_MMU_BOTH */
867 } else if (kvmppc_has_cap_mmu_radix()) {
868 val[1] = 0x40; /* OV5_MMU_RADIX_300 */
869 } else {
870 val[1] = 0x00; /* Hash */
872 } else {
873 /* TODO: TCG case, hash */
874 val[1] = 0x00;
876 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
877 val, sizeof(val)));
880 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
882 MachineState *machine = MACHINE(spapr);
883 int chosen;
884 const char *boot_device = machine->boot_order;
885 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
886 size_t cb = 0;
887 char *bootlist = get_boot_devices_list(&cb, true);
889 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
891 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
892 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
893 spapr->initrd_base));
894 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
895 spapr->initrd_base + spapr->initrd_size));
897 if (spapr->kernel_size) {
898 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
899 cpu_to_be64(spapr->kernel_size) };
901 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
902 &kprop, sizeof(kprop)));
903 if (spapr->kernel_le) {
904 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
907 if (boot_menu) {
908 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
910 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
911 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
912 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
914 if (cb && bootlist) {
915 int i;
917 for (i = 0; i < cb; i++) {
918 if (bootlist[i] == '\n') {
919 bootlist[i] = ' ';
922 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
925 if (boot_device && strlen(boot_device)) {
926 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
929 if (!spapr->has_graphics && stdout_path) {
930 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
933 spapr_dt_ov5_platform_support(fdt, chosen);
935 g_free(stdout_path);
936 g_free(bootlist);
939 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
941 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
942 * KVM to work under pHyp with some guest co-operation */
943 int hypervisor;
944 uint8_t hypercall[16];
946 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
947 /* indicate KVM hypercall interface */
948 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
949 if (kvmppc_has_cap_fixup_hcalls()) {
951 * Older KVM versions with older guest kernels were broken
952 * with the magic page, don't allow the guest to map it.
954 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
955 sizeof(hypercall))) {
956 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
957 hypercall, sizeof(hypercall)));
962 static void *spapr_build_fdt(sPAPRMachineState *spapr,
963 hwaddr rtas_addr,
964 hwaddr rtas_size)
966 MachineState *machine = MACHINE(qdev_get_machine());
967 MachineClass *mc = MACHINE_GET_CLASS(machine);
968 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
969 int ret;
970 void *fdt;
971 sPAPRPHBState *phb;
972 char *buf;
973 int smt = kvmppc_smt_threads();
975 fdt = g_malloc0(FDT_MAX_SIZE);
976 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
978 /* Root node */
979 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
980 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
981 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
984 * Add info to guest to indentify which host is it being run on
985 * and what is the uuid of the guest
987 if (kvmppc_get_host_model(&buf)) {
988 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
989 g_free(buf);
991 if (kvmppc_get_host_serial(&buf)) {
992 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
993 g_free(buf);
996 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
998 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
999 if (qemu_uuid_set) {
1000 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1002 g_free(buf);
1004 if (qemu_get_vm_name()) {
1005 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1006 qemu_get_vm_name()));
1009 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1010 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1012 /* /interrupt controller */
1013 spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP);
1015 ret = spapr_populate_memory(spapr, fdt);
1016 if (ret < 0) {
1017 error_report("couldn't setup memory nodes in fdt");
1018 exit(1);
1021 /* /vdevice */
1022 spapr_dt_vdevice(spapr->vio_bus, fdt);
1024 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1025 ret = spapr_rng_populate_dt(fdt);
1026 if (ret < 0) {
1027 error_report("could not set up rng device in the fdt");
1028 exit(1);
1032 QLIST_FOREACH(phb, &spapr->phbs, list) {
1033 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1034 if (ret < 0) {
1035 error_report("couldn't setup PCI devices in fdt");
1036 exit(1);
1040 /* cpus */
1041 spapr_populate_cpus_dt_node(fdt, spapr);
1043 if (smc->dr_lmb_enabled) {
1044 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1047 if (mc->has_hotpluggable_cpus) {
1048 int offset = fdt_path_offset(fdt, "/cpus");
1049 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1050 SPAPR_DR_CONNECTOR_TYPE_CPU);
1051 if (ret < 0) {
1052 error_report("Couldn't set up CPU DR device tree properties");
1053 exit(1);
1057 /* /event-sources */
1058 spapr_dt_events(spapr, fdt);
1060 /* /rtas */
1061 spapr_dt_rtas(spapr, fdt);
1063 /* /chosen */
1064 spapr_dt_chosen(spapr, fdt);
1066 /* /hypervisor */
1067 if (kvm_enabled()) {
1068 spapr_dt_hypervisor(spapr, fdt);
1071 /* Build memory reserve map */
1072 if (spapr->kernel_size) {
1073 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1075 if (spapr->initrd_size) {
1076 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1079 /* ibm,client-architecture-support updates */
1080 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1081 if (ret < 0) {
1082 error_report("couldn't setup CAS properties fdt");
1083 exit(1);
1086 return fdt;
1089 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1091 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1094 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1095 PowerPCCPU *cpu)
1097 CPUPPCState *env = &cpu->env;
1099 /* The TCG path should also be holding the BQL at this point */
1100 g_assert(qemu_mutex_iothread_locked());
1102 if (msr_pr) {
1103 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1104 env->gpr[3] = H_PRIVILEGE;
1105 } else {
1106 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1110 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1112 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1114 return spapr->patb_entry;
1117 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1118 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1119 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1120 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1121 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1124 * Get the fd to access the kernel htab, re-opening it if necessary
1126 static int get_htab_fd(sPAPRMachineState *spapr)
1128 if (spapr->htab_fd >= 0) {
1129 return spapr->htab_fd;
1132 spapr->htab_fd = kvmppc_get_htab_fd(false);
1133 if (spapr->htab_fd < 0) {
1134 error_report("Unable to open fd for reading hash table from KVM: %s",
1135 strerror(errno));
1138 return spapr->htab_fd;
1141 void close_htab_fd(sPAPRMachineState *spapr)
1143 if (spapr->htab_fd >= 0) {
1144 close(spapr->htab_fd);
1146 spapr->htab_fd = -1;
1149 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1151 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1153 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1156 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1157 hwaddr ptex, int n)
1159 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1160 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1162 if (!spapr->htab) {
1164 * HTAB is controlled by KVM. Fetch into temporary buffer
1166 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1167 kvmppc_read_hptes(hptes, ptex, n);
1168 return hptes;
1172 * HTAB is controlled by QEMU. Just point to the internally
1173 * accessible PTEG.
1175 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1178 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1179 const ppc_hash_pte64_t *hptes,
1180 hwaddr ptex, int n)
1182 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1184 if (!spapr->htab) {
1185 g_free((void *)hptes);
1188 /* Nothing to do for qemu managed HPT */
1191 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1192 uint64_t pte0, uint64_t pte1)
1194 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1195 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1197 if (!spapr->htab) {
1198 kvmppc_write_hpte(ptex, pte0, pte1);
1199 } else {
1200 stq_p(spapr->htab + offset, pte0);
1201 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1205 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1207 int shift;
1209 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1210 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1211 * that's much more than is needed for Linux guests */
1212 shift = ctz64(pow2ceil(ramsize)) - 7;
1213 shift = MAX(shift, 18); /* Minimum architected size */
1214 shift = MIN(shift, 46); /* Maximum architected size */
1215 return shift;
1218 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1219 Error **errp)
1221 long rc;
1223 /* Clean up any HPT info from a previous boot */
1224 g_free(spapr->htab);
1225 spapr->htab = NULL;
1226 spapr->htab_shift = 0;
1227 close_htab_fd(spapr);
1229 rc = kvmppc_reset_htab(shift);
1230 if (rc < 0) {
1231 /* kernel-side HPT needed, but couldn't allocate one */
1232 error_setg_errno(errp, errno,
1233 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1234 shift);
1235 /* This is almost certainly fatal, but if the caller really
1236 * wants to carry on with shift == 0, it's welcome to try */
1237 } else if (rc > 0) {
1238 /* kernel-side HPT allocated */
1239 if (rc != shift) {
1240 error_setg(errp,
1241 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1242 shift, rc);
1245 spapr->htab_shift = shift;
1246 spapr->htab = NULL;
1247 } else {
1248 /* kernel-side HPT not needed, allocate in userspace instead */
1249 size_t size = 1ULL << shift;
1250 int i;
1252 spapr->htab = qemu_memalign(size, size);
1253 if (!spapr->htab) {
1254 error_setg_errno(errp, errno,
1255 "Could not allocate HPT of order %d", shift);
1256 return;
1259 memset(spapr->htab, 0, size);
1260 spapr->htab_shift = shift;
1262 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1263 DIRTY_HPTE(HPTE(spapr->htab, i));
1268 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1270 spapr_reallocate_hpt(spapr,
1271 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1272 &error_fatal);
1273 if (spapr->vrma_adjust) {
1274 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1275 spapr->htab_shift);
1277 /* We're setting up a hash table, so that means we're not radix */
1278 spapr->patb_entry = 0;
1281 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1283 bool matched = false;
1285 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1286 matched = true;
1289 if (!matched) {
1290 error_report("Device %s is not supported by this machine yet.",
1291 qdev_fw_name(DEVICE(sbdev)));
1292 exit(1);
1296 static void ppc_spapr_reset(void)
1298 MachineState *machine = MACHINE(qdev_get_machine());
1299 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1300 PowerPCCPU *first_ppc_cpu;
1301 uint32_t rtas_limit;
1302 hwaddr rtas_addr, fdt_addr;
1303 void *fdt;
1304 int rc;
1306 /* Check for unknown sysbus devices */
1307 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1309 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1310 /* If using KVM with radix mode available, VCPUs can be started
1311 * without a HPT because KVM will start them in radix mode.
1312 * Set the GR bit in PATB so that we know there is no HPT. */
1313 spapr->patb_entry = PATBE1_GR;
1314 } else {
1315 spapr->patb_entry = 0;
1316 spapr_setup_hpt_and_vrma(spapr);
1319 qemu_devices_reset();
1322 * We place the device tree and RTAS just below either the top of the RMA,
1323 * or just below 2GB, whichever is lowere, so that it can be
1324 * processed with 32-bit real mode code if necessary
1326 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1327 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1328 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1330 /* if this reset wasn't generated by CAS, we should reset our
1331 * negotiated options and start from scratch */
1332 if (!spapr->cas_reboot) {
1333 spapr_ovec_cleanup(spapr->ov5_cas);
1334 spapr->ov5_cas = spapr_ovec_new();
1337 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1339 spapr_load_rtas(spapr, fdt, rtas_addr);
1341 rc = fdt_pack(fdt);
1343 /* Should only fail if we've built a corrupted tree */
1344 assert(rc == 0);
1346 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1347 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1348 fdt_totalsize(fdt), FDT_MAX_SIZE);
1349 exit(1);
1352 /* Load the fdt */
1353 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1354 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1355 g_free(fdt);
1357 /* Set up the entry state */
1358 first_ppc_cpu = POWERPC_CPU(first_cpu);
1359 first_ppc_cpu->env.gpr[3] = fdt_addr;
1360 first_ppc_cpu->env.gpr[5] = 0;
1361 first_cpu->halted = 0;
1362 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1364 spapr->cas_reboot = false;
1367 static void spapr_create_nvram(sPAPRMachineState *spapr)
1369 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1370 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1372 if (dinfo) {
1373 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1374 &error_fatal);
1377 qdev_init_nofail(dev);
1379 spapr->nvram = (struct sPAPRNVRAM *)dev;
1382 static void spapr_rtc_create(sPAPRMachineState *spapr)
1384 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1385 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1386 &error_fatal);
1387 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1388 &error_fatal);
1389 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1390 "date", &error_fatal);
1393 /* Returns whether we want to use VGA or not */
1394 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1396 switch (vga_interface_type) {
1397 case VGA_NONE:
1398 return false;
1399 case VGA_DEVICE:
1400 return true;
1401 case VGA_STD:
1402 case VGA_VIRTIO:
1403 return pci_vga_init(pci_bus) != NULL;
1404 default:
1405 error_setg(errp,
1406 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1407 return false;
1411 static int spapr_post_load(void *opaque, int version_id)
1413 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1414 int err = 0;
1416 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1417 CPUState *cs;
1418 CPU_FOREACH(cs) {
1419 PowerPCCPU *cpu = POWERPC_CPU(cs);
1420 icp_resend(ICP(cpu->intc));
1424 /* In earlier versions, there was no separate qdev for the PAPR
1425 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1426 * So when migrating from those versions, poke the incoming offset
1427 * value into the RTC device */
1428 if (version_id < 3) {
1429 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1432 return err;
1435 static bool version_before_3(void *opaque, int version_id)
1437 return version_id < 3;
1440 static bool spapr_ov5_cas_needed(void *opaque)
1442 sPAPRMachineState *spapr = opaque;
1443 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1444 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1445 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1446 bool cas_needed;
1448 /* Prior to the introduction of sPAPROptionVector, we had two option
1449 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1450 * Both of these options encode machine topology into the device-tree
1451 * in such a way that the now-booted OS should still be able to interact
1452 * appropriately with QEMU regardless of what options were actually
1453 * negotiatied on the source side.
1455 * As such, we can avoid migrating the CAS-negotiated options if these
1456 * are the only options available on the current machine/platform.
1457 * Since these are the only options available for pseries-2.7 and
1458 * earlier, this allows us to maintain old->new/new->old migration
1459 * compatibility.
1461 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1462 * via default pseries-2.8 machines and explicit command-line parameters.
1463 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1464 * of the actual CAS-negotiated values to continue working properly. For
1465 * example, availability of memory unplug depends on knowing whether
1466 * OV5_HP_EVT was negotiated via CAS.
1468 * Thus, for any cases where the set of available CAS-negotiatable
1469 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1470 * include the CAS-negotiated options in the migration stream.
1472 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1473 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1475 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1476 * the mask itself since in the future it's possible "legacy" bits may be
1477 * removed via machine options, which could generate a false positive
1478 * that breaks migration.
1480 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1481 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1483 spapr_ovec_cleanup(ov5_mask);
1484 spapr_ovec_cleanup(ov5_legacy);
1485 spapr_ovec_cleanup(ov5_removed);
1487 return cas_needed;
1490 static const VMStateDescription vmstate_spapr_ov5_cas = {
1491 .name = "spapr_option_vector_ov5_cas",
1492 .version_id = 1,
1493 .minimum_version_id = 1,
1494 .needed = spapr_ov5_cas_needed,
1495 .fields = (VMStateField[]) {
1496 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1497 vmstate_spapr_ovec, sPAPROptionVector),
1498 VMSTATE_END_OF_LIST()
1502 static bool spapr_patb_entry_needed(void *opaque)
1504 sPAPRMachineState *spapr = opaque;
1506 return !!spapr->patb_entry;
1509 static const VMStateDescription vmstate_spapr_patb_entry = {
1510 .name = "spapr_patb_entry",
1511 .version_id = 1,
1512 .minimum_version_id = 1,
1513 .needed = spapr_patb_entry_needed,
1514 .fields = (VMStateField[]) {
1515 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1516 VMSTATE_END_OF_LIST()
1520 static const VMStateDescription vmstate_spapr = {
1521 .name = "spapr",
1522 .version_id = 3,
1523 .minimum_version_id = 1,
1524 .post_load = spapr_post_load,
1525 .fields = (VMStateField[]) {
1526 /* used to be @next_irq */
1527 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1529 /* RTC offset */
1530 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1532 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1533 VMSTATE_END_OF_LIST()
1535 .subsections = (const VMStateDescription*[]) {
1536 &vmstate_spapr_ov5_cas,
1537 &vmstate_spapr_patb_entry,
1538 NULL
1542 static int htab_save_setup(QEMUFile *f, void *opaque)
1544 sPAPRMachineState *spapr = opaque;
1546 /* "Iteration" header */
1547 qemu_put_be32(f, spapr->htab_shift);
1549 if (spapr->htab) {
1550 spapr->htab_save_index = 0;
1551 spapr->htab_first_pass = true;
1552 } else {
1553 assert(kvm_enabled());
1557 return 0;
1560 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1561 int64_t max_ns)
1563 bool has_timeout = max_ns != -1;
1564 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1565 int index = spapr->htab_save_index;
1566 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1568 assert(spapr->htab_first_pass);
1570 do {
1571 int chunkstart;
1573 /* Consume invalid HPTEs */
1574 while ((index < htabslots)
1575 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1576 CLEAN_HPTE(HPTE(spapr->htab, index));
1577 index++;
1580 /* Consume valid HPTEs */
1581 chunkstart = index;
1582 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1583 && HPTE_VALID(HPTE(spapr->htab, index))) {
1584 CLEAN_HPTE(HPTE(spapr->htab, index));
1585 index++;
1588 if (index > chunkstart) {
1589 int n_valid = index - chunkstart;
1591 qemu_put_be32(f, chunkstart);
1592 qemu_put_be16(f, n_valid);
1593 qemu_put_be16(f, 0);
1594 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1595 HASH_PTE_SIZE_64 * n_valid);
1597 if (has_timeout &&
1598 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1599 break;
1602 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1604 if (index >= htabslots) {
1605 assert(index == htabslots);
1606 index = 0;
1607 spapr->htab_first_pass = false;
1609 spapr->htab_save_index = index;
1612 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1613 int64_t max_ns)
1615 bool final = max_ns < 0;
1616 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1617 int examined = 0, sent = 0;
1618 int index = spapr->htab_save_index;
1619 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1621 assert(!spapr->htab_first_pass);
1623 do {
1624 int chunkstart, invalidstart;
1626 /* Consume non-dirty HPTEs */
1627 while ((index < htabslots)
1628 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1629 index++;
1630 examined++;
1633 chunkstart = index;
1634 /* Consume valid dirty HPTEs */
1635 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1636 && HPTE_DIRTY(HPTE(spapr->htab, index))
1637 && HPTE_VALID(HPTE(spapr->htab, index))) {
1638 CLEAN_HPTE(HPTE(spapr->htab, index));
1639 index++;
1640 examined++;
1643 invalidstart = index;
1644 /* Consume invalid dirty HPTEs */
1645 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1646 && HPTE_DIRTY(HPTE(spapr->htab, index))
1647 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1648 CLEAN_HPTE(HPTE(spapr->htab, index));
1649 index++;
1650 examined++;
1653 if (index > chunkstart) {
1654 int n_valid = invalidstart - chunkstart;
1655 int n_invalid = index - invalidstart;
1657 qemu_put_be32(f, chunkstart);
1658 qemu_put_be16(f, n_valid);
1659 qemu_put_be16(f, n_invalid);
1660 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1661 HASH_PTE_SIZE_64 * n_valid);
1662 sent += index - chunkstart;
1664 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1665 break;
1669 if (examined >= htabslots) {
1670 break;
1673 if (index >= htabslots) {
1674 assert(index == htabslots);
1675 index = 0;
1677 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1679 if (index >= htabslots) {
1680 assert(index == htabslots);
1681 index = 0;
1684 spapr->htab_save_index = index;
1686 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1689 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1690 #define MAX_KVM_BUF_SIZE 2048
1692 static int htab_save_iterate(QEMUFile *f, void *opaque)
1694 sPAPRMachineState *spapr = opaque;
1695 int fd;
1696 int rc = 0;
1698 /* Iteration header */
1699 qemu_put_be32(f, 0);
1701 if (!spapr->htab) {
1702 assert(kvm_enabled());
1704 fd = get_htab_fd(spapr);
1705 if (fd < 0) {
1706 return fd;
1709 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1710 if (rc < 0) {
1711 return rc;
1713 } else if (spapr->htab_first_pass) {
1714 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1715 } else {
1716 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1719 /* End marker */
1720 qemu_put_be32(f, 0);
1721 qemu_put_be16(f, 0);
1722 qemu_put_be16(f, 0);
1724 return rc;
1727 static int htab_save_complete(QEMUFile *f, void *opaque)
1729 sPAPRMachineState *spapr = opaque;
1730 int fd;
1732 /* Iteration header */
1733 qemu_put_be32(f, 0);
1735 if (!spapr->htab) {
1736 int rc;
1738 assert(kvm_enabled());
1740 fd = get_htab_fd(spapr);
1741 if (fd < 0) {
1742 return fd;
1745 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1746 if (rc < 0) {
1747 return rc;
1749 } else {
1750 if (spapr->htab_first_pass) {
1751 htab_save_first_pass(f, spapr, -1);
1753 htab_save_later_pass(f, spapr, -1);
1756 /* End marker */
1757 qemu_put_be32(f, 0);
1758 qemu_put_be16(f, 0);
1759 qemu_put_be16(f, 0);
1761 return 0;
1764 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1766 sPAPRMachineState *spapr = opaque;
1767 uint32_t section_hdr;
1768 int fd = -1;
1770 if (version_id < 1 || version_id > 1) {
1771 error_report("htab_load() bad version");
1772 return -EINVAL;
1775 section_hdr = qemu_get_be32(f);
1777 if (section_hdr) {
1778 Error *local_err = NULL;
1780 /* First section gives the htab size */
1781 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1782 if (local_err) {
1783 error_report_err(local_err);
1784 return -EINVAL;
1786 return 0;
1789 if (!spapr->htab) {
1790 assert(kvm_enabled());
1792 fd = kvmppc_get_htab_fd(true);
1793 if (fd < 0) {
1794 error_report("Unable to open fd to restore KVM hash table: %s",
1795 strerror(errno));
1799 while (true) {
1800 uint32_t index;
1801 uint16_t n_valid, n_invalid;
1803 index = qemu_get_be32(f);
1804 n_valid = qemu_get_be16(f);
1805 n_invalid = qemu_get_be16(f);
1807 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1808 /* End of Stream */
1809 break;
1812 if ((index + n_valid + n_invalid) >
1813 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1814 /* Bad index in stream */
1815 error_report(
1816 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1817 index, n_valid, n_invalid, spapr->htab_shift);
1818 return -EINVAL;
1821 if (spapr->htab) {
1822 if (n_valid) {
1823 qemu_get_buffer(f, HPTE(spapr->htab, index),
1824 HASH_PTE_SIZE_64 * n_valid);
1826 if (n_invalid) {
1827 memset(HPTE(spapr->htab, index + n_valid), 0,
1828 HASH_PTE_SIZE_64 * n_invalid);
1830 } else {
1831 int rc;
1833 assert(fd >= 0);
1835 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1836 if (rc < 0) {
1837 return rc;
1842 if (!spapr->htab) {
1843 assert(fd >= 0);
1844 close(fd);
1847 return 0;
1850 static void htab_cleanup(void *opaque)
1852 sPAPRMachineState *spapr = opaque;
1854 close_htab_fd(spapr);
1857 static SaveVMHandlers savevm_htab_handlers = {
1858 .save_live_setup = htab_save_setup,
1859 .save_live_iterate = htab_save_iterate,
1860 .save_live_complete_precopy = htab_save_complete,
1861 .cleanup = htab_cleanup,
1862 .load_state = htab_load,
1865 static void spapr_boot_set(void *opaque, const char *boot_device,
1866 Error **errp)
1868 MachineState *machine = MACHINE(qdev_get_machine());
1869 machine->boot_order = g_strdup(boot_device);
1873 * Reset routine for LMB DR devices.
1875 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1876 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1877 * when it walks all its children devices. LMB devices reset occurs
1878 * as part of spapr_ppc_reset().
1880 static void spapr_drc_reset(void *opaque)
1882 sPAPRDRConnector *drc = opaque;
1883 DeviceState *d = DEVICE(drc);
1885 if (d) {
1886 device_reset(d);
1890 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1892 MachineState *machine = MACHINE(spapr);
1893 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1894 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1895 int i;
1897 for (i = 0; i < nr_lmbs; i++) {
1898 sPAPRDRConnector *drc;
1899 uint64_t addr;
1901 addr = i * lmb_size + spapr->hotplug_memory.base;
1902 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1903 addr/lmb_size);
1904 qemu_register_reset(spapr_drc_reset, drc);
1909 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1910 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1911 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1913 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1915 int i;
1917 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1918 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1919 " is not aligned to %llu MiB",
1920 machine->ram_size,
1921 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1922 return;
1925 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1926 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1927 " is not aligned to %llu MiB",
1928 machine->ram_size,
1929 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1930 return;
1933 for (i = 0; i < nb_numa_nodes; i++) {
1934 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1935 error_setg(errp,
1936 "Node %d memory size 0x%" PRIx64
1937 " is not aligned to %llu MiB",
1938 i, numa_info[i].node_mem,
1939 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1940 return;
1945 /* find cpu slot in machine->possible_cpus by core_id */
1946 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1948 int index = id / smp_threads;
1950 if (index >= ms->possible_cpus->len) {
1951 return NULL;
1953 if (idx) {
1954 *idx = index;
1956 return &ms->possible_cpus->cpus[index];
1959 static void spapr_init_cpus(sPAPRMachineState *spapr)
1961 MachineState *machine = MACHINE(spapr);
1962 MachineClass *mc = MACHINE_GET_CLASS(machine);
1963 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1964 int smt = kvmppc_smt_threads();
1965 const CPUArchIdList *possible_cpus;
1966 int boot_cores_nr = smp_cpus / smp_threads;
1967 int i;
1969 if (!type) {
1970 error_report("Unable to find sPAPR CPU Core definition");
1971 exit(1);
1974 possible_cpus = mc->possible_cpu_arch_ids(machine);
1975 if (mc->has_hotpluggable_cpus) {
1976 if (smp_cpus % smp_threads) {
1977 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1978 smp_cpus, smp_threads);
1979 exit(1);
1981 if (max_cpus % smp_threads) {
1982 error_report("max_cpus (%u) must be multiple of threads (%u)",
1983 max_cpus, smp_threads);
1984 exit(1);
1986 } else {
1987 if (max_cpus != smp_cpus) {
1988 error_report("This machine version does not support CPU hotplug");
1989 exit(1);
1991 boot_cores_nr = possible_cpus->len;
1994 for (i = 0; i < possible_cpus->len; i++) {
1995 int core_id = i * smp_threads;
1997 if (mc->has_hotpluggable_cpus) {
1998 sPAPRDRConnector *drc =
1999 spapr_dr_connector_new(OBJECT(spapr),
2000 SPAPR_DR_CONNECTOR_TYPE_CPU,
2001 (core_id / smp_threads) * smt);
2003 qemu_register_reset(spapr_drc_reset, drc);
2006 if (i < boot_cores_nr) {
2007 Object *core = object_new(type);
2008 int nr_threads = smp_threads;
2010 /* Handle the partially filled core for older machine types */
2011 if ((i + 1) * smp_threads >= smp_cpus) {
2012 nr_threads = smp_cpus - i * smp_threads;
2015 object_property_set_int(core, nr_threads, "nr-threads",
2016 &error_fatal);
2017 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2018 &error_fatal);
2019 object_property_set_bool(core, true, "realized", &error_fatal);
2022 g_free(type);
2025 /* pSeries LPAR / sPAPR hardware init */
2026 static void ppc_spapr_init(MachineState *machine)
2028 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2029 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2030 const char *kernel_filename = machine->kernel_filename;
2031 const char *initrd_filename = machine->initrd_filename;
2032 PCIHostState *phb;
2033 int i;
2034 MemoryRegion *sysmem = get_system_memory();
2035 MemoryRegion *ram = g_new(MemoryRegion, 1);
2036 MemoryRegion *rma_region;
2037 void *rma = NULL;
2038 hwaddr rma_alloc_size;
2039 hwaddr node0_size = spapr_node0_size();
2040 long load_limit, fw_size;
2041 char *filename;
2043 msi_nonbroken = true;
2045 QLIST_INIT(&spapr->phbs);
2047 /* Allocate RMA if necessary */
2048 rma_alloc_size = kvmppc_alloc_rma(&rma);
2050 if (rma_alloc_size == -1) {
2051 error_report("Unable to create RMA");
2052 exit(1);
2055 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2056 spapr->rma_size = rma_alloc_size;
2057 } else {
2058 spapr->rma_size = node0_size;
2060 /* With KVM, we don't actually know whether KVM supports an
2061 * unbounded RMA (PR KVM) or is limited by the hash table size
2062 * (HV KVM using VRMA), so we always assume the latter
2064 * In that case, we also limit the initial allocations for RTAS
2065 * etc... to 256M since we have no way to know what the VRMA size
2066 * is going to be as it depends on the size of the hash table
2067 * isn't determined yet.
2069 if (kvm_enabled()) {
2070 spapr->vrma_adjust = 1;
2071 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2074 /* Actually we don't support unbounded RMA anymore since we
2075 * added proper emulation of HV mode. The max we can get is
2076 * 16G which also happens to be what we configure for PAPR
2077 * mode so make sure we don't do anything bigger than that
2079 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2082 if (spapr->rma_size > node0_size) {
2083 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2084 spapr->rma_size);
2085 exit(1);
2088 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2089 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2091 /* Set up Interrupt Controller before we create the VCPUs */
2092 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2094 /* Set up containers for ibm,client-set-architecture negotiated options */
2095 spapr->ov5 = spapr_ovec_new();
2096 spapr->ov5_cas = spapr_ovec_new();
2098 if (smc->dr_lmb_enabled) {
2099 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2100 spapr_validate_node_memory(machine, &error_fatal);
2103 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2104 if (kvmppc_has_cap_mmu_radix()) {
2105 /* KVM always allows GTSE with radix... */
2106 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2108 /* ... but not with hash (currently). */
2110 /* advertise support for dedicated HP event source to guests */
2111 if (spapr->use_hotplug_event_source) {
2112 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2115 /* init CPUs */
2116 if (machine->cpu_model == NULL) {
2117 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2120 ppc_cpu_parse_features(machine->cpu_model);
2122 spapr_init_cpus(spapr);
2124 if (kvm_enabled()) {
2125 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2126 kvmppc_enable_logical_ci_hcalls();
2127 kvmppc_enable_set_mode_hcall();
2129 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2130 kvmppc_enable_clear_ref_mod_hcalls();
2133 /* allocate RAM */
2134 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2135 machine->ram_size);
2136 memory_region_add_subregion(sysmem, 0, ram);
2138 if (rma_alloc_size && rma) {
2139 rma_region = g_new(MemoryRegion, 1);
2140 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2141 rma_alloc_size, rma);
2142 vmstate_register_ram_global(rma_region);
2143 memory_region_add_subregion(sysmem, 0, rma_region);
2146 /* initialize hotplug memory address space */
2147 if (machine->ram_size < machine->maxram_size) {
2148 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2150 * Limit the number of hotpluggable memory slots to half the number
2151 * slots that KVM supports, leaving the other half for PCI and other
2152 * devices. However ensure that number of slots doesn't drop below 32.
2154 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2155 SPAPR_MAX_RAM_SLOTS;
2157 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2158 max_memslots = SPAPR_MAX_RAM_SLOTS;
2160 if (machine->ram_slots > max_memslots) {
2161 error_report("Specified number of memory slots %"
2162 PRIu64" exceeds max supported %d",
2163 machine->ram_slots, max_memslots);
2164 exit(1);
2167 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2168 SPAPR_HOTPLUG_MEM_ALIGN);
2169 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2170 "hotplug-memory", hotplug_mem_size);
2171 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2172 &spapr->hotplug_memory.mr);
2175 if (smc->dr_lmb_enabled) {
2176 spapr_create_lmb_dr_connectors(spapr);
2179 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2180 if (!filename) {
2181 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2182 exit(1);
2184 spapr->rtas_size = get_image_size(filename);
2185 if (spapr->rtas_size < 0) {
2186 error_report("Could not get size of LPAR rtas '%s'", filename);
2187 exit(1);
2189 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2190 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2191 error_report("Could not load LPAR rtas '%s'", filename);
2192 exit(1);
2194 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2195 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2196 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2197 exit(1);
2199 g_free(filename);
2201 /* Set up RTAS event infrastructure */
2202 spapr_events_init(spapr);
2204 /* Set up the RTC RTAS interfaces */
2205 spapr_rtc_create(spapr);
2207 /* Set up VIO bus */
2208 spapr->vio_bus = spapr_vio_bus_init();
2210 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2211 if (serial_hds[i]) {
2212 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2216 /* We always have at least the nvram device on VIO */
2217 spapr_create_nvram(spapr);
2219 /* Set up PCI */
2220 spapr_pci_rtas_init();
2222 phb = spapr_create_phb(spapr, 0);
2224 for (i = 0; i < nb_nics; i++) {
2225 NICInfo *nd = &nd_table[i];
2227 if (!nd->model) {
2228 nd->model = g_strdup("ibmveth");
2231 if (strcmp(nd->model, "ibmveth") == 0) {
2232 spapr_vlan_create(spapr->vio_bus, nd);
2233 } else {
2234 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2238 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2239 spapr_vscsi_create(spapr->vio_bus);
2242 /* Graphics */
2243 if (spapr_vga_init(phb->bus, &error_fatal)) {
2244 spapr->has_graphics = true;
2245 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2248 if (machine->usb) {
2249 if (smc->use_ohci_by_default) {
2250 pci_create_simple(phb->bus, -1, "pci-ohci");
2251 } else {
2252 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2255 if (spapr->has_graphics) {
2256 USBBus *usb_bus = usb_bus_find(-1);
2258 usb_create_simple(usb_bus, "usb-kbd");
2259 usb_create_simple(usb_bus, "usb-mouse");
2263 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2264 error_report(
2265 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2266 MIN_RMA_SLOF);
2267 exit(1);
2270 if (kernel_filename) {
2271 uint64_t lowaddr = 0;
2273 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2274 NULL, NULL, &lowaddr, NULL, 1,
2275 PPC_ELF_MACHINE, 0, 0);
2276 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2277 spapr->kernel_size = load_elf(kernel_filename,
2278 translate_kernel_address, NULL, NULL,
2279 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2280 0, 0);
2281 spapr->kernel_le = spapr->kernel_size > 0;
2283 if (spapr->kernel_size < 0) {
2284 error_report("error loading %s: %s", kernel_filename,
2285 load_elf_strerror(spapr->kernel_size));
2286 exit(1);
2289 /* load initrd */
2290 if (initrd_filename) {
2291 /* Try to locate the initrd in the gap between the kernel
2292 * and the firmware. Add a bit of space just in case
2294 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2295 + 0x1ffff) & ~0xffff;
2296 spapr->initrd_size = load_image_targphys(initrd_filename,
2297 spapr->initrd_base,
2298 load_limit
2299 - spapr->initrd_base);
2300 if (spapr->initrd_size < 0) {
2301 error_report("could not load initial ram disk '%s'",
2302 initrd_filename);
2303 exit(1);
2308 if (bios_name == NULL) {
2309 bios_name = FW_FILE_NAME;
2311 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2312 if (!filename) {
2313 error_report("Could not find LPAR firmware '%s'", bios_name);
2314 exit(1);
2316 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2317 if (fw_size <= 0) {
2318 error_report("Could not load LPAR firmware '%s'", filename);
2319 exit(1);
2321 g_free(filename);
2323 /* FIXME: Should register things through the MachineState's qdev
2324 * interface, this is a legacy from the sPAPREnvironment structure
2325 * which predated MachineState but had a similar function */
2326 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2327 register_savevm_live(NULL, "spapr/htab", -1, 1,
2328 &savevm_htab_handlers, spapr);
2330 /* used by RTAS */
2331 QTAILQ_INIT(&spapr->ccs_list);
2332 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2334 qemu_register_boot_set(spapr_boot_set, spapr);
2336 if (kvm_enabled()) {
2337 /* to stop and start vmclock */
2338 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2339 &spapr->tb);
2341 kvmppc_spapr_enable_inkernel_multitce();
2345 static int spapr_kvm_type(const char *vm_type)
2347 if (!vm_type) {
2348 return 0;
2351 if (!strcmp(vm_type, "HV")) {
2352 return 1;
2355 if (!strcmp(vm_type, "PR")) {
2356 return 2;
2359 error_report("Unknown kvm-type specified '%s'", vm_type);
2360 exit(1);
2364 * Implementation of an interface to adjust firmware path
2365 * for the bootindex property handling.
2367 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2368 DeviceState *dev)
2370 #define CAST(type, obj, name) \
2371 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2372 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2373 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2375 if (d) {
2376 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2377 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2378 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2380 if (spapr) {
2382 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2383 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2384 * in the top 16 bits of the 64-bit LUN
2386 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2387 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2388 (uint64_t)id << 48);
2389 } else if (virtio) {
2391 * We use SRP luns of the form 01000000 | (target << 8) | lun
2392 * in the top 32 bits of the 64-bit LUN
2393 * Note: the quote above is from SLOF and it is wrong,
2394 * the actual binding is:
2395 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2397 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2398 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2399 (uint64_t)id << 32);
2400 } else if (usb) {
2402 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2403 * in the top 32 bits of the 64-bit LUN
2405 unsigned usb_port = atoi(usb->port->path);
2406 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2407 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2408 (uint64_t)id << 32);
2413 * SLOF probes the USB devices, and if it recognizes that the device is a
2414 * storage device, it changes its name to "storage" instead of "usb-host",
2415 * and additionally adds a child node for the SCSI LUN, so the correct
2416 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2418 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2419 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2420 if (usb_host_dev_is_scsi_storage(usbdev)) {
2421 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2425 if (phb) {
2426 /* Replace "pci" with "pci@800000020000000" */
2427 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2430 return NULL;
2433 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2435 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2437 return g_strdup(spapr->kvm_type);
2440 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2442 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2444 g_free(spapr->kvm_type);
2445 spapr->kvm_type = g_strdup(value);
2448 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2450 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2452 return spapr->use_hotplug_event_source;
2455 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2456 Error **errp)
2458 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2460 spapr->use_hotplug_event_source = value;
2463 static void spapr_machine_initfn(Object *obj)
2465 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2467 spapr->htab_fd = -1;
2468 spapr->use_hotplug_event_source = true;
2469 object_property_add_str(obj, "kvm-type",
2470 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2471 object_property_set_description(obj, "kvm-type",
2472 "Specifies the KVM virtualization mode (HV, PR)",
2473 NULL);
2474 object_property_add_bool(obj, "modern-hotplug-events",
2475 spapr_get_modern_hotplug_events,
2476 spapr_set_modern_hotplug_events,
2477 NULL);
2478 object_property_set_description(obj, "modern-hotplug-events",
2479 "Use dedicated hotplug event mechanism in"
2480 " place of standard EPOW events when possible"
2481 " (required for memory hot-unplug support)",
2482 NULL);
2485 static void spapr_machine_finalizefn(Object *obj)
2487 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2489 g_free(spapr->kvm_type);
2492 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2494 cpu_synchronize_state(cs);
2495 ppc_cpu_do_system_reset(cs);
2498 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2500 CPUState *cs;
2502 CPU_FOREACH(cs) {
2503 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2507 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2508 uint32_t node, bool dedicated_hp_event_source,
2509 Error **errp)
2511 sPAPRDRConnector *drc;
2512 sPAPRDRConnectorClass *drck;
2513 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2514 int i, fdt_offset, fdt_size;
2515 void *fdt;
2516 uint64_t addr = addr_start;
2518 for (i = 0; i < nr_lmbs; i++) {
2519 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2520 addr/SPAPR_MEMORY_BLOCK_SIZE);
2521 g_assert(drc);
2523 fdt = create_device_tree(&fdt_size);
2524 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2525 SPAPR_MEMORY_BLOCK_SIZE);
2527 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2528 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2529 addr += SPAPR_MEMORY_BLOCK_SIZE;
2530 if (!dev->hotplugged) {
2531 /* guests expect coldplugged LMBs to be pre-allocated */
2532 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2533 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2536 /* send hotplug notification to the
2537 * guest only in case of hotplugged memory
2539 if (dev->hotplugged) {
2540 if (dedicated_hp_event_source) {
2541 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2542 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2543 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2544 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2545 nr_lmbs,
2546 drck->get_index(drc));
2547 } else {
2548 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2549 nr_lmbs);
2554 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2555 uint32_t node, Error **errp)
2557 Error *local_err = NULL;
2558 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2559 PCDIMMDevice *dimm = PC_DIMM(dev);
2560 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2561 MemoryRegion *mr = ddc->get_memory_region(dimm);
2562 uint64_t align = memory_region_get_alignment(mr);
2563 uint64_t size = memory_region_size(mr);
2564 uint64_t addr;
2565 char *mem_dev;
2567 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2568 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2569 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2570 goto out;
2573 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2574 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2575 error_setg(&local_err, "Memory backend has bad page size. "
2576 "Use 'memory-backend-file' with correct mem-path.");
2577 goto out;
2580 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2581 if (local_err) {
2582 goto out;
2585 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2586 if (local_err) {
2587 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2588 goto out;
2591 spapr_add_lmbs(dev, addr, size, node,
2592 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2593 &error_abort);
2595 out:
2596 error_propagate(errp, local_err);
2599 typedef struct sPAPRDIMMState {
2600 uint32_t nr_lmbs;
2601 } sPAPRDIMMState;
2603 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2605 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2606 HotplugHandler *hotplug_ctrl;
2608 if (--ds->nr_lmbs) {
2609 return;
2612 g_free(ds);
2615 * Now that all the LMBs have been removed by the guest, call the
2616 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2618 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2619 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2622 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2623 Error **errp)
2625 sPAPRDRConnector *drc;
2626 sPAPRDRConnectorClass *drck;
2627 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2628 int i;
2629 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2630 uint64_t addr = addr_start;
2632 ds->nr_lmbs = nr_lmbs;
2633 for (i = 0; i < nr_lmbs; i++) {
2634 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2635 addr / SPAPR_MEMORY_BLOCK_SIZE);
2636 g_assert(drc);
2638 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2639 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2640 addr += SPAPR_MEMORY_BLOCK_SIZE;
2643 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2644 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2645 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2646 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2647 nr_lmbs,
2648 drck->get_index(drc));
2651 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2652 Error **errp)
2654 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2655 PCDIMMDevice *dimm = PC_DIMM(dev);
2656 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2657 MemoryRegion *mr = ddc->get_memory_region(dimm);
2659 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2660 object_unparent(OBJECT(dev));
2663 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2664 DeviceState *dev, Error **errp)
2666 Error *local_err = NULL;
2667 PCDIMMDevice *dimm = PC_DIMM(dev);
2668 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2669 MemoryRegion *mr = ddc->get_memory_region(dimm);
2670 uint64_t size = memory_region_size(mr);
2671 uint64_t addr;
2673 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2674 if (local_err) {
2675 goto out;
2678 spapr_del_lmbs(dev, addr, size, &error_abort);
2679 out:
2680 error_propagate(errp, local_err);
2683 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2684 sPAPRMachineState *spapr)
2686 PowerPCCPU *cpu = POWERPC_CPU(cs);
2687 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2688 int id = ppc_get_vcpu_dt_id(cpu);
2689 void *fdt;
2690 int offset, fdt_size;
2691 char *nodename;
2693 fdt = create_device_tree(&fdt_size);
2694 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2695 offset = fdt_add_subnode(fdt, 0, nodename);
2697 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2698 g_free(nodename);
2700 *fdt_offset = offset;
2701 return fdt;
2704 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2705 Error **errp)
2707 MachineState *ms = MACHINE(qdev_get_machine());
2708 CPUCore *cc = CPU_CORE(dev);
2709 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2711 core_slot->cpu = NULL;
2712 object_unparent(OBJECT(dev));
2715 static void spapr_core_release(DeviceState *dev, void *opaque)
2717 HotplugHandler *hotplug_ctrl;
2719 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2720 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2723 static
2724 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2725 Error **errp)
2727 int index;
2728 sPAPRDRConnector *drc;
2729 sPAPRDRConnectorClass *drck;
2730 Error *local_err = NULL;
2731 CPUCore *cc = CPU_CORE(dev);
2732 int smt = kvmppc_smt_threads();
2734 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2735 error_setg(errp, "Unable to find CPU core with core-id: %d",
2736 cc->core_id);
2737 return;
2739 if (index == 0) {
2740 error_setg(errp, "Boot CPU core may not be unplugged");
2741 return;
2744 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2745 g_assert(drc);
2747 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2748 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2749 if (local_err) {
2750 error_propagate(errp, local_err);
2751 return;
2754 spapr_hotplug_req_remove_by_index(drc);
2757 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2758 Error **errp)
2760 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2761 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2762 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2763 CPUCore *cc = CPU_CORE(dev);
2764 CPUState *cs = CPU(core->threads);
2765 sPAPRDRConnector *drc;
2766 Error *local_err = NULL;
2767 void *fdt = NULL;
2768 int fdt_offset = 0;
2769 int smt = kvmppc_smt_threads();
2770 CPUArchId *core_slot;
2771 int index;
2773 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2774 if (!core_slot) {
2775 error_setg(errp, "Unable to find CPU core with core-id: %d",
2776 cc->core_id);
2777 return;
2779 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2781 g_assert(drc || !mc->has_hotpluggable_cpus);
2784 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2785 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2787 if (dev->hotplugged) {
2788 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2791 if (drc) {
2792 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2793 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2794 if (local_err) {
2795 g_free(fdt);
2796 error_propagate(errp, local_err);
2797 return;
2801 if (dev->hotplugged) {
2803 * Send hotplug notification interrupt to the guest only in case
2804 * of hotplugged CPUs.
2806 spapr_hotplug_req_add_by_index(drc);
2807 } else {
2809 * Set the right DRC states for cold plugged CPU.
2811 if (drc) {
2812 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2813 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2814 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2817 core_slot->cpu = OBJECT(dev);
2820 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2821 Error **errp)
2823 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2824 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2825 Error *local_err = NULL;
2826 CPUCore *cc = CPU_CORE(dev);
2827 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
2828 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2829 const char *type = object_get_typename(OBJECT(dev));
2830 CPUArchId *core_slot;
2831 int node_id;
2832 int index;
2834 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2835 error_setg(&local_err, "CPU hotplug not supported for this machine");
2836 goto out;
2839 if (strcmp(base_core_type, type)) {
2840 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2841 goto out;
2844 if (cc->core_id % smp_threads) {
2845 error_setg(&local_err, "invalid core id %d", cc->core_id);
2846 goto out;
2849 if (cc->nr_threads != smp_threads) {
2850 error_setg(errp, "invalid nr-threads %d, must be %d",
2851 cc->nr_threads, smp_threads);
2852 return;
2855 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2856 if (!core_slot) {
2857 error_setg(&local_err, "core id %d out of range", cc->core_id);
2858 goto out;
2861 if (core_slot->cpu) {
2862 error_setg(&local_err, "core %d already populated", cc->core_id);
2863 goto out;
2866 node_id = numa_get_node_for_cpu(cc->core_id);
2867 if (node_id == nb_numa_nodes) {
2868 /* by default CPUState::numa_node was 0 if it's not set via CLI
2869 * keep it this way for now but in future we probably should
2870 * refuse to start up with incomplete numa mapping */
2871 node_id = 0;
2873 if (sc->node_id == CPU_UNSET_NUMA_NODE_ID) {
2874 sc->node_id = node_id;
2875 } else if (sc->node_id != node_id) {
2876 error_setg(&local_err, "node-id %d must match numa node specified"
2877 "with -numa option for cpu-index %d", sc->node_id, cc->core_id);
2878 goto out;
2881 out:
2882 g_free(base_core_type);
2883 error_propagate(errp, local_err);
2886 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2887 DeviceState *dev, Error **errp)
2889 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2891 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2892 int node;
2894 if (!smc->dr_lmb_enabled) {
2895 error_setg(errp, "Memory hotplug not supported for this machine");
2896 return;
2898 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2899 if (*errp) {
2900 return;
2902 if (node < 0 || node >= MAX_NODES) {
2903 error_setg(errp, "Invaild node %d", node);
2904 return;
2908 * Currently PowerPC kernel doesn't allow hot-adding memory to
2909 * memory-less node, but instead will silently add the memory
2910 * to the first node that has some memory. This causes two
2911 * unexpected behaviours for the user.
2913 * - Memory gets hotplugged to a different node than what the user
2914 * specified.
2915 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2916 * to memory-less node, a reboot will set things accordingly
2917 * and the previously hotplugged memory now ends in the right node.
2918 * This appears as if some memory moved from one node to another.
2920 * So until kernel starts supporting memory hotplug to memory-less
2921 * nodes, just prevent such attempts upfront in QEMU.
2923 if (nb_numa_nodes && !numa_info[node].node_mem) {
2924 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2925 node);
2926 return;
2929 spapr_memory_plug(hotplug_dev, dev, node, errp);
2930 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2931 spapr_core_plug(hotplug_dev, dev, errp);
2935 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2936 DeviceState *dev, Error **errp)
2938 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2939 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2941 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2942 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2943 spapr_memory_unplug(hotplug_dev, dev, errp);
2944 } else {
2945 error_setg(errp, "Memory hot unplug not supported for this guest");
2947 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2948 if (!mc->has_hotpluggable_cpus) {
2949 error_setg(errp, "CPU hot unplug not supported on this machine");
2950 return;
2952 spapr_core_unplug(hotplug_dev, dev, errp);
2956 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2957 DeviceState *dev, Error **errp)
2959 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2960 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2962 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2963 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2964 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2965 } else {
2966 /* NOTE: this means there is a window after guest reset, prior to
2967 * CAS negotiation, where unplug requests will fail due to the
2968 * capability not being detected yet. This is a bit different than
2969 * the case with PCI unplug, where the events will be queued and
2970 * eventually handled by the guest after boot
2972 error_setg(errp, "Memory hot unplug not supported for this guest");
2974 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2975 if (!mc->has_hotpluggable_cpus) {
2976 error_setg(errp, "CPU hot unplug not supported on this machine");
2977 return;
2979 spapr_core_unplug_request(hotplug_dev, dev, errp);
2983 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2984 DeviceState *dev, Error **errp)
2986 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2987 spapr_core_pre_plug(hotplug_dev, dev, errp);
2991 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2992 DeviceState *dev)
2994 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2995 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2996 return HOTPLUG_HANDLER(machine);
2998 return NULL;
3001 static CpuInstanceProperties
3002 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3004 CPUArchId *core_slot;
3005 MachineClass *mc = MACHINE_GET_CLASS(machine);
3007 /* make sure possible_cpu are intialized */
3008 mc->possible_cpu_arch_ids(machine);
3009 /* get CPU core slot containing thread that matches cpu_index */
3010 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3011 assert(core_slot);
3012 return core_slot->props;
3015 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3017 int i;
3018 int spapr_max_cores = max_cpus / smp_threads;
3019 MachineClass *mc = MACHINE_GET_CLASS(machine);
3021 if (!mc->has_hotpluggable_cpus) {
3022 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3024 if (machine->possible_cpus) {
3025 assert(machine->possible_cpus->len == spapr_max_cores);
3026 return machine->possible_cpus;
3029 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3030 sizeof(CPUArchId) * spapr_max_cores);
3031 machine->possible_cpus->len = spapr_max_cores;
3032 for (i = 0; i < machine->possible_cpus->len; i++) {
3033 int core_id = i * smp_threads;
3035 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3036 machine->possible_cpus->cpus[i].arch_id = core_id;
3037 machine->possible_cpus->cpus[i].props.has_core_id = true;
3038 machine->possible_cpus->cpus[i].props.core_id = core_id;
3040 /* default distribution of CPUs over NUMA nodes */
3041 if (nb_numa_nodes) {
3042 /* preset values but do not enable them i.e. 'has_node_id = false',
3043 * numa init code will enable them later if manual mapping wasn't
3044 * present on CLI */
3045 machine->possible_cpus->cpus[i].props.node_id =
3046 core_id / smp_threads / smp_cores % nb_numa_nodes;
3049 return machine->possible_cpus;
3052 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3053 uint64_t *buid, hwaddr *pio,
3054 hwaddr *mmio32, hwaddr *mmio64,
3055 unsigned n_dma, uint32_t *liobns, Error **errp)
3058 * New-style PHB window placement.
3060 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3061 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3062 * windows.
3064 * Some guest kernels can't work with MMIO windows above 1<<46
3065 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3067 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3068 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3069 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3070 * 1TiB 64-bit MMIO windows for each PHB.
3072 const uint64_t base_buid = 0x800000020000000ULL;
3073 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3074 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3075 int i;
3077 /* Sanity check natural alignments */
3078 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3079 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3080 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3081 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3082 /* Sanity check bounds */
3083 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3084 SPAPR_PCI_MEM32_WIN_SIZE);
3085 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3086 SPAPR_PCI_MEM64_WIN_SIZE);
3088 if (index >= SPAPR_MAX_PHBS) {
3089 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3090 SPAPR_MAX_PHBS - 1);
3091 return;
3094 *buid = base_buid + index;
3095 for (i = 0; i < n_dma; ++i) {
3096 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3099 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3100 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3101 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3104 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3106 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3108 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3111 static void spapr_ics_resend(XICSFabric *dev)
3113 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3115 ics_resend(spapr->ics);
3118 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3120 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3122 return cpu ? ICP(cpu->intc) : NULL;
3125 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3126 Monitor *mon)
3128 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3129 CPUState *cs;
3131 CPU_FOREACH(cs) {
3132 PowerPCCPU *cpu = POWERPC_CPU(cs);
3134 icp_pic_print_info(ICP(cpu->intc), mon);
3137 ics_pic_print_info(spapr->ics, mon);
3140 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3142 MachineClass *mc = MACHINE_CLASS(oc);
3143 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3144 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3145 NMIClass *nc = NMI_CLASS(oc);
3146 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3147 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3148 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3149 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3151 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3154 * We set up the default / latest behaviour here. The class_init
3155 * functions for the specific versioned machine types can override
3156 * these details for backwards compatibility
3158 mc->init = ppc_spapr_init;
3159 mc->reset = ppc_spapr_reset;
3160 mc->block_default_type = IF_SCSI;
3161 mc->max_cpus = 1024;
3162 mc->no_parallel = 1;
3163 mc->default_boot_order = "";
3164 mc->default_ram_size = 512 * M_BYTE;
3165 mc->kvm_type = spapr_kvm_type;
3166 mc->has_dynamic_sysbus = true;
3167 mc->pci_allow_0_address = true;
3168 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3169 hc->pre_plug = spapr_machine_device_pre_plug;
3170 hc->plug = spapr_machine_device_plug;
3171 hc->unplug = spapr_machine_device_unplug;
3172 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3173 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3174 hc->unplug_request = spapr_machine_device_unplug_request;
3176 smc->dr_lmb_enabled = true;
3177 smc->tcg_default_cpu = "POWER8";
3178 mc->has_hotpluggable_cpus = true;
3179 fwc->get_dev_path = spapr_get_fw_dev_path;
3180 nc->nmi_monitor_handler = spapr_nmi;
3181 smc->phb_placement = spapr_phb_placement;
3182 vhc->hypercall = emulate_spapr_hypercall;
3183 vhc->hpt_mask = spapr_hpt_mask;
3184 vhc->map_hptes = spapr_map_hptes;
3185 vhc->unmap_hptes = spapr_unmap_hptes;
3186 vhc->store_hpte = spapr_store_hpte;
3187 vhc->get_patbe = spapr_get_patbe;
3188 xic->ics_get = spapr_ics_get;
3189 xic->ics_resend = spapr_ics_resend;
3190 xic->icp_get = spapr_icp_get;
3191 ispc->print_info = spapr_pic_print_info;
3192 /* Force NUMA node memory size to be a multiple of
3193 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3194 * in which LMBs are represented and hot-added
3196 mc->numa_mem_align_shift = 28;
3199 static const TypeInfo spapr_machine_info = {
3200 .name = TYPE_SPAPR_MACHINE,
3201 .parent = TYPE_MACHINE,
3202 .abstract = true,
3203 .instance_size = sizeof(sPAPRMachineState),
3204 .instance_init = spapr_machine_initfn,
3205 .instance_finalize = spapr_machine_finalizefn,
3206 .class_size = sizeof(sPAPRMachineClass),
3207 .class_init = spapr_machine_class_init,
3208 .interfaces = (InterfaceInfo[]) {
3209 { TYPE_FW_PATH_PROVIDER },
3210 { TYPE_NMI },
3211 { TYPE_HOTPLUG_HANDLER },
3212 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3213 { TYPE_XICS_FABRIC },
3214 { TYPE_INTERRUPT_STATS_PROVIDER },
3219 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3220 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3221 void *data) \
3223 MachineClass *mc = MACHINE_CLASS(oc); \
3224 spapr_machine_##suffix##_class_options(mc); \
3225 if (latest) { \
3226 mc->alias = "pseries"; \
3227 mc->is_default = 1; \
3230 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3232 MachineState *machine = MACHINE(obj); \
3233 spapr_machine_##suffix##_instance_options(machine); \
3235 static const TypeInfo spapr_machine_##suffix##_info = { \
3236 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3237 .parent = TYPE_SPAPR_MACHINE, \
3238 .class_init = spapr_machine_##suffix##_class_init, \
3239 .instance_init = spapr_machine_##suffix##_instance_init, \
3240 }; \
3241 static void spapr_machine_register_##suffix(void) \
3243 type_register(&spapr_machine_##suffix##_info); \
3245 type_init(spapr_machine_register_##suffix)
3248 * pseries-2.10
3250 static void spapr_machine_2_10_instance_options(MachineState *machine)
3254 static void spapr_machine_2_10_class_options(MachineClass *mc)
3256 /* Defaults for the latest behaviour inherited from the base class */
3259 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3262 * pseries-2.9
3264 #define SPAPR_COMPAT_2_9 \
3265 HW_COMPAT_2_9
3267 static void spapr_machine_2_9_instance_options(MachineState *machine)
3269 spapr_machine_2_10_instance_options(machine);
3272 static void spapr_machine_2_9_class_options(MachineClass *mc)
3274 spapr_machine_2_10_class_options(mc);
3275 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3276 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3279 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3282 * pseries-2.8
3284 #define SPAPR_COMPAT_2_8 \
3285 HW_COMPAT_2_8 \
3287 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3288 .property = "pcie-extended-configuration-space", \
3289 .value = "off", \
3292 static void spapr_machine_2_8_instance_options(MachineState *machine)
3294 spapr_machine_2_9_instance_options(machine);
3297 static void spapr_machine_2_8_class_options(MachineClass *mc)
3299 spapr_machine_2_9_class_options(mc);
3300 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3301 mc->numa_mem_align_shift = 23;
3304 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3307 * pseries-2.7
3309 #define SPAPR_COMPAT_2_7 \
3310 HW_COMPAT_2_7 \
3312 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3313 .property = "mem_win_size", \
3314 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3315 }, \
3317 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3318 .property = "mem64_win_size", \
3319 .value = "0", \
3320 }, \
3322 .driver = TYPE_POWERPC_CPU, \
3323 .property = "pre-2.8-migration", \
3324 .value = "on", \
3325 }, \
3327 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3328 .property = "pre-2.8-migration", \
3329 .value = "on", \
3332 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3333 uint64_t *buid, hwaddr *pio,
3334 hwaddr *mmio32, hwaddr *mmio64,
3335 unsigned n_dma, uint32_t *liobns, Error **errp)
3337 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3338 const uint64_t base_buid = 0x800000020000000ULL;
3339 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3340 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3341 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3342 const uint32_t max_index = 255;
3343 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3345 uint64_t ram_top = MACHINE(spapr)->ram_size;
3346 hwaddr phb0_base, phb_base;
3347 int i;
3349 /* Do we have hotpluggable memory? */
3350 if (MACHINE(spapr)->maxram_size > ram_top) {
3351 /* Can't just use maxram_size, because there may be an
3352 * alignment gap between normal and hotpluggable memory
3353 * regions */
3354 ram_top = spapr->hotplug_memory.base +
3355 memory_region_size(&spapr->hotplug_memory.mr);
3358 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3360 if (index > max_index) {
3361 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3362 max_index);
3363 return;
3366 *buid = base_buid + index;
3367 for (i = 0; i < n_dma; ++i) {
3368 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3371 phb_base = phb0_base + index * phb_spacing;
3372 *pio = phb_base + pio_offset;
3373 *mmio32 = phb_base + mmio_offset;
3375 * We don't set the 64-bit MMIO window, relying on the PHB's
3376 * fallback behaviour of automatically splitting a large "32-bit"
3377 * window into contiguous 32-bit and 64-bit windows
3381 static void spapr_machine_2_7_instance_options(MachineState *machine)
3383 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3385 spapr_machine_2_8_instance_options(machine);
3386 spapr->use_hotplug_event_source = false;
3389 static void spapr_machine_2_7_class_options(MachineClass *mc)
3391 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3393 spapr_machine_2_8_class_options(mc);
3394 smc->tcg_default_cpu = "POWER7";
3395 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3396 smc->phb_placement = phb_placement_2_7;
3399 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3402 * pseries-2.6
3404 #define SPAPR_COMPAT_2_6 \
3405 HW_COMPAT_2_6 \
3407 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3408 .property = "ddw",\
3409 .value = stringify(off),\
3412 static void spapr_machine_2_6_instance_options(MachineState *machine)
3414 spapr_machine_2_7_instance_options(machine);
3417 static void spapr_machine_2_6_class_options(MachineClass *mc)
3419 spapr_machine_2_7_class_options(mc);
3420 mc->has_hotpluggable_cpus = false;
3421 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3424 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3427 * pseries-2.5
3429 #define SPAPR_COMPAT_2_5 \
3430 HW_COMPAT_2_5 \
3432 .driver = "spapr-vlan", \
3433 .property = "use-rx-buffer-pools", \
3434 .value = "off", \
3437 static void spapr_machine_2_5_instance_options(MachineState *machine)
3439 spapr_machine_2_6_instance_options(machine);
3442 static void spapr_machine_2_5_class_options(MachineClass *mc)
3444 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3446 spapr_machine_2_6_class_options(mc);
3447 smc->use_ohci_by_default = true;
3448 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3451 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3454 * pseries-2.4
3456 #define SPAPR_COMPAT_2_4 \
3457 HW_COMPAT_2_4
3459 static void spapr_machine_2_4_instance_options(MachineState *machine)
3461 spapr_machine_2_5_instance_options(machine);
3464 static void spapr_machine_2_4_class_options(MachineClass *mc)
3466 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3468 spapr_machine_2_5_class_options(mc);
3469 smc->dr_lmb_enabled = false;
3470 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3473 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3476 * pseries-2.3
3478 #define SPAPR_COMPAT_2_3 \
3479 HW_COMPAT_2_3 \
3481 .driver = "spapr-pci-host-bridge",\
3482 .property = "dynamic-reconfiguration",\
3483 .value = "off",\
3486 static void spapr_machine_2_3_instance_options(MachineState *machine)
3488 spapr_machine_2_4_instance_options(machine);
3489 savevm_skip_section_footers();
3490 global_state_set_optional();
3491 savevm_skip_configuration();
3494 static void spapr_machine_2_3_class_options(MachineClass *mc)
3496 spapr_machine_2_4_class_options(mc);
3497 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3499 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3502 * pseries-2.2
3505 #define SPAPR_COMPAT_2_2 \
3506 HW_COMPAT_2_2 \
3508 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3509 .property = "mem_win_size",\
3510 .value = "0x20000000",\
3513 static void spapr_machine_2_2_instance_options(MachineState *machine)
3515 spapr_machine_2_3_instance_options(machine);
3516 machine->suppress_vmdesc = true;
3519 static void spapr_machine_2_2_class_options(MachineClass *mc)
3521 spapr_machine_2_3_class_options(mc);
3522 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3524 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3527 * pseries-2.1
3529 #define SPAPR_COMPAT_2_1 \
3530 HW_COMPAT_2_1
3532 static void spapr_machine_2_1_instance_options(MachineState *machine)
3534 spapr_machine_2_2_instance_options(machine);
3537 static void spapr_machine_2_1_class_options(MachineClass *mc)
3539 spapr_machine_2_2_class_options(mc);
3540 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3542 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3544 static void spapr_machine_register_types(void)
3546 type_register_static(&spapr_machine_info);
3549 type_init(spapr_machine_register_types)