hw/arm/virt: eliminate struct VirtGuestInfoState
[qemu/ar7.git] / hw / arm / virt.c
blob9b55ef05a68066f243ddd6af257ba3551f32d5ca
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
62 /* Number of external interrupt lines to configure the GIC with */
63 #define NUM_IRQS 256
65 #define PLATFORM_BUS_NUM_IRQS 64
67 static ARMPlatformBusSystemParams platform_bus_params;
69 typedef struct {
70 MachineClass parent;
71 bool disallow_affinity_adjustment;
72 bool no_its;
73 bool no_pmu;
74 bool claim_edge_triggered_timers;
75 } VirtMachineClass;
77 typedef struct {
78 MachineState parent;
79 VirtGuestInfo acpi_guest_info;
80 Notifier machine_done;
81 bool secure;
82 bool highmem;
83 int32_t gic_version;
84 struct arm_boot_info bootinfo;
85 const MemMapEntry *memmap;
86 const int *irqmap;
87 int smp_cpus;
88 void *fdt;
89 int fdt_size;
90 uint32_t clock_phandle;
91 uint32_t gic_phandle;
92 uint32_t msi_phandle;
93 bool using_psci;
94 } VirtMachineState;
96 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
97 #define VIRT_MACHINE(obj) \
98 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
99 #define VIRT_MACHINE_GET_CLASS(obj) \
100 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
101 #define VIRT_MACHINE_CLASS(klass) \
102 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
105 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
106 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
107 void *data) \
109 MachineClass *mc = MACHINE_CLASS(oc); \
110 virt_machine_##major##_##minor##_options(mc); \
111 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
112 if (latest) { \
113 mc->alias = "virt"; \
116 static const TypeInfo machvirt_##major##_##minor##_info = { \
117 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
118 .parent = TYPE_VIRT_MACHINE, \
119 .instance_init = virt_##major##_##minor##_instance_init, \
120 .class_init = virt_##major##_##minor##_class_init, \
121 }; \
122 static void machvirt_machine_##major##_##minor##_init(void) \
124 type_register_static(&machvirt_##major##_##minor##_info); \
126 type_init(machvirt_machine_##major##_##minor##_init);
128 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
129 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
130 #define DEFINE_VIRT_MACHINE(major, minor) \
131 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
134 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
135 * RAM can go up to the 256GB mark, leaving 256GB of the physical
136 * address space unallocated and free for future use between 256G and 512G.
137 * If we need to provide more RAM to VMs in the future then we need to:
138 * * allocate a second bank of RAM starting at 2TB and working up
139 * * fix the DT and ACPI table generation code in QEMU to correctly
140 * report two split lumps of RAM to the guest
141 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
142 * (We don't want to fill all the way up to 512GB with RAM because
143 * we might want it for non-RAM purposes later. Conversely it seems
144 * reasonable to assume that anybody configuring a VM with a quarter
145 * of a terabyte of RAM will be doing it on a host with more than a
146 * terabyte of physical address space.)
148 #define RAMLIMIT_GB 255
149 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
151 /* Addresses and sizes of our components.
152 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
153 * 128MB..256MB is used for miscellaneous device I/O.
154 * 256MB..1GB is reserved for possible future PCI support (ie where the
155 * PCI memory window will go if we add a PCI host controller).
156 * 1GB and up is RAM (which may happily spill over into the
157 * high memory region beyond 4GB).
158 * This represents a compromise between how much RAM can be given to
159 * a 32 bit VM and leaving space for expansion and in particular for PCI.
160 * Note that devices should generally be placed at multiples of 0x10000,
161 * to accommodate guests using 64K pages.
163 static const MemMapEntry a15memmap[] = {
164 /* Space up to 0x8000000 is reserved for a boot ROM */
165 [VIRT_FLASH] = { 0, 0x08000000 },
166 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
167 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
168 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
169 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
170 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
171 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
172 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
173 /* This redistributor space allows up to 2*64kB*123 CPUs */
174 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
175 [VIRT_UART] = { 0x09000000, 0x00001000 },
176 [VIRT_RTC] = { 0x09010000, 0x00001000 },
177 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
178 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
179 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
180 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
181 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
182 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
183 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
184 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
185 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
186 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
187 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
188 /* Second PCIe window, 512GB wide at the 512GB boundary */
189 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
192 static const int a15irqmap[] = {
193 [VIRT_UART] = 1,
194 [VIRT_RTC] = 2,
195 [VIRT_PCIE] = 3, /* ... to 6 */
196 [VIRT_GPIO] = 7,
197 [VIRT_SECURE_UART] = 8,
198 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
199 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
200 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
203 static const char *valid_cpus[] = {
204 "cortex-a15",
205 "cortex-a53",
206 "cortex-a57",
207 "host",
208 NULL
211 static bool cpuname_valid(const char *cpu)
213 int i;
215 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
216 if (strcmp(cpu, valid_cpus[i]) == 0) {
217 return true;
220 return false;
223 static void create_fdt(VirtMachineState *vms)
225 void *fdt = create_device_tree(&vms->fdt_size);
227 if (!fdt) {
228 error_report("create_device_tree() failed");
229 exit(1);
232 vms->fdt = fdt;
234 /* Header */
235 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
236 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
237 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
240 * /chosen and /memory nodes must exist for load_dtb
241 * to fill in necessary properties later
243 qemu_fdt_add_subnode(fdt, "/chosen");
244 qemu_fdt_add_subnode(fdt, "/memory");
245 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
247 /* Clock node, for the benefit of the UART. The kernel device tree
248 * binding documentation claims the PL011 node clock properties are
249 * optional but in practice if you omit them the kernel refuses to
250 * probe for the device.
252 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
253 qemu_fdt_add_subnode(fdt, "/apb-pclk");
254 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
255 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
256 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
257 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
258 "clk24mhz");
259 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
263 static void fdt_add_psci_node(const VirtMachineState *vms)
265 uint32_t cpu_suspend_fn;
266 uint32_t cpu_off_fn;
267 uint32_t cpu_on_fn;
268 uint32_t migrate_fn;
269 void *fdt = vms->fdt;
270 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
272 if (!vms->using_psci) {
273 return;
276 qemu_fdt_add_subnode(fdt, "/psci");
277 if (armcpu->psci_version == 2) {
278 const char comp[] = "arm,psci-0.2\0arm,psci";
279 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
281 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
282 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
283 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
284 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
285 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
286 } else {
287 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
288 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
289 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
291 } else {
292 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
294 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
295 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
296 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
297 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
300 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
301 * to the instruction that should be used to invoke PSCI functions.
302 * However, the device tree binding uses 'method' instead, so that is
303 * what we should use here.
305 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
307 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
308 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
309 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
310 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
313 static void fdt_add_timer_nodes(const VirtMachineState *vms)
315 /* On real hardware these interrupts are level-triggered.
316 * On KVM they were edge-triggered before host kernel version 4.4,
317 * and level-triggered afterwards.
318 * On emulated QEMU they are level-triggered.
320 * Getting the DTB info about them wrong is awkward for some
321 * guest kernels:
322 * pre-4.8 ignore the DT and leave the interrupt configured
323 * with whatever the GIC reset value (or the bootloader) left it at
324 * 4.8 before rc6 honour the incorrect data by programming it back
325 * into the GIC, causing problems
326 * 4.8rc6 and later ignore the DT and always write "level triggered"
327 * into the GIC
329 * For backwards-compatibility, virt-2.8 and earlier will continue
330 * to say these are edge-triggered, but later machines will report
331 * the correct information.
333 ARMCPU *armcpu;
334 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
335 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
337 if (vmc->claim_edge_triggered_timers) {
338 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
341 if (vms->gic_version == 2) {
342 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
343 GIC_FDT_IRQ_PPI_CPU_WIDTH,
344 (1 << vms->smp_cpus) - 1);
347 qemu_fdt_add_subnode(vms->fdt, "/timer");
349 armcpu = ARM_CPU(qemu_get_cpu(0));
350 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
351 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
352 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
353 compat, sizeof(compat));
354 } else {
355 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
356 "arm,armv7-timer");
358 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
359 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
360 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
361 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
362 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
363 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
366 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
368 int cpu;
369 int addr_cells = 1;
370 unsigned int i;
373 * From Documentation/devicetree/bindings/arm/cpus.txt
374 * On ARM v8 64-bit systems value should be set to 2,
375 * that corresponds to the MPIDR_EL1 register size.
376 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
377 * in the system, #address-cells can be set to 1, since
378 * MPIDR_EL1[63:32] bits are not used for CPUs
379 * identification.
381 * Here we actually don't know whether our system is 32- or 64-bit one.
382 * The simplest way to go is to examine affinity IDs of all our CPUs. If
383 * at least one of them has Aff3 populated, we set #address-cells to 2.
385 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
386 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
388 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
389 addr_cells = 2;
390 break;
394 qemu_fdt_add_subnode(vms->fdt, "/cpus");
395 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
396 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
398 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
399 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
400 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
402 qemu_fdt_add_subnode(vms->fdt, nodename);
403 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
404 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
405 armcpu->dtb_compatible);
407 if (vms->using_psci && vms->smp_cpus > 1) {
408 qemu_fdt_setprop_string(vms->fdt, nodename,
409 "enable-method", "psci");
412 if (addr_cells == 2) {
413 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
414 armcpu->mp_affinity);
415 } else {
416 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
417 armcpu->mp_affinity);
420 i = numa_get_node_for_cpu(cpu);
421 if (i < nb_numa_nodes) {
422 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
425 g_free(nodename);
429 static void fdt_add_its_gic_node(VirtMachineState *vms)
431 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
432 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
433 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
434 "arm,gic-v3-its");
435 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
436 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
437 2, vms->memmap[VIRT_GIC_ITS].base,
438 2, vms->memmap[VIRT_GIC_ITS].size);
439 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
442 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
444 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
445 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
446 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
447 "arm,gic-v2m-frame");
448 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
449 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
450 2, vms->memmap[VIRT_GIC_V2M].base,
451 2, vms->memmap[VIRT_GIC_V2M].size);
452 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
455 static void fdt_add_gic_node(VirtMachineState *vms)
457 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
458 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
460 qemu_fdt_add_subnode(vms->fdt, "/intc");
461 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
462 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
463 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
464 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
465 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
466 if (vms->gic_version == 3) {
467 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
468 "arm,gic-v3");
469 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
470 2, vms->memmap[VIRT_GIC_DIST].base,
471 2, vms->memmap[VIRT_GIC_DIST].size,
472 2, vms->memmap[VIRT_GIC_REDIST].base,
473 2, vms->memmap[VIRT_GIC_REDIST].size);
474 } else {
475 /* 'cortex-a15-gic' means 'GIC v2' */
476 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
477 "arm,cortex-a15-gic");
478 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
479 2, vms->memmap[VIRT_GIC_DIST].base,
480 2, vms->memmap[VIRT_GIC_DIST].size,
481 2, vms->memmap[VIRT_GIC_CPU].base,
482 2, vms->memmap[VIRT_GIC_CPU].size);
485 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
488 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
490 CPUState *cpu;
491 ARMCPU *armcpu;
492 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
494 CPU_FOREACH(cpu) {
495 armcpu = ARM_CPU(cpu);
496 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
497 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
498 return;
502 if (vms->gic_version == 2) {
503 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
504 GIC_FDT_IRQ_PPI_CPU_WIDTH,
505 (1 << vms->smp_cpus) - 1);
508 armcpu = ARM_CPU(qemu_get_cpu(0));
509 qemu_fdt_add_subnode(vms->fdt, "/pmu");
510 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
511 const char compat[] = "arm,armv8-pmuv3";
512 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
513 compat, sizeof(compat));
514 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
515 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
519 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
521 const char *itsclass = its_class_name();
522 DeviceState *dev;
524 if (!itsclass) {
525 /* Do nothing if not supported */
526 return;
529 dev = qdev_create(NULL, itsclass);
531 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
532 &error_abort);
533 qdev_init_nofail(dev);
534 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
536 fdt_add_its_gic_node(vms);
539 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
541 int i;
542 int irq = vms->irqmap[VIRT_GIC_V2M];
543 DeviceState *dev;
545 dev = qdev_create(NULL, "arm-gicv2m");
546 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
547 qdev_prop_set_uint32(dev, "base-spi", irq);
548 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
549 qdev_init_nofail(dev);
551 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
552 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
555 fdt_add_v2m_gic_node(vms);
558 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
560 /* We create a standalone GIC */
561 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
562 DeviceState *gicdev;
563 SysBusDevice *gicbusdev;
564 const char *gictype;
565 int type = vms->gic_version, i;
567 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
569 gicdev = qdev_create(NULL, gictype);
570 qdev_prop_set_uint32(gicdev, "revision", type);
571 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
572 /* Note that the num-irq property counts both internal and external
573 * interrupts; there are always 32 of the former (mandated by GIC spec).
575 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
576 if (!kvm_irqchip_in_kernel()) {
577 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
579 qdev_init_nofail(gicdev);
580 gicbusdev = SYS_BUS_DEVICE(gicdev);
581 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
582 if (type == 3) {
583 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
584 } else {
585 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
588 /* Wire the outputs from each CPU's generic timer to the
589 * appropriate GIC PPI inputs, and the GIC's IRQ output to
590 * the CPU's IRQ input.
592 for (i = 0; i < smp_cpus; i++) {
593 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
594 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
595 int irq;
596 /* Mapping from the output timer irq lines from the CPU to the
597 * GIC PPI inputs we use for the virt board.
599 const int timer_irq[] = {
600 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
601 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
602 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
603 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
606 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
607 qdev_connect_gpio_out(cpudev, irq,
608 qdev_get_gpio_in(gicdev,
609 ppibase + timer_irq[irq]));
612 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
613 sysbus_connect_irq(gicbusdev, i + smp_cpus,
614 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
617 for (i = 0; i < NUM_IRQS; i++) {
618 pic[i] = qdev_get_gpio_in(gicdev, i);
621 fdt_add_gic_node(vms);
623 if (type == 3 && !vmc->no_its) {
624 create_its(vms, gicdev);
625 } else if (type == 2) {
626 create_v2m(vms, pic);
630 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
631 MemoryRegion *mem, CharDriverState *chr)
633 char *nodename;
634 hwaddr base = vms->memmap[uart].base;
635 hwaddr size = vms->memmap[uart].size;
636 int irq = vms->irqmap[uart];
637 const char compat[] = "arm,pl011\0arm,primecell";
638 const char clocknames[] = "uartclk\0apb_pclk";
639 DeviceState *dev = qdev_create(NULL, "pl011");
640 SysBusDevice *s = SYS_BUS_DEVICE(dev);
642 qdev_prop_set_chr(dev, "chardev", chr);
643 qdev_init_nofail(dev);
644 memory_region_add_subregion(mem, base,
645 sysbus_mmio_get_region(s, 0));
646 sysbus_connect_irq(s, 0, pic[irq]);
648 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
649 qemu_fdt_add_subnode(vms->fdt, nodename);
650 /* Note that we can't use setprop_string because of the embedded NUL */
651 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
652 compat, sizeof(compat));
653 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
654 2, base, 2, size);
655 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
656 GIC_FDT_IRQ_TYPE_SPI, irq,
657 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
658 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
659 vms->clock_phandle, vms->clock_phandle);
660 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
661 clocknames, sizeof(clocknames));
663 if (uart == VIRT_UART) {
664 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
665 } else {
666 /* Mark as not usable by the normal world */
667 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
668 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
671 g_free(nodename);
674 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
676 char *nodename;
677 hwaddr base = vms->memmap[VIRT_RTC].base;
678 hwaddr size = vms->memmap[VIRT_RTC].size;
679 int irq = vms->irqmap[VIRT_RTC];
680 const char compat[] = "arm,pl031\0arm,primecell";
682 sysbus_create_simple("pl031", base, pic[irq]);
684 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
685 qemu_fdt_add_subnode(vms->fdt, nodename);
686 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
687 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
688 2, base, 2, size);
689 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
690 GIC_FDT_IRQ_TYPE_SPI, irq,
691 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
692 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
693 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
694 g_free(nodename);
697 static DeviceState *gpio_key_dev;
698 static void virt_powerdown_req(Notifier *n, void *opaque)
700 /* use gpio Pin 3 for power button event */
701 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
704 static Notifier virt_system_powerdown_notifier = {
705 .notify = virt_powerdown_req
708 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
710 char *nodename;
711 DeviceState *pl061_dev;
712 hwaddr base = vms->memmap[VIRT_GPIO].base;
713 hwaddr size = vms->memmap[VIRT_GPIO].size;
714 int irq = vms->irqmap[VIRT_GPIO];
715 const char compat[] = "arm,pl061\0arm,primecell";
717 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
719 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
720 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
721 qemu_fdt_add_subnode(vms->fdt, nodename);
722 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
723 2, base, 2, size);
724 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
725 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
726 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
727 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
728 GIC_FDT_IRQ_TYPE_SPI, irq,
729 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
730 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
731 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
732 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
734 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
735 qdev_get_gpio_in(pl061_dev, 3));
736 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
737 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
738 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
739 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
741 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
742 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
743 "label", "GPIO Key Poweroff");
744 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
745 KEY_POWER);
746 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
747 "gpios", phandle, 3, 0);
749 /* connect powerdown request */
750 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
752 g_free(nodename);
755 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
757 int i;
758 hwaddr size = vms->memmap[VIRT_MMIO].size;
760 /* We create the transports in forwards order. Since qbus_realize()
761 * prepends (not appends) new child buses, the incrementing loop below will
762 * create a list of virtio-mmio buses with decreasing base addresses.
764 * When a -device option is processed from the command line,
765 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
766 * order. The upshot is that -device options in increasing command line
767 * order are mapped to virtio-mmio buses with decreasing base addresses.
769 * When this code was originally written, that arrangement ensured that the
770 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
771 * the first -device on the command line. (The end-to-end order is a
772 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
773 * guest kernel's name-to-address assignment strategy.)
775 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
776 * the message, if not necessarily the code, of commit 70161ff336.
777 * Therefore the loop now establishes the inverse of the original intent.
779 * Unfortunately, we can't counteract the kernel change by reversing the
780 * loop; it would break existing command lines.
782 * In any case, the kernel makes no guarantee about the stability of
783 * enumeration order of virtio devices (as demonstrated by it changing
784 * between kernel versions). For reliable and stable identification
785 * of disks users must use UUIDs or similar mechanisms.
787 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
788 int irq = vms->irqmap[VIRT_MMIO] + i;
789 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
791 sysbus_create_simple("virtio-mmio", base, pic[irq]);
794 /* We add dtb nodes in reverse order so that they appear in the finished
795 * device tree lowest address first.
797 * Note that this mapping is independent of the loop above. The previous
798 * loop influences virtio device to virtio transport assignment, whereas
799 * this loop controls how virtio transports are laid out in the dtb.
801 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
802 char *nodename;
803 int irq = vms->irqmap[VIRT_MMIO] + i;
804 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
806 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
807 qemu_fdt_add_subnode(vms->fdt, nodename);
808 qemu_fdt_setprop_string(vms->fdt, nodename,
809 "compatible", "virtio,mmio");
810 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
811 2, base, 2, size);
812 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
813 GIC_FDT_IRQ_TYPE_SPI, irq,
814 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
815 g_free(nodename);
819 static void create_one_flash(const char *name, hwaddr flashbase,
820 hwaddr flashsize, const char *file,
821 MemoryRegion *sysmem)
823 /* Create and map a single flash device. We use the same
824 * parameters as the flash devices on the Versatile Express board.
826 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
827 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
828 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
829 const uint64_t sectorlength = 256 * 1024;
831 if (dinfo) {
832 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
833 &error_abort);
836 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
837 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
838 qdev_prop_set_uint8(dev, "width", 4);
839 qdev_prop_set_uint8(dev, "device-width", 2);
840 qdev_prop_set_bit(dev, "big-endian", false);
841 qdev_prop_set_uint16(dev, "id0", 0x89);
842 qdev_prop_set_uint16(dev, "id1", 0x18);
843 qdev_prop_set_uint16(dev, "id2", 0x00);
844 qdev_prop_set_uint16(dev, "id3", 0x00);
845 qdev_prop_set_string(dev, "name", name);
846 qdev_init_nofail(dev);
848 memory_region_add_subregion(sysmem, flashbase,
849 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
851 if (file) {
852 char *fn;
853 int image_size;
855 if (drive_get(IF_PFLASH, 0, 0)) {
856 error_report("The contents of the first flash device may be "
857 "specified with -bios or with -drive if=pflash... "
858 "but you cannot use both options at once");
859 exit(1);
861 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
862 if (!fn) {
863 error_report("Could not find ROM image '%s'", file);
864 exit(1);
866 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
867 g_free(fn);
868 if (image_size < 0) {
869 error_report("Could not load ROM image '%s'", file);
870 exit(1);
875 static void create_flash(const VirtMachineState *vms,
876 MemoryRegion *sysmem,
877 MemoryRegion *secure_sysmem)
879 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
880 * Any file passed via -bios goes in the first of these.
881 * sysmem is the system memory space. secure_sysmem is the secure view
882 * of the system, and the first flash device should be made visible only
883 * there. The second flash device is visible to both secure and nonsecure.
884 * If sysmem == secure_sysmem this means there is no separate Secure
885 * address space and both flash devices are generally visible.
887 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
888 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
889 char *nodename;
891 create_one_flash("virt.flash0", flashbase, flashsize,
892 bios_name, secure_sysmem);
893 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
894 NULL, sysmem);
896 if (sysmem == secure_sysmem) {
897 /* Report both flash devices as a single node in the DT */
898 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
899 qemu_fdt_add_subnode(vms->fdt, nodename);
900 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
901 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
902 2, flashbase, 2, flashsize,
903 2, flashbase + flashsize, 2, flashsize);
904 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
905 g_free(nodename);
906 } else {
907 /* Report the devices as separate nodes so we can mark one as
908 * only visible to the secure world.
910 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
911 qemu_fdt_add_subnode(vms->fdt, nodename);
912 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
913 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
914 2, flashbase, 2, flashsize);
915 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
916 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
917 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
918 g_free(nodename);
920 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
921 qemu_fdt_add_subnode(vms->fdt, nodename);
922 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
923 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
924 2, flashbase + flashsize, 2, flashsize);
925 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
926 g_free(nodename);
930 static void create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
932 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
933 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
934 FWCfgState *fw_cfg;
935 char *nodename;
937 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
938 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
940 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
941 qemu_fdt_add_subnode(vms->fdt, nodename);
942 qemu_fdt_setprop_string(vms->fdt, nodename,
943 "compatible", "qemu,fw-cfg-mmio");
944 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
945 2, base, 2, size);
946 g_free(nodename);
949 static void create_pcie_irq_map(const VirtMachineState *vms,
950 uint32_t gic_phandle,
951 int first_irq, const char *nodename)
953 int devfn, pin;
954 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
955 uint32_t *irq_map = full_irq_map;
957 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
958 for (pin = 0; pin < 4; pin++) {
959 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
960 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
961 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
962 int i;
964 uint32_t map[] = {
965 devfn << 8, 0, 0, /* devfn */
966 pin + 1, /* PCI pin */
967 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
969 /* Convert map to big endian */
970 for (i = 0; i < 10; i++) {
971 irq_map[i] = cpu_to_be32(map[i]);
973 irq_map += 10;
977 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
978 full_irq_map, sizeof(full_irq_map));
980 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
981 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
982 0x7 /* PCI irq */);
985 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
987 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
988 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
989 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
990 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
991 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
992 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
993 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
994 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
995 hwaddr base = base_mmio;
996 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
997 int irq = vms->irqmap[VIRT_PCIE];
998 MemoryRegion *mmio_alias;
999 MemoryRegion *mmio_reg;
1000 MemoryRegion *ecam_alias;
1001 MemoryRegion *ecam_reg;
1002 DeviceState *dev;
1003 char *nodename;
1004 int i;
1005 PCIHostState *pci;
1007 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1008 qdev_init_nofail(dev);
1010 /* Map only the first size_ecam bytes of ECAM space */
1011 ecam_alias = g_new0(MemoryRegion, 1);
1012 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1013 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1014 ecam_reg, 0, size_ecam);
1015 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1017 /* Map the MMIO window into system address space so as to expose
1018 * the section of PCI MMIO space which starts at the same base address
1019 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1020 * the window).
1022 mmio_alias = g_new0(MemoryRegion, 1);
1023 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1024 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1025 mmio_reg, base_mmio, size_mmio);
1026 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1028 if (vms->highmem) {
1029 /* Map high MMIO space */
1030 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1032 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1033 mmio_reg, base_mmio_high, size_mmio_high);
1034 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1035 high_mmio_alias);
1038 /* Map IO port space */
1039 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1041 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1042 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1045 pci = PCI_HOST_BRIDGE(dev);
1046 if (pci->bus) {
1047 for (i = 0; i < nb_nics; i++) {
1048 NICInfo *nd = &nd_table[i];
1050 if (!nd->model) {
1051 nd->model = g_strdup("virtio");
1054 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1058 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1059 qemu_fdt_add_subnode(vms->fdt, nodename);
1060 qemu_fdt_setprop_string(vms->fdt, nodename,
1061 "compatible", "pci-host-ecam-generic");
1062 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1063 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1064 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1065 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1066 nr_pcie_buses - 1);
1067 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1069 if (vms->msi_phandle) {
1070 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1071 vms->msi_phandle);
1074 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1075 2, base_ecam, 2, size_ecam);
1077 if (vms->highmem) {
1078 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1079 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1080 2, base_pio, 2, size_pio,
1081 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1082 2, base_mmio, 2, size_mmio,
1083 1, FDT_PCI_RANGE_MMIO_64BIT,
1084 2, base_mmio_high,
1085 2, base_mmio_high, 2, size_mmio_high);
1086 } else {
1087 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1088 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1089 2, base_pio, 2, size_pio,
1090 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1091 2, base_mmio, 2, size_mmio);
1094 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1095 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1097 g_free(nodename);
1100 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1102 DeviceState *dev;
1103 SysBusDevice *s;
1104 int i;
1105 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1106 MemoryRegion *sysmem = get_system_memory();
1108 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1109 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1110 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1111 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1113 fdt_params->system_params = &platform_bus_params;
1114 fdt_params->binfo = &vms->bootinfo;
1115 fdt_params->intc = "/intc";
1117 * register a machine init done notifier that creates the device tree
1118 * nodes of the platform bus and its children dynamic sysbus devices
1120 arm_register_platform_bus_fdt_creator(fdt_params);
1122 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1123 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1124 qdev_prop_set_uint32(dev, "num_irqs",
1125 platform_bus_params.platform_bus_num_irqs);
1126 qdev_prop_set_uint32(dev, "mmio_size",
1127 platform_bus_params.platform_bus_size);
1128 qdev_init_nofail(dev);
1129 s = SYS_BUS_DEVICE(dev);
1131 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1132 int irqn = platform_bus_params.platform_bus_first_irq + i;
1133 sysbus_connect_irq(s, i, pic[irqn]);
1136 memory_region_add_subregion(sysmem,
1137 platform_bus_params.platform_bus_base,
1138 sysbus_mmio_get_region(s, 0));
1141 static void create_secure_ram(VirtMachineState *vms,
1142 MemoryRegion *secure_sysmem)
1144 MemoryRegion *secram = g_new(MemoryRegion, 1);
1145 char *nodename;
1146 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1147 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1149 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1150 vmstate_register_ram_global(secram);
1151 memory_region_add_subregion(secure_sysmem, base, secram);
1153 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1154 qemu_fdt_add_subnode(vms->fdt, nodename);
1155 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1156 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1157 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1158 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1160 g_free(nodename);
1163 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1165 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1166 bootinfo);
1168 *fdt_size = board->fdt_size;
1169 return board->fdt;
1172 static void virt_build_smbios(VirtGuestInfo *guest_info)
1174 FWCfgState *fw_cfg = guest_info->fw_cfg;
1175 uint8_t *smbios_tables, *smbios_anchor;
1176 size_t smbios_tables_len, smbios_anchor_len;
1177 const char *product = "QEMU Virtual Machine";
1179 if (!fw_cfg) {
1180 return;
1183 if (kvm_enabled()) {
1184 product = "KVM Virtual Machine";
1187 smbios_set_defaults("QEMU", product,
1188 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1190 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1191 &smbios_anchor, &smbios_anchor_len);
1193 if (smbios_anchor) {
1194 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1195 smbios_tables, smbios_tables_len);
1196 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1197 smbios_anchor, smbios_anchor_len);
1201 static
1202 void virt_machine_done(Notifier *notifier, void *data)
1204 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1205 machine_done);
1207 virt_acpi_setup(&vms->acpi_guest_info);
1208 virt_build_smbios(&vms->acpi_guest_info);
1211 static void machvirt_init(MachineState *machine)
1213 VirtMachineState *vms = VIRT_MACHINE(machine);
1214 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1215 qemu_irq pic[NUM_IRQS];
1216 MemoryRegion *sysmem = get_system_memory();
1217 MemoryRegion *secure_sysmem = NULL;
1218 int n, virt_max_cpus;
1219 MemoryRegion *ram = g_new(MemoryRegion, 1);
1220 const char *cpu_model = machine->cpu_model;
1221 VirtGuestInfo *guest_info = &vms->acpi_guest_info;
1222 char **cpustr;
1223 ObjectClass *oc;
1224 const char *typename;
1225 CPUClass *cc;
1226 Error *err = NULL;
1227 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1228 uint8_t clustersz;
1230 if (!cpu_model) {
1231 cpu_model = "cortex-a15";
1234 /* We can probe only here because during property set
1235 * KVM is not available yet
1237 if (!vms->gic_version) {
1238 if (!kvm_enabled()) {
1239 error_report("gic-version=host requires KVM");
1240 exit(1);
1243 vms->gic_version = kvm_arm_vgic_probe();
1244 if (!vms->gic_version) {
1245 error_report("Unable to determine GIC version supported by host");
1246 exit(1);
1250 /* Separate the actual CPU model name from any appended features */
1251 cpustr = g_strsplit(cpu_model, ",", 2);
1253 if (!cpuname_valid(cpustr[0])) {
1254 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1255 exit(1);
1258 /* If we have an EL3 boot ROM then the assumption is that it will
1259 * implement PSCI itself, so disable QEMU's internal implementation
1260 * so it doesn't get in the way. Instead of starting secondary
1261 * CPUs in PSCI powerdown state we will start them all running and
1262 * let the boot ROM sort them out.
1263 * The usual case is that we do use QEMU's PSCI implementation.
1265 vms->using_psci = !(vms->secure && firmware_loaded);
1267 /* The maximum number of CPUs depends on the GIC version, or on how
1268 * many redistributors we can fit into the memory map.
1270 if (vms->gic_version == 3) {
1271 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1272 clustersz = GICV3_TARGETLIST_BITS;
1273 } else {
1274 virt_max_cpus = GIC_NCPU;
1275 clustersz = GIC_TARGETLIST_BITS;
1278 if (max_cpus > virt_max_cpus) {
1279 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1280 "supported by machine 'mach-virt' (%d)",
1281 max_cpus, virt_max_cpus);
1282 exit(1);
1285 vms->smp_cpus = smp_cpus;
1287 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1288 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1289 exit(1);
1292 if (vms->secure) {
1293 if (kvm_enabled()) {
1294 error_report("mach-virt: KVM does not support Security extensions");
1295 exit(1);
1298 /* The Secure view of the world is the same as the NonSecure,
1299 * but with a few extra devices. Create it as a container region
1300 * containing the system memory at low priority; any secure-only
1301 * devices go in at higher priority and take precedence.
1303 secure_sysmem = g_new(MemoryRegion, 1);
1304 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1305 UINT64_MAX);
1306 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1309 create_fdt(vms);
1311 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1312 if (!oc) {
1313 error_report("Unable to find CPU definition");
1314 exit(1);
1316 typename = object_class_get_name(oc);
1318 /* convert -smp CPU options specified by the user into global props */
1319 cc = CPU_CLASS(oc);
1320 cc->parse_features(typename, cpustr[1], &err);
1321 g_strfreev(cpustr);
1322 if (err) {
1323 error_report_err(err);
1324 exit(1);
1327 for (n = 0; n < smp_cpus; n++) {
1328 Object *cpuobj = object_new(typename);
1329 if (!vmc->disallow_affinity_adjustment) {
1330 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1331 * GIC's target-list limitations. 32-bit KVM hosts currently
1332 * always create clusters of 4 CPUs, but that is expected to
1333 * change when they gain support for gicv3. When KVM is enabled
1334 * it will override the changes we make here, therefore our
1335 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1336 * and to improve SGI efficiency.
1338 uint8_t aff1 = n / clustersz;
1339 uint8_t aff0 = n % clustersz;
1340 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1341 "mp-affinity", NULL);
1344 if (!vms->secure) {
1345 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1348 if (vms->using_psci) {
1349 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1350 "psci-conduit", NULL);
1352 /* Secondary CPUs start in PSCI powered-down state */
1353 if (n > 0) {
1354 object_property_set_bool(cpuobj, true,
1355 "start-powered-off", NULL);
1359 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1360 object_property_set_bool(cpuobj, false, "pmu", NULL);
1363 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1364 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1365 "reset-cbar", &error_abort);
1368 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1369 &error_abort);
1370 if (vms->secure) {
1371 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1372 "secure-memory", &error_abort);
1375 object_property_set_bool(cpuobj, true, "realized", NULL);
1377 fdt_add_timer_nodes(vms);
1378 fdt_add_cpu_nodes(vms);
1379 fdt_add_psci_node(vms);
1381 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1382 machine->ram_size);
1383 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1385 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1387 create_gic(vms, pic);
1389 fdt_add_pmu_nodes(vms);
1391 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1393 if (vms->secure) {
1394 create_secure_ram(vms, secure_sysmem);
1395 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1398 create_rtc(vms, pic);
1400 create_pcie(vms, pic);
1402 create_gpio(vms, pic);
1404 /* Create mmio transports, so the user can create virtio backends
1405 * (which will be automatically plugged in to the transports). If
1406 * no backend is created the transport will just sit harmlessly idle.
1408 create_virtio_devices(vms, pic);
1410 create_fw_cfg(vms, &address_space_memory);
1411 rom_set_fw(fw_cfg_find());
1413 guest_info->smp_cpus = smp_cpus;
1414 guest_info->fw_cfg = fw_cfg_find();
1415 guest_info->memmap = vms->memmap;
1416 guest_info->irqmap = vms->irqmap;
1417 guest_info->use_highmem = vms->highmem;
1418 guest_info->gic_version = vms->gic_version;
1419 guest_info->no_its = vmc->no_its;
1420 vms->machine_done.notify = virt_machine_done;
1421 qemu_add_machine_init_done_notifier(&vms->machine_done);
1423 vms->bootinfo.ram_size = machine->ram_size;
1424 vms->bootinfo.kernel_filename = machine->kernel_filename;
1425 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1426 vms->bootinfo.initrd_filename = machine->initrd_filename;
1427 vms->bootinfo.nb_cpus = smp_cpus;
1428 vms->bootinfo.board_id = -1;
1429 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1430 vms->bootinfo.get_dtb = machvirt_dtb;
1431 vms->bootinfo.firmware_loaded = firmware_loaded;
1432 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1435 * arm_load_kernel machine init done notifier registration must
1436 * happen before the platform_bus_create call. In this latter,
1437 * another notifier is registered which adds platform bus nodes.
1438 * Notifiers are executed in registration reverse order.
1440 create_platform_bus(vms, pic);
1443 static bool virt_get_secure(Object *obj, Error **errp)
1445 VirtMachineState *vms = VIRT_MACHINE(obj);
1447 return vms->secure;
1450 static void virt_set_secure(Object *obj, bool value, Error **errp)
1452 VirtMachineState *vms = VIRT_MACHINE(obj);
1454 vms->secure = value;
1457 static bool virt_get_highmem(Object *obj, Error **errp)
1459 VirtMachineState *vms = VIRT_MACHINE(obj);
1461 return vms->highmem;
1464 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1466 VirtMachineState *vms = VIRT_MACHINE(obj);
1468 vms->highmem = value;
1471 static char *virt_get_gic_version(Object *obj, Error **errp)
1473 VirtMachineState *vms = VIRT_MACHINE(obj);
1474 const char *val = vms->gic_version == 3 ? "3" : "2";
1476 return g_strdup(val);
1479 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1481 VirtMachineState *vms = VIRT_MACHINE(obj);
1483 if (!strcmp(value, "3")) {
1484 vms->gic_version = 3;
1485 } else if (!strcmp(value, "2")) {
1486 vms->gic_version = 2;
1487 } else if (!strcmp(value, "host")) {
1488 vms->gic_version = 0; /* Will probe later */
1489 } else {
1490 error_setg(errp, "Invalid gic-version value");
1491 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1495 static void virt_machine_class_init(ObjectClass *oc, void *data)
1497 MachineClass *mc = MACHINE_CLASS(oc);
1499 mc->init = machvirt_init;
1500 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1501 * it later in machvirt_init, where we have more information about the
1502 * configuration of the particular instance.
1504 mc->max_cpus = 255;
1505 mc->has_dynamic_sysbus = true;
1506 mc->block_default_type = IF_VIRTIO;
1507 mc->no_cdrom = 1;
1508 mc->pci_allow_0_address = true;
1509 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1510 mc->minimum_page_bits = 12;
1513 static const TypeInfo virt_machine_info = {
1514 .name = TYPE_VIRT_MACHINE,
1515 .parent = TYPE_MACHINE,
1516 .abstract = true,
1517 .instance_size = sizeof(VirtMachineState),
1518 .class_size = sizeof(VirtMachineClass),
1519 .class_init = virt_machine_class_init,
1522 static void machvirt_machine_init(void)
1524 type_register_static(&virt_machine_info);
1526 type_init(machvirt_machine_init);
1528 static void virt_2_9_instance_init(Object *obj)
1530 VirtMachineState *vms = VIRT_MACHINE(obj);
1532 /* EL3 is disabled by default on virt: this makes us consistent
1533 * between KVM and TCG for this board, and it also allows us to
1534 * boot UEFI blobs which assume no TrustZone support.
1536 vms->secure = false;
1537 object_property_add_bool(obj, "secure", virt_get_secure,
1538 virt_set_secure, NULL);
1539 object_property_set_description(obj, "secure",
1540 "Set on/off to enable/disable the ARM "
1541 "Security Extensions (TrustZone)",
1542 NULL);
1544 /* High memory is enabled by default */
1545 vms->highmem = true;
1546 object_property_add_bool(obj, "highmem", virt_get_highmem,
1547 virt_set_highmem, NULL);
1548 object_property_set_description(obj, "highmem",
1549 "Set on/off to enable/disable using "
1550 "physical address space above 32 bits",
1551 NULL);
1552 /* Default GIC type is v2 */
1553 vms->gic_version = 2;
1554 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1555 virt_set_gic_version, NULL);
1556 object_property_set_description(obj, "gic-version",
1557 "Set GIC version. "
1558 "Valid values are 2, 3 and host", NULL);
1560 vms->memmap = a15memmap;
1561 vms->irqmap = a15irqmap;
1564 static void virt_machine_2_9_options(MachineClass *mc)
1567 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1569 #define VIRT_COMPAT_2_8 \
1570 HW_COMPAT_2_8
1572 static void virt_2_8_instance_init(Object *obj)
1574 virt_2_9_instance_init(obj);
1577 static void virt_machine_2_8_options(MachineClass *mc)
1579 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1581 virt_machine_2_9_options(mc);
1582 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1583 /* For 2.8 and earlier we falsely claimed in the DT that
1584 * our timers were edge-triggered, not level-triggered.
1586 vmc->claim_edge_triggered_timers = true;
1588 DEFINE_VIRT_MACHINE(2, 8)
1590 #define VIRT_COMPAT_2_7 \
1591 HW_COMPAT_2_7
1593 static void virt_2_7_instance_init(Object *obj)
1595 virt_2_8_instance_init(obj);
1598 static void virt_machine_2_7_options(MachineClass *mc)
1600 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1602 virt_machine_2_8_options(mc);
1603 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1604 /* ITS was introduced with 2.8 */
1605 vmc->no_its = true;
1606 /* Stick with 1K pages for migration compatibility */
1607 mc->minimum_page_bits = 0;
1609 DEFINE_VIRT_MACHINE(2, 7)
1611 #define VIRT_COMPAT_2_6 \
1612 HW_COMPAT_2_6
1614 static void virt_2_6_instance_init(Object *obj)
1616 virt_2_7_instance_init(obj);
1619 static void virt_machine_2_6_options(MachineClass *mc)
1621 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1623 virt_machine_2_7_options(mc);
1624 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1625 vmc->disallow_affinity_adjustment = true;
1626 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1627 vmc->no_pmu = true;
1629 DEFINE_VIRT_MACHINE(2, 6)