Merge remote-tracking branch 'remotes/maxreitz/tags/pull-block-2017-11-14' into staging
[qemu/ar7.git] / exec.c
blob8b579c0cd9c740a86d7fc4b04f08467bebc092a4
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include "qemu.h"
42 #else /* !CONFIG_USER_ONLY */
43 #include "hw/hw.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <fcntl.h>
55 #include <linux/falloc.h>
56 #endif
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
103 #define RAM_RESIZEABLE (1 << 2)
105 #endif
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
121 uintptr_t qemu_host_page_size;
122 intptr_t qemu_host_page_mask;
124 bool set_preferred_target_page_bits(int bits)
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
131 #ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
137 target_page_bits = bits;
139 #endif
140 return true;
143 #if !defined(CONFIG_USER_ONLY)
145 static void finalize_target_page_bits(void)
147 #ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
151 target_page_bits_decided = true;
152 #endif
155 typedef struct PhysPageEntry PhysPageEntry;
157 struct PhysPageEntry {
158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
159 uint32_t skip : 6;
160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161 uint32_t ptr : 26;
164 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define ADDR_SPACE_BITS 64
169 #define P_L2_BITS 9
170 #define P_L2_SIZE (1 << P_L2_BITS)
172 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
174 typedef PhysPageEntry Node[P_L2_SIZE];
176 typedef struct PhysPageMap {
177 struct rcu_head rcu;
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185 } PhysPageMap;
187 struct AddressSpaceDispatch {
188 MemoryRegionSection *mru_section;
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
192 PhysPageEntry phys_map;
193 PhysPageMap map;
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 MemoryRegion iomem;
199 FlatView *fv;
200 hwaddr base;
201 uint16_t sub_section[];
202 } subpage_t;
204 #define PHYS_SECTION_UNASSIGNED 0
205 #define PHYS_SECTION_NOTDIRTY 1
206 #define PHYS_SECTION_ROM 2
207 #define PHYS_SECTION_WATCH 3
209 static void io_mem_init(void);
210 static void memory_map_init(void);
211 static void tcg_commit(MemoryListener *listener);
213 static MemoryRegion io_mem_watch;
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
222 struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
229 struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
235 #endif
237 #if !defined(CONFIG_USER_ONLY)
239 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
241 static unsigned alloc_hint = 16;
242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246 alloc_hint = map->nodes_nb_alloc;
250 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
252 unsigned i;
253 uint32_t ret;
254 PhysPageEntry e;
255 PhysPageEntry *p;
257 ret = map->nodes_nb++;
258 p = map->nodes[ret];
259 assert(ret != PHYS_MAP_NODE_NIL);
260 assert(ret != map->nodes_nb_alloc);
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264 for (i = 0; i < P_L2_SIZE; ++i) {
265 memcpy(&p[i], &e, sizeof(e));
267 return ret;
270 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
272 int level)
274 PhysPageEntry *p;
275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278 lp->ptr = phys_map_node_alloc(map, level == 0);
280 p = map->nodes[lp->ptr];
281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
283 while (*nb && lp < &p[P_L2_SIZE]) {
284 if ((*index & (step - 1)) == 0 && *nb >= step) {
285 lp->skip = 0;
286 lp->ptr = leaf;
287 *index += step;
288 *nb -= step;
289 } else {
290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
292 ++lp;
296 static void phys_page_set(AddressSpaceDispatch *d,
297 hwaddr index, hwaddr nb,
298 uint16_t leaf)
300 /* Wildly overreserve - it doesn't matter much. */
301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
306 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
309 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
329 phys_page_compact(&p[i], nodes);
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
338 assert(valid_ptr < P_L2_SIZE);
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
359 void address_space_dispatch_compact(AddressSpaceDispatch *d)
361 if (d->phys_map.skip) {
362 phys_page_compact(&d->phys_map, d->map.nodes);
366 static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
372 return int128_gethi(section->size) ||
373 range_covers_byte(section->offset_within_address_space,
374 int128_getlo(section->size), addr);
377 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
382 hwaddr index = addr >> TARGET_PAGE_BITS;
383 int i;
385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
387 return &sections[PHYS_SECTION_UNASSIGNED];
389 p = nodes[lp.ptr];
390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
393 if (section_covers_addr(&sections[lp.ptr], addr)) {
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
400 bool memory_region_is_unassigned(MemoryRegion *mr)
402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403 && mr != &io_mem_watch;
406 /* Called from RCU critical section */
407 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 hwaddr addr,
409 bool resolve_subpage)
411 MemoryRegionSection *section = atomic_read(&d->mru_section);
412 subpage_t *subpage;
413 bool update;
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
419 section = phys_page_find(d, addr);
420 update = true;
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
426 if (update) {
427 atomic_set(&d->mru_section, section);
429 return section;
432 /* Called from RCU critical section */
433 static MemoryRegionSection *
434 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
435 hwaddr *plen, bool resolve_subpage)
437 MemoryRegionSection *section;
438 MemoryRegion *mr;
439 Int128 diff;
441 section = address_space_lookup_region(d, addr, resolve_subpage);
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
448 mr = section->mr;
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
461 if (memory_region_is_ram(mr)) {
462 diff = int128_sub(section->size, int128_make64(addr));
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
465 return section;
469 * flatview_do_translate - translate an address in FlatView
471 * @fv: the flat view that we want to translate on
472 * @addr: the address to be translated in above address space
473 * @xlat: the translated address offset within memory region. It
474 * cannot be @NULL.
475 * @plen_out: valid read/write length of the translated address. It
476 * can be @NULL when we don't care about it.
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be @NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
484 * This function is called from RCU critical section
486 static MemoryRegionSection flatview_do_translate(FlatView *fv,
487 hwaddr addr,
488 hwaddr *xlat,
489 hwaddr *plen_out,
490 hwaddr *page_mask_out,
491 bool is_write,
492 bool is_mmio,
493 AddressSpace **target_as)
495 IOMMUTLBEntry iotlb;
496 MemoryRegionSection *section;
497 IOMMUMemoryRegion *iommu_mr;
498 IOMMUMemoryRegionClass *imrc;
499 hwaddr page_mask = (hwaddr)(-1);
500 hwaddr plen = (hwaddr)(-1);
502 if (plen_out) {
503 plen = *plen_out;
506 for (;;) {
507 section = address_space_translate_internal(
508 flatview_to_dispatch(fv), addr, &addr,
509 &plen, is_mmio);
511 iommu_mr = memory_region_get_iommu(section->mr);
512 if (!iommu_mr) {
513 break;
515 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
517 iotlb = imrc->translate(iommu_mr, addr, is_write ?
518 IOMMU_WO : IOMMU_RO);
519 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
520 | (addr & iotlb.addr_mask));
521 page_mask &= iotlb.addr_mask;
522 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
523 if (!(iotlb.perm & (1 << is_write))) {
524 goto translate_fail;
527 fv = address_space_to_flatview(iotlb.target_as);
528 *target_as = iotlb.target_as;
531 *xlat = addr;
533 if (page_mask == (hwaddr)(-1)) {
534 /* Not behind an IOMMU, use default page size. */
535 page_mask = ~TARGET_PAGE_MASK;
538 if (page_mask_out) {
539 *page_mask_out = page_mask;
542 if (plen_out) {
543 *plen_out = plen;
546 return *section;
548 translate_fail:
549 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
552 /* Called from RCU critical section */
553 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
554 bool is_write)
556 MemoryRegionSection section;
557 hwaddr xlat, page_mask;
560 * This can never be MMIO, and we don't really care about plen,
561 * but page mask.
563 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
564 NULL, &page_mask, is_write, false, &as);
566 /* Illegal translation */
567 if (section.mr == &io_mem_unassigned) {
568 goto iotlb_fail;
571 /* Convert memory region offset into address space offset */
572 xlat += section.offset_within_address_space -
573 section.offset_within_region;
575 return (IOMMUTLBEntry) {
576 .target_as = as,
577 .iova = addr & ~page_mask,
578 .translated_addr = xlat & ~page_mask,
579 .addr_mask = page_mask,
580 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
581 .perm = IOMMU_RW,
584 iotlb_fail:
585 return (IOMMUTLBEntry) {0};
588 /* Called from RCU critical section */
589 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
590 hwaddr *plen, bool is_write)
592 MemoryRegion *mr;
593 MemoryRegionSection section;
594 AddressSpace *as = NULL;
596 /* This can be MMIO, so setup MMIO bit. */
597 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
598 is_write, true, &as);
599 mr = section.mr;
601 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
602 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
603 *plen = MIN(page, *plen);
606 return mr;
609 /* Called from RCU critical section */
610 MemoryRegionSection *
611 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
612 hwaddr *xlat, hwaddr *plen)
614 MemoryRegionSection *section;
615 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
617 section = address_space_translate_internal(d, addr, xlat, plen, false);
619 assert(!memory_region_is_iommu(section->mr));
620 return section;
622 #endif
624 #if !defined(CONFIG_USER_ONLY)
626 static int cpu_common_post_load(void *opaque, int version_id)
628 CPUState *cpu = opaque;
630 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
631 version_id is increased. */
632 cpu->interrupt_request &= ~0x01;
633 tlb_flush(cpu);
635 return 0;
638 static int cpu_common_pre_load(void *opaque)
640 CPUState *cpu = opaque;
642 cpu->exception_index = -1;
644 return 0;
647 static bool cpu_common_exception_index_needed(void *opaque)
649 CPUState *cpu = opaque;
651 return tcg_enabled() && cpu->exception_index != -1;
654 static const VMStateDescription vmstate_cpu_common_exception_index = {
655 .name = "cpu_common/exception_index",
656 .version_id = 1,
657 .minimum_version_id = 1,
658 .needed = cpu_common_exception_index_needed,
659 .fields = (VMStateField[]) {
660 VMSTATE_INT32(exception_index, CPUState),
661 VMSTATE_END_OF_LIST()
665 static bool cpu_common_crash_occurred_needed(void *opaque)
667 CPUState *cpu = opaque;
669 return cpu->crash_occurred;
672 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
673 .name = "cpu_common/crash_occurred",
674 .version_id = 1,
675 .minimum_version_id = 1,
676 .needed = cpu_common_crash_occurred_needed,
677 .fields = (VMStateField[]) {
678 VMSTATE_BOOL(crash_occurred, CPUState),
679 VMSTATE_END_OF_LIST()
683 const VMStateDescription vmstate_cpu_common = {
684 .name = "cpu_common",
685 .version_id = 1,
686 .minimum_version_id = 1,
687 .pre_load = cpu_common_pre_load,
688 .post_load = cpu_common_post_load,
689 .fields = (VMStateField[]) {
690 VMSTATE_UINT32(halted, CPUState),
691 VMSTATE_UINT32(interrupt_request, CPUState),
692 VMSTATE_END_OF_LIST()
694 .subsections = (const VMStateDescription*[]) {
695 &vmstate_cpu_common_exception_index,
696 &vmstate_cpu_common_crash_occurred,
697 NULL
701 #endif
703 CPUState *qemu_get_cpu(int index)
705 CPUState *cpu;
707 CPU_FOREACH(cpu) {
708 if (cpu->cpu_index == index) {
709 return cpu;
713 return NULL;
716 #if !defined(CONFIG_USER_ONLY)
717 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
719 CPUAddressSpace *newas;
721 /* Target code should have set num_ases before calling us */
722 assert(asidx < cpu->num_ases);
724 if (asidx == 0) {
725 /* address space 0 gets the convenience alias */
726 cpu->as = as;
729 /* KVM cannot currently support multiple address spaces. */
730 assert(asidx == 0 || !kvm_enabled());
732 if (!cpu->cpu_ases) {
733 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
736 newas = &cpu->cpu_ases[asidx];
737 newas->cpu = cpu;
738 newas->as = as;
739 if (tcg_enabled()) {
740 newas->tcg_as_listener.commit = tcg_commit;
741 memory_listener_register(&newas->tcg_as_listener, as);
745 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
747 /* Return the AddressSpace corresponding to the specified index */
748 return cpu->cpu_ases[asidx].as;
750 #endif
752 void cpu_exec_unrealizefn(CPUState *cpu)
754 CPUClass *cc = CPU_GET_CLASS(cpu);
756 cpu_list_remove(cpu);
758 if (cc->vmsd != NULL) {
759 vmstate_unregister(NULL, cc->vmsd, cpu);
761 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
762 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
766 Property cpu_common_props[] = {
767 #ifndef CONFIG_USER_ONLY
768 /* Create a memory property for softmmu CPU object,
769 * so users can wire up its memory. (This can't go in qom/cpu.c
770 * because that file is compiled only once for both user-mode
771 * and system builds.) The default if no link is set up is to use
772 * the system address space.
774 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
775 MemoryRegion *),
776 #endif
777 DEFINE_PROP_END_OF_LIST(),
780 void cpu_exec_initfn(CPUState *cpu)
782 cpu->as = NULL;
783 cpu->num_ases = 0;
785 #ifndef CONFIG_USER_ONLY
786 cpu->thread_id = qemu_get_thread_id();
787 cpu->memory = system_memory;
788 object_ref(OBJECT(cpu->memory));
789 #endif
792 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
794 CPUClass *cc = CPU_GET_CLASS(cpu);
795 static bool tcg_target_initialized;
797 cpu_list_add(cpu);
799 if (tcg_enabled() && !tcg_target_initialized) {
800 tcg_target_initialized = true;
801 cc->tcg_initialize();
804 #ifndef CONFIG_USER_ONLY
805 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
806 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
808 if (cc->vmsd != NULL) {
809 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
811 #endif
814 #if defined(CONFIG_USER_ONLY)
815 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
817 mmap_lock();
818 tb_lock();
819 tb_invalidate_phys_page_range(pc, pc + 1, 0);
820 tb_unlock();
821 mmap_unlock();
823 #else
824 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
826 MemTxAttrs attrs;
827 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
828 int asidx = cpu_asidx_from_attrs(cpu, attrs);
829 if (phys != -1) {
830 /* Locks grabbed by tb_invalidate_phys_addr */
831 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
832 phys | (pc & ~TARGET_PAGE_MASK));
835 #endif
837 #if defined(CONFIG_USER_ONLY)
838 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
843 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
844 int flags)
846 return -ENOSYS;
849 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
853 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
854 int flags, CPUWatchpoint **watchpoint)
856 return -ENOSYS;
858 #else
859 /* Add a watchpoint. */
860 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
861 int flags, CPUWatchpoint **watchpoint)
863 CPUWatchpoint *wp;
865 /* forbid ranges which are empty or run off the end of the address space */
866 if (len == 0 || (addr + len - 1) < addr) {
867 error_report("tried to set invalid watchpoint at %"
868 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
869 return -EINVAL;
871 wp = g_malloc(sizeof(*wp));
873 wp->vaddr = addr;
874 wp->len = len;
875 wp->flags = flags;
877 /* keep all GDB-injected watchpoints in front */
878 if (flags & BP_GDB) {
879 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
880 } else {
881 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
884 tlb_flush_page(cpu, addr);
886 if (watchpoint)
887 *watchpoint = wp;
888 return 0;
891 /* Remove a specific watchpoint. */
892 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
893 int flags)
895 CPUWatchpoint *wp;
897 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
898 if (addr == wp->vaddr && len == wp->len
899 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
900 cpu_watchpoint_remove_by_ref(cpu, wp);
901 return 0;
904 return -ENOENT;
907 /* Remove a specific watchpoint by reference. */
908 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
910 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
912 tlb_flush_page(cpu, watchpoint->vaddr);
914 g_free(watchpoint);
917 /* Remove all matching watchpoints. */
918 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
920 CPUWatchpoint *wp, *next;
922 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
923 if (wp->flags & mask) {
924 cpu_watchpoint_remove_by_ref(cpu, wp);
929 /* Return true if this watchpoint address matches the specified
930 * access (ie the address range covered by the watchpoint overlaps
931 * partially or completely with the address range covered by the
932 * access).
934 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
935 vaddr addr,
936 vaddr len)
938 /* We know the lengths are non-zero, but a little caution is
939 * required to avoid errors in the case where the range ends
940 * exactly at the top of the address space and so addr + len
941 * wraps round to zero.
943 vaddr wpend = wp->vaddr + wp->len - 1;
944 vaddr addrend = addr + len - 1;
946 return !(addr > wpend || wp->vaddr > addrend);
949 #endif
951 /* Add a breakpoint. */
952 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
953 CPUBreakpoint **breakpoint)
955 CPUBreakpoint *bp;
957 bp = g_malloc(sizeof(*bp));
959 bp->pc = pc;
960 bp->flags = flags;
962 /* keep all GDB-injected breakpoints in front */
963 if (flags & BP_GDB) {
964 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
965 } else {
966 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
969 breakpoint_invalidate(cpu, pc);
971 if (breakpoint) {
972 *breakpoint = bp;
974 return 0;
977 /* Remove a specific breakpoint. */
978 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
980 CPUBreakpoint *bp;
982 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
983 if (bp->pc == pc && bp->flags == flags) {
984 cpu_breakpoint_remove_by_ref(cpu, bp);
985 return 0;
988 return -ENOENT;
991 /* Remove a specific breakpoint by reference. */
992 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
994 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
996 breakpoint_invalidate(cpu, breakpoint->pc);
998 g_free(breakpoint);
1001 /* Remove all matching breakpoints. */
1002 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1004 CPUBreakpoint *bp, *next;
1006 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1007 if (bp->flags & mask) {
1008 cpu_breakpoint_remove_by_ref(cpu, bp);
1013 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1014 CPU loop after each instruction */
1015 void cpu_single_step(CPUState *cpu, int enabled)
1017 if (cpu->singlestep_enabled != enabled) {
1018 cpu->singlestep_enabled = enabled;
1019 if (kvm_enabled()) {
1020 kvm_update_guest_debug(cpu, 0);
1021 } else {
1022 /* must flush all the translated code to avoid inconsistencies */
1023 /* XXX: only flush what is necessary */
1024 tb_flush(cpu);
1029 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1031 va_list ap;
1032 va_list ap2;
1034 va_start(ap, fmt);
1035 va_copy(ap2, ap);
1036 fprintf(stderr, "qemu: fatal: ");
1037 vfprintf(stderr, fmt, ap);
1038 fprintf(stderr, "\n");
1039 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1040 if (qemu_log_separate()) {
1041 qemu_log_lock();
1042 qemu_log("qemu: fatal: ");
1043 qemu_log_vprintf(fmt, ap2);
1044 qemu_log("\n");
1045 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1046 qemu_log_flush();
1047 qemu_log_unlock();
1048 qemu_log_close();
1050 va_end(ap2);
1051 va_end(ap);
1052 replay_finish();
1053 #if defined(CONFIG_USER_ONLY)
1055 struct sigaction act;
1056 sigfillset(&act.sa_mask);
1057 act.sa_handler = SIG_DFL;
1058 sigaction(SIGABRT, &act, NULL);
1060 #endif
1061 abort();
1064 #if !defined(CONFIG_USER_ONLY)
1065 /* Called from RCU critical section */
1066 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1068 RAMBlock *block;
1070 block = atomic_rcu_read(&ram_list.mru_block);
1071 if (block && addr - block->offset < block->max_length) {
1072 return block;
1074 RAMBLOCK_FOREACH(block) {
1075 if (addr - block->offset < block->max_length) {
1076 goto found;
1080 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1081 abort();
1083 found:
1084 /* It is safe to write mru_block outside the iothread lock. This
1085 * is what happens:
1087 * mru_block = xxx
1088 * rcu_read_unlock()
1089 * xxx removed from list
1090 * rcu_read_lock()
1091 * read mru_block
1092 * mru_block = NULL;
1093 * call_rcu(reclaim_ramblock, xxx);
1094 * rcu_read_unlock()
1096 * atomic_rcu_set is not needed here. The block was already published
1097 * when it was placed into the list. Here we're just making an extra
1098 * copy of the pointer.
1100 ram_list.mru_block = block;
1101 return block;
1104 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1106 CPUState *cpu;
1107 ram_addr_t start1;
1108 RAMBlock *block;
1109 ram_addr_t end;
1111 end = TARGET_PAGE_ALIGN(start + length);
1112 start &= TARGET_PAGE_MASK;
1114 rcu_read_lock();
1115 block = qemu_get_ram_block(start);
1116 assert(block == qemu_get_ram_block(end - 1));
1117 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1118 CPU_FOREACH(cpu) {
1119 tlb_reset_dirty(cpu, start1, length);
1121 rcu_read_unlock();
1124 /* Note: start and end must be within the same ram block. */
1125 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1126 ram_addr_t length,
1127 unsigned client)
1129 DirtyMemoryBlocks *blocks;
1130 unsigned long end, page;
1131 bool dirty = false;
1133 if (length == 0) {
1134 return false;
1137 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1138 page = start >> TARGET_PAGE_BITS;
1140 rcu_read_lock();
1142 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1144 while (page < end) {
1145 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1146 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1147 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1149 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1150 offset, num);
1151 page += num;
1154 rcu_read_unlock();
1156 if (dirty && tcg_enabled()) {
1157 tlb_reset_dirty_range_all(start, length);
1160 return dirty;
1163 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1164 (ram_addr_t start, ram_addr_t length, unsigned client)
1166 DirtyMemoryBlocks *blocks;
1167 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1168 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1169 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1170 DirtyBitmapSnapshot *snap;
1171 unsigned long page, end, dest;
1173 snap = g_malloc0(sizeof(*snap) +
1174 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1175 snap->start = first;
1176 snap->end = last;
1178 page = first >> TARGET_PAGE_BITS;
1179 end = last >> TARGET_PAGE_BITS;
1180 dest = 0;
1182 rcu_read_lock();
1184 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1186 while (page < end) {
1187 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1188 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1189 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1191 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1192 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1193 offset >>= BITS_PER_LEVEL;
1195 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1196 blocks->blocks[idx] + offset,
1197 num);
1198 page += num;
1199 dest += num >> BITS_PER_LEVEL;
1202 rcu_read_unlock();
1204 if (tcg_enabled()) {
1205 tlb_reset_dirty_range_all(start, length);
1208 return snap;
1211 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1212 ram_addr_t start,
1213 ram_addr_t length)
1215 unsigned long page, end;
1217 assert(start >= snap->start);
1218 assert(start + length <= snap->end);
1220 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1221 page = (start - snap->start) >> TARGET_PAGE_BITS;
1223 while (page < end) {
1224 if (test_bit(page, snap->dirty)) {
1225 return true;
1227 page++;
1229 return false;
1232 /* Called from RCU critical section */
1233 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1234 MemoryRegionSection *section,
1235 target_ulong vaddr,
1236 hwaddr paddr, hwaddr xlat,
1237 int prot,
1238 target_ulong *address)
1240 hwaddr iotlb;
1241 CPUWatchpoint *wp;
1243 if (memory_region_is_ram(section->mr)) {
1244 /* Normal RAM. */
1245 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1246 if (!section->readonly) {
1247 iotlb |= PHYS_SECTION_NOTDIRTY;
1248 } else {
1249 iotlb |= PHYS_SECTION_ROM;
1251 } else {
1252 AddressSpaceDispatch *d;
1254 d = flatview_to_dispatch(section->fv);
1255 iotlb = section - d->map.sections;
1256 iotlb += xlat;
1259 /* Make accesses to pages with watchpoints go via the
1260 watchpoint trap routines. */
1261 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1262 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1263 /* Avoid trapping reads of pages with a write breakpoint. */
1264 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1265 iotlb = PHYS_SECTION_WATCH + paddr;
1266 *address |= TLB_MMIO;
1267 break;
1272 return iotlb;
1274 #endif /* defined(CONFIG_USER_ONLY) */
1276 #if !defined(CONFIG_USER_ONLY)
1278 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1279 uint16_t section);
1280 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1282 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1283 qemu_anon_ram_alloc;
1286 * Set a custom physical guest memory alloator.
1287 * Accelerators with unusual needs may need this. Hopefully, we can
1288 * get rid of it eventually.
1290 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1292 phys_mem_alloc = alloc;
1295 static uint16_t phys_section_add(PhysPageMap *map,
1296 MemoryRegionSection *section)
1298 /* The physical section number is ORed with a page-aligned
1299 * pointer to produce the iotlb entries. Thus it should
1300 * never overflow into the page-aligned value.
1302 assert(map->sections_nb < TARGET_PAGE_SIZE);
1304 if (map->sections_nb == map->sections_nb_alloc) {
1305 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1306 map->sections = g_renew(MemoryRegionSection, map->sections,
1307 map->sections_nb_alloc);
1309 map->sections[map->sections_nb] = *section;
1310 memory_region_ref(section->mr);
1311 return map->sections_nb++;
1314 static void phys_section_destroy(MemoryRegion *mr)
1316 bool have_sub_page = mr->subpage;
1318 memory_region_unref(mr);
1320 if (have_sub_page) {
1321 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1322 object_unref(OBJECT(&subpage->iomem));
1323 g_free(subpage);
1327 static void phys_sections_free(PhysPageMap *map)
1329 while (map->sections_nb > 0) {
1330 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1331 phys_section_destroy(section->mr);
1333 g_free(map->sections);
1334 g_free(map->nodes);
1337 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1339 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1340 subpage_t *subpage;
1341 hwaddr base = section->offset_within_address_space
1342 & TARGET_PAGE_MASK;
1343 MemoryRegionSection *existing = phys_page_find(d, base);
1344 MemoryRegionSection subsection = {
1345 .offset_within_address_space = base,
1346 .size = int128_make64(TARGET_PAGE_SIZE),
1348 hwaddr start, end;
1350 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1352 if (!(existing->mr->subpage)) {
1353 subpage = subpage_init(fv, base);
1354 subsection.fv = fv;
1355 subsection.mr = &subpage->iomem;
1356 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1357 phys_section_add(&d->map, &subsection));
1358 } else {
1359 subpage = container_of(existing->mr, subpage_t, iomem);
1361 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1362 end = start + int128_get64(section->size) - 1;
1363 subpage_register(subpage, start, end,
1364 phys_section_add(&d->map, section));
1368 static void register_multipage(FlatView *fv,
1369 MemoryRegionSection *section)
1371 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1372 hwaddr start_addr = section->offset_within_address_space;
1373 uint16_t section_index = phys_section_add(&d->map, section);
1374 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1375 TARGET_PAGE_BITS));
1377 assert(num_pages);
1378 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1381 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1383 MemoryRegionSection now = *section, remain = *section;
1384 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1386 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1387 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1388 - now.offset_within_address_space;
1390 now.size = int128_min(int128_make64(left), now.size);
1391 register_subpage(fv, &now);
1392 } else {
1393 now.size = int128_zero();
1395 while (int128_ne(remain.size, now.size)) {
1396 remain.size = int128_sub(remain.size, now.size);
1397 remain.offset_within_address_space += int128_get64(now.size);
1398 remain.offset_within_region += int128_get64(now.size);
1399 now = remain;
1400 if (int128_lt(remain.size, page_size)) {
1401 register_subpage(fv, &now);
1402 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1403 now.size = page_size;
1404 register_subpage(fv, &now);
1405 } else {
1406 now.size = int128_and(now.size, int128_neg(page_size));
1407 register_multipage(fv, &now);
1412 void qemu_flush_coalesced_mmio_buffer(void)
1414 if (kvm_enabled())
1415 kvm_flush_coalesced_mmio_buffer();
1418 void qemu_mutex_lock_ramlist(void)
1420 qemu_mutex_lock(&ram_list.mutex);
1423 void qemu_mutex_unlock_ramlist(void)
1425 qemu_mutex_unlock(&ram_list.mutex);
1428 void ram_block_dump(Monitor *mon)
1430 RAMBlock *block;
1431 char *psize;
1433 rcu_read_lock();
1434 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1435 "Block Name", "PSize", "Offset", "Used", "Total");
1436 RAMBLOCK_FOREACH(block) {
1437 psize = size_to_str(block->page_size);
1438 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1439 " 0x%016" PRIx64 "\n", block->idstr, psize,
1440 (uint64_t)block->offset,
1441 (uint64_t)block->used_length,
1442 (uint64_t)block->max_length);
1443 g_free(psize);
1445 rcu_read_unlock();
1448 #ifdef __linux__
1450 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1451 * may or may not name the same files / on the same filesystem now as
1452 * when we actually open and map them. Iterate over the file
1453 * descriptors instead, and use qemu_fd_getpagesize().
1455 static int find_max_supported_pagesize(Object *obj, void *opaque)
1457 char *mem_path;
1458 long *hpsize_min = opaque;
1460 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1461 mem_path = object_property_get_str(obj, "mem-path", NULL);
1462 if (mem_path) {
1463 long hpsize = qemu_mempath_getpagesize(mem_path);
1464 if (hpsize < *hpsize_min) {
1465 *hpsize_min = hpsize;
1467 } else {
1468 *hpsize_min = getpagesize();
1472 return 0;
1475 long qemu_getrampagesize(void)
1477 long hpsize = LONG_MAX;
1478 long mainrampagesize;
1479 Object *memdev_root;
1481 if (mem_path) {
1482 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1483 } else {
1484 mainrampagesize = getpagesize();
1487 /* it's possible we have memory-backend objects with
1488 * hugepage-backed RAM. these may get mapped into system
1489 * address space via -numa parameters or memory hotplug
1490 * hooks. we want to take these into account, but we
1491 * also want to make sure these supported hugepage
1492 * sizes are applicable across the entire range of memory
1493 * we may boot from, so we take the min across all
1494 * backends, and assume normal pages in cases where a
1495 * backend isn't backed by hugepages.
1497 memdev_root = object_resolve_path("/objects", NULL);
1498 if (memdev_root) {
1499 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1501 if (hpsize == LONG_MAX) {
1502 /* No additional memory regions found ==> Report main RAM page size */
1503 return mainrampagesize;
1506 /* If NUMA is disabled or the NUMA nodes are not backed with a
1507 * memory-backend, then there is at least one node using "normal" RAM,
1508 * so if its page size is smaller we have got to report that size instead.
1510 if (hpsize > mainrampagesize &&
1511 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1512 static bool warned;
1513 if (!warned) {
1514 error_report("Huge page support disabled (n/a for main memory).");
1515 warned = true;
1517 return mainrampagesize;
1520 return hpsize;
1522 #else
1523 long qemu_getrampagesize(void)
1525 return getpagesize();
1527 #endif
1529 #ifdef __linux__
1530 static int64_t get_file_size(int fd)
1532 int64_t size = lseek(fd, 0, SEEK_END);
1533 if (size < 0) {
1534 return -errno;
1536 return size;
1539 static int file_ram_open(const char *path,
1540 const char *region_name,
1541 bool *created,
1542 Error **errp)
1544 char *filename;
1545 char *sanitized_name;
1546 char *c;
1547 int fd = -1;
1549 *created = false;
1550 for (;;) {
1551 fd = open(path, O_RDWR);
1552 if (fd >= 0) {
1553 /* @path names an existing file, use it */
1554 break;
1556 if (errno == ENOENT) {
1557 /* @path names a file that doesn't exist, create it */
1558 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1559 if (fd >= 0) {
1560 *created = true;
1561 break;
1563 } else if (errno == EISDIR) {
1564 /* @path names a directory, create a file there */
1565 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1566 sanitized_name = g_strdup(region_name);
1567 for (c = sanitized_name; *c != '\0'; c++) {
1568 if (*c == '/') {
1569 *c = '_';
1573 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1574 sanitized_name);
1575 g_free(sanitized_name);
1577 fd = mkstemp(filename);
1578 if (fd >= 0) {
1579 unlink(filename);
1580 g_free(filename);
1581 break;
1583 g_free(filename);
1585 if (errno != EEXIST && errno != EINTR) {
1586 error_setg_errno(errp, errno,
1587 "can't open backing store %s for guest RAM",
1588 path);
1589 return -1;
1592 * Try again on EINTR and EEXIST. The latter happens when
1593 * something else creates the file between our two open().
1597 return fd;
1600 static void *file_ram_alloc(RAMBlock *block,
1601 ram_addr_t memory,
1602 int fd,
1603 bool truncate,
1604 Error **errp)
1606 void *area;
1608 block->page_size = qemu_fd_getpagesize(fd);
1609 block->mr->align = block->page_size;
1610 #if defined(__s390x__)
1611 if (kvm_enabled()) {
1612 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1614 #endif
1616 if (memory < block->page_size) {
1617 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1618 "or larger than page size 0x%zx",
1619 memory, block->page_size);
1620 return NULL;
1623 memory = ROUND_UP(memory, block->page_size);
1626 * ftruncate is not supported by hugetlbfs in older
1627 * hosts, so don't bother bailing out on errors.
1628 * If anything goes wrong with it under other filesystems,
1629 * mmap will fail.
1631 * Do not truncate the non-empty backend file to avoid corrupting
1632 * the existing data in the file. Disabling shrinking is not
1633 * enough. For example, the current vNVDIMM implementation stores
1634 * the guest NVDIMM labels at the end of the backend file. If the
1635 * backend file is later extended, QEMU will not be able to find
1636 * those labels. Therefore, extending the non-empty backend file
1637 * is disabled as well.
1639 if (truncate && ftruncate(fd, memory)) {
1640 perror("ftruncate");
1643 area = qemu_ram_mmap(fd, memory, block->mr->align,
1644 block->flags & RAM_SHARED);
1645 if (area == MAP_FAILED) {
1646 error_setg_errno(errp, errno,
1647 "unable to map backing store for guest RAM");
1648 return NULL;
1651 if (mem_prealloc) {
1652 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1653 if (errp && *errp) {
1654 qemu_ram_munmap(area, memory);
1655 return NULL;
1659 block->fd = fd;
1660 return area;
1662 #endif
1664 /* Called with the ramlist lock held. */
1665 static ram_addr_t find_ram_offset(ram_addr_t size)
1667 RAMBlock *block, *next_block;
1668 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1670 assert(size != 0); /* it would hand out same offset multiple times */
1672 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1673 return 0;
1676 RAMBLOCK_FOREACH(block) {
1677 ram_addr_t end, next = RAM_ADDR_MAX;
1679 end = block->offset + block->max_length;
1681 RAMBLOCK_FOREACH(next_block) {
1682 if (next_block->offset >= end) {
1683 next = MIN(next, next_block->offset);
1686 if (next - end >= size && next - end < mingap) {
1687 offset = end;
1688 mingap = next - end;
1692 if (offset == RAM_ADDR_MAX) {
1693 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1694 (uint64_t)size);
1695 abort();
1698 return offset;
1701 unsigned long last_ram_page(void)
1703 RAMBlock *block;
1704 ram_addr_t last = 0;
1706 rcu_read_lock();
1707 RAMBLOCK_FOREACH(block) {
1708 last = MAX(last, block->offset + block->max_length);
1710 rcu_read_unlock();
1711 return last >> TARGET_PAGE_BITS;
1714 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1716 int ret;
1718 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1719 if (!machine_dump_guest_core(current_machine)) {
1720 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1721 if (ret) {
1722 perror("qemu_madvise");
1723 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1724 "but dump_guest_core=off specified\n");
1729 const char *qemu_ram_get_idstr(RAMBlock *rb)
1731 return rb->idstr;
1734 bool qemu_ram_is_shared(RAMBlock *rb)
1736 return rb->flags & RAM_SHARED;
1739 /* Called with iothread lock held. */
1740 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1742 RAMBlock *block;
1744 assert(new_block);
1745 assert(!new_block->idstr[0]);
1747 if (dev) {
1748 char *id = qdev_get_dev_path(dev);
1749 if (id) {
1750 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1751 g_free(id);
1754 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1756 rcu_read_lock();
1757 RAMBLOCK_FOREACH(block) {
1758 if (block != new_block &&
1759 !strcmp(block->idstr, new_block->idstr)) {
1760 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1761 new_block->idstr);
1762 abort();
1765 rcu_read_unlock();
1768 /* Called with iothread lock held. */
1769 void qemu_ram_unset_idstr(RAMBlock *block)
1771 /* FIXME: arch_init.c assumes that this is not called throughout
1772 * migration. Ignore the problem since hot-unplug during migration
1773 * does not work anyway.
1775 if (block) {
1776 memset(block->idstr, 0, sizeof(block->idstr));
1780 size_t qemu_ram_pagesize(RAMBlock *rb)
1782 return rb->page_size;
1785 /* Returns the largest size of page in use */
1786 size_t qemu_ram_pagesize_largest(void)
1788 RAMBlock *block;
1789 size_t largest = 0;
1791 RAMBLOCK_FOREACH(block) {
1792 largest = MAX(largest, qemu_ram_pagesize(block));
1795 return largest;
1798 static int memory_try_enable_merging(void *addr, size_t len)
1800 if (!machine_mem_merge(current_machine)) {
1801 /* disabled by the user */
1802 return 0;
1805 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1808 /* Only legal before guest might have detected the memory size: e.g. on
1809 * incoming migration, or right after reset.
1811 * As memory core doesn't know how is memory accessed, it is up to
1812 * resize callback to update device state and/or add assertions to detect
1813 * misuse, if necessary.
1815 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1817 assert(block);
1819 newsize = HOST_PAGE_ALIGN(newsize);
1821 if (block->used_length == newsize) {
1822 return 0;
1825 if (!(block->flags & RAM_RESIZEABLE)) {
1826 error_setg_errno(errp, EINVAL,
1827 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1828 " in != 0x" RAM_ADDR_FMT, block->idstr,
1829 newsize, block->used_length);
1830 return -EINVAL;
1833 if (block->max_length < newsize) {
1834 error_setg_errno(errp, EINVAL,
1835 "Length too large: %s: 0x" RAM_ADDR_FMT
1836 " > 0x" RAM_ADDR_FMT, block->idstr,
1837 newsize, block->max_length);
1838 return -EINVAL;
1841 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1842 block->used_length = newsize;
1843 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1844 DIRTY_CLIENTS_ALL);
1845 memory_region_set_size(block->mr, newsize);
1846 if (block->resized) {
1847 block->resized(block->idstr, newsize, block->host);
1849 return 0;
1852 /* Called with ram_list.mutex held */
1853 static void dirty_memory_extend(ram_addr_t old_ram_size,
1854 ram_addr_t new_ram_size)
1856 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1857 DIRTY_MEMORY_BLOCK_SIZE);
1858 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1859 DIRTY_MEMORY_BLOCK_SIZE);
1860 int i;
1862 /* Only need to extend if block count increased */
1863 if (new_num_blocks <= old_num_blocks) {
1864 return;
1867 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1868 DirtyMemoryBlocks *old_blocks;
1869 DirtyMemoryBlocks *new_blocks;
1870 int j;
1872 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1873 new_blocks = g_malloc(sizeof(*new_blocks) +
1874 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1876 if (old_num_blocks) {
1877 memcpy(new_blocks->blocks, old_blocks->blocks,
1878 old_num_blocks * sizeof(old_blocks->blocks[0]));
1881 for (j = old_num_blocks; j < new_num_blocks; j++) {
1882 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1885 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1887 if (old_blocks) {
1888 g_free_rcu(old_blocks, rcu);
1893 static void ram_block_add(RAMBlock *new_block, Error **errp)
1895 RAMBlock *block;
1896 RAMBlock *last_block = NULL;
1897 ram_addr_t old_ram_size, new_ram_size;
1898 Error *err = NULL;
1900 old_ram_size = last_ram_page();
1902 qemu_mutex_lock_ramlist();
1903 new_block->offset = find_ram_offset(new_block->max_length);
1905 if (!new_block->host) {
1906 if (xen_enabled()) {
1907 xen_ram_alloc(new_block->offset, new_block->max_length,
1908 new_block->mr, &err);
1909 if (err) {
1910 error_propagate(errp, err);
1911 qemu_mutex_unlock_ramlist();
1912 return;
1914 } else {
1915 new_block->host = phys_mem_alloc(new_block->max_length,
1916 &new_block->mr->align);
1917 if (!new_block->host) {
1918 error_setg_errno(errp, errno,
1919 "cannot set up guest memory '%s'",
1920 memory_region_name(new_block->mr));
1921 qemu_mutex_unlock_ramlist();
1922 return;
1924 memory_try_enable_merging(new_block->host, new_block->max_length);
1928 new_ram_size = MAX(old_ram_size,
1929 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1930 if (new_ram_size > old_ram_size) {
1931 dirty_memory_extend(old_ram_size, new_ram_size);
1933 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1934 * QLIST (which has an RCU-friendly variant) does not have insertion at
1935 * tail, so save the last element in last_block.
1937 RAMBLOCK_FOREACH(block) {
1938 last_block = block;
1939 if (block->max_length < new_block->max_length) {
1940 break;
1943 if (block) {
1944 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1945 } else if (last_block) {
1946 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1947 } else { /* list is empty */
1948 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1950 ram_list.mru_block = NULL;
1952 /* Write list before version */
1953 smp_wmb();
1954 ram_list.version++;
1955 qemu_mutex_unlock_ramlist();
1957 cpu_physical_memory_set_dirty_range(new_block->offset,
1958 new_block->used_length,
1959 DIRTY_CLIENTS_ALL);
1961 if (new_block->host) {
1962 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1963 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1964 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1965 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1966 ram_block_notify_add(new_block->host, new_block->max_length);
1970 #ifdef __linux__
1971 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1972 bool share, int fd,
1973 Error **errp)
1975 RAMBlock *new_block;
1976 Error *local_err = NULL;
1977 int64_t file_size;
1979 if (xen_enabled()) {
1980 error_setg(errp, "-mem-path not supported with Xen");
1981 return NULL;
1984 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1985 error_setg(errp,
1986 "host lacks kvm mmu notifiers, -mem-path unsupported");
1987 return NULL;
1990 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1992 * file_ram_alloc() needs to allocate just like
1993 * phys_mem_alloc, but we haven't bothered to provide
1994 * a hook there.
1996 error_setg(errp,
1997 "-mem-path not supported with this accelerator");
1998 return NULL;
2001 size = HOST_PAGE_ALIGN(size);
2002 file_size = get_file_size(fd);
2003 if (file_size > 0 && file_size < size) {
2004 error_setg(errp, "backing store %s size 0x%" PRIx64
2005 " does not match 'size' option 0x" RAM_ADDR_FMT,
2006 mem_path, file_size, size);
2007 return NULL;
2010 new_block = g_malloc0(sizeof(*new_block));
2011 new_block->mr = mr;
2012 new_block->used_length = size;
2013 new_block->max_length = size;
2014 new_block->flags = share ? RAM_SHARED : 0;
2015 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2016 if (!new_block->host) {
2017 g_free(new_block);
2018 return NULL;
2021 ram_block_add(new_block, &local_err);
2022 if (local_err) {
2023 g_free(new_block);
2024 error_propagate(errp, local_err);
2025 return NULL;
2027 return new_block;
2032 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2033 bool share, const char *mem_path,
2034 Error **errp)
2036 int fd;
2037 bool created;
2038 RAMBlock *block;
2040 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2041 if (fd < 0) {
2042 return NULL;
2045 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2046 if (!block) {
2047 if (created) {
2048 unlink(mem_path);
2050 close(fd);
2051 return NULL;
2054 return block;
2056 #endif
2058 static
2059 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2060 void (*resized)(const char*,
2061 uint64_t length,
2062 void *host),
2063 void *host, bool resizeable,
2064 MemoryRegion *mr, Error **errp)
2066 RAMBlock *new_block;
2067 Error *local_err = NULL;
2069 size = HOST_PAGE_ALIGN(size);
2070 max_size = HOST_PAGE_ALIGN(max_size);
2071 new_block = g_malloc0(sizeof(*new_block));
2072 new_block->mr = mr;
2073 new_block->resized = resized;
2074 new_block->used_length = size;
2075 new_block->max_length = max_size;
2076 assert(max_size >= size);
2077 new_block->fd = -1;
2078 new_block->page_size = getpagesize();
2079 new_block->host = host;
2080 if (host) {
2081 new_block->flags |= RAM_PREALLOC;
2083 if (resizeable) {
2084 new_block->flags |= RAM_RESIZEABLE;
2086 ram_block_add(new_block, &local_err);
2087 if (local_err) {
2088 g_free(new_block);
2089 error_propagate(errp, local_err);
2090 return NULL;
2092 return new_block;
2095 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2096 MemoryRegion *mr, Error **errp)
2098 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2101 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2103 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2106 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2107 void (*resized)(const char*,
2108 uint64_t length,
2109 void *host),
2110 MemoryRegion *mr, Error **errp)
2112 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2115 static void reclaim_ramblock(RAMBlock *block)
2117 if (block->flags & RAM_PREALLOC) {
2119 } else if (xen_enabled()) {
2120 xen_invalidate_map_cache_entry(block->host);
2121 #ifndef _WIN32
2122 } else if (block->fd >= 0) {
2123 qemu_ram_munmap(block->host, block->max_length);
2124 close(block->fd);
2125 #endif
2126 } else {
2127 qemu_anon_ram_free(block->host, block->max_length);
2129 g_free(block);
2132 void qemu_ram_free(RAMBlock *block)
2134 if (!block) {
2135 return;
2138 if (block->host) {
2139 ram_block_notify_remove(block->host, block->max_length);
2142 qemu_mutex_lock_ramlist();
2143 QLIST_REMOVE_RCU(block, next);
2144 ram_list.mru_block = NULL;
2145 /* Write list before version */
2146 smp_wmb();
2147 ram_list.version++;
2148 call_rcu(block, reclaim_ramblock, rcu);
2149 qemu_mutex_unlock_ramlist();
2152 #ifndef _WIN32
2153 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2155 RAMBlock *block;
2156 ram_addr_t offset;
2157 int flags;
2158 void *area, *vaddr;
2160 RAMBLOCK_FOREACH(block) {
2161 offset = addr - block->offset;
2162 if (offset < block->max_length) {
2163 vaddr = ramblock_ptr(block, offset);
2164 if (block->flags & RAM_PREALLOC) {
2166 } else if (xen_enabled()) {
2167 abort();
2168 } else {
2169 flags = MAP_FIXED;
2170 if (block->fd >= 0) {
2171 flags |= (block->flags & RAM_SHARED ?
2172 MAP_SHARED : MAP_PRIVATE);
2173 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2174 flags, block->fd, offset);
2175 } else {
2177 * Remap needs to match alloc. Accelerators that
2178 * set phys_mem_alloc never remap. If they did,
2179 * we'd need a remap hook here.
2181 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2183 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2184 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2185 flags, -1, 0);
2187 if (area != vaddr) {
2188 fprintf(stderr, "Could not remap addr: "
2189 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2190 length, addr);
2191 exit(1);
2193 memory_try_enable_merging(vaddr, length);
2194 qemu_ram_setup_dump(vaddr, length);
2199 #endif /* !_WIN32 */
2201 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2202 * This should not be used for general purpose DMA. Use address_space_map
2203 * or address_space_rw instead. For local memory (e.g. video ram) that the
2204 * device owns, use memory_region_get_ram_ptr.
2206 * Called within RCU critical section.
2208 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2210 RAMBlock *block = ram_block;
2212 if (block == NULL) {
2213 block = qemu_get_ram_block(addr);
2214 addr -= block->offset;
2217 if (xen_enabled() && block->host == NULL) {
2218 /* We need to check if the requested address is in the RAM
2219 * because we don't want to map the entire memory in QEMU.
2220 * In that case just map until the end of the page.
2222 if (block->offset == 0) {
2223 return xen_map_cache(addr, 0, 0, false);
2226 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2228 return ramblock_ptr(block, addr);
2231 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2232 * but takes a size argument.
2234 * Called within RCU critical section.
2236 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2237 hwaddr *size, bool lock)
2239 RAMBlock *block = ram_block;
2240 if (*size == 0) {
2241 return NULL;
2244 if (block == NULL) {
2245 block = qemu_get_ram_block(addr);
2246 addr -= block->offset;
2248 *size = MIN(*size, block->max_length - addr);
2250 if (xen_enabled() && block->host == NULL) {
2251 /* We need to check if the requested address is in the RAM
2252 * because we don't want to map the entire memory in QEMU.
2253 * In that case just map the requested area.
2255 if (block->offset == 0) {
2256 return xen_map_cache(addr, *size, lock, lock);
2259 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2262 return ramblock_ptr(block, addr);
2266 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2267 * in that RAMBlock.
2269 * ptr: Host pointer to look up
2270 * round_offset: If true round the result offset down to a page boundary
2271 * *ram_addr: set to result ram_addr
2272 * *offset: set to result offset within the RAMBlock
2274 * Returns: RAMBlock (or NULL if not found)
2276 * By the time this function returns, the returned pointer is not protected
2277 * by RCU anymore. If the caller is not within an RCU critical section and
2278 * does not hold the iothread lock, it must have other means of protecting the
2279 * pointer, such as a reference to the region that includes the incoming
2280 * ram_addr_t.
2282 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2283 ram_addr_t *offset)
2285 RAMBlock *block;
2286 uint8_t *host = ptr;
2288 if (xen_enabled()) {
2289 ram_addr_t ram_addr;
2290 rcu_read_lock();
2291 ram_addr = xen_ram_addr_from_mapcache(ptr);
2292 block = qemu_get_ram_block(ram_addr);
2293 if (block) {
2294 *offset = ram_addr - block->offset;
2296 rcu_read_unlock();
2297 return block;
2300 rcu_read_lock();
2301 block = atomic_rcu_read(&ram_list.mru_block);
2302 if (block && block->host && host - block->host < block->max_length) {
2303 goto found;
2306 RAMBLOCK_FOREACH(block) {
2307 /* This case append when the block is not mapped. */
2308 if (block->host == NULL) {
2309 continue;
2311 if (host - block->host < block->max_length) {
2312 goto found;
2316 rcu_read_unlock();
2317 return NULL;
2319 found:
2320 *offset = (host - block->host);
2321 if (round_offset) {
2322 *offset &= TARGET_PAGE_MASK;
2324 rcu_read_unlock();
2325 return block;
2329 * Finds the named RAMBlock
2331 * name: The name of RAMBlock to find
2333 * Returns: RAMBlock (or NULL if not found)
2335 RAMBlock *qemu_ram_block_by_name(const char *name)
2337 RAMBlock *block;
2339 RAMBLOCK_FOREACH(block) {
2340 if (!strcmp(name, block->idstr)) {
2341 return block;
2345 return NULL;
2348 /* Some of the softmmu routines need to translate from a host pointer
2349 (typically a TLB entry) back to a ram offset. */
2350 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2352 RAMBlock *block;
2353 ram_addr_t offset;
2355 block = qemu_ram_block_from_host(ptr, false, &offset);
2356 if (!block) {
2357 return RAM_ADDR_INVALID;
2360 return block->offset + offset;
2363 /* Called within RCU critical section. */
2364 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2365 uint64_t val, unsigned size)
2367 bool locked = false;
2369 assert(tcg_enabled());
2370 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2371 locked = true;
2372 tb_lock();
2373 tb_invalidate_phys_page_fast(ram_addr, size);
2375 switch (size) {
2376 case 1:
2377 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2378 break;
2379 case 2:
2380 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2381 break;
2382 case 4:
2383 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2384 break;
2385 case 8:
2386 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2387 break;
2388 default:
2389 abort();
2392 if (locked) {
2393 tb_unlock();
2396 /* Set both VGA and migration bits for simplicity and to remove
2397 * the notdirty callback faster.
2399 cpu_physical_memory_set_dirty_range(ram_addr, size,
2400 DIRTY_CLIENTS_NOCODE);
2401 /* we remove the notdirty callback only if the code has been
2402 flushed */
2403 if (!cpu_physical_memory_is_clean(ram_addr)) {
2404 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2408 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2409 unsigned size, bool is_write)
2411 return is_write;
2414 static const MemoryRegionOps notdirty_mem_ops = {
2415 .write = notdirty_mem_write,
2416 .valid.accepts = notdirty_mem_accepts,
2417 .endianness = DEVICE_NATIVE_ENDIAN,
2418 .valid = {
2419 .min_access_size = 1,
2420 .max_access_size = 8,
2421 .unaligned = false,
2423 .impl = {
2424 .min_access_size = 1,
2425 .max_access_size = 8,
2426 .unaligned = false,
2430 /* Generate a debug exception if a watchpoint has been hit. */
2431 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2433 CPUState *cpu = current_cpu;
2434 CPUClass *cc = CPU_GET_CLASS(cpu);
2435 target_ulong vaddr;
2436 CPUWatchpoint *wp;
2438 assert(tcg_enabled());
2439 if (cpu->watchpoint_hit) {
2440 /* We re-entered the check after replacing the TB. Now raise
2441 * the debug interrupt so that is will trigger after the
2442 * current instruction. */
2443 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2444 return;
2446 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2447 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2448 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2449 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2450 && (wp->flags & flags)) {
2451 if (flags == BP_MEM_READ) {
2452 wp->flags |= BP_WATCHPOINT_HIT_READ;
2453 } else {
2454 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2456 wp->hitaddr = vaddr;
2457 wp->hitattrs = attrs;
2458 if (!cpu->watchpoint_hit) {
2459 if (wp->flags & BP_CPU &&
2460 !cc->debug_check_watchpoint(cpu, wp)) {
2461 wp->flags &= ~BP_WATCHPOINT_HIT;
2462 continue;
2464 cpu->watchpoint_hit = wp;
2466 /* Both tb_lock and iothread_mutex will be reset when
2467 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2468 * back into the cpu_exec main loop.
2470 tb_lock();
2471 tb_check_watchpoint(cpu);
2472 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2473 cpu->exception_index = EXCP_DEBUG;
2474 cpu_loop_exit(cpu);
2475 } else {
2476 /* Force execution of one insn next time. */
2477 cpu->cflags_next_tb = 1 | curr_cflags();
2478 cpu_loop_exit_noexc(cpu);
2481 } else {
2482 wp->flags &= ~BP_WATCHPOINT_HIT;
2487 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2488 so these check for a hit then pass through to the normal out-of-line
2489 phys routines. */
2490 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2491 unsigned size, MemTxAttrs attrs)
2493 MemTxResult res;
2494 uint64_t data;
2495 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2496 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2498 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2499 switch (size) {
2500 case 1:
2501 data = address_space_ldub(as, addr, attrs, &res);
2502 break;
2503 case 2:
2504 data = address_space_lduw(as, addr, attrs, &res);
2505 break;
2506 case 4:
2507 data = address_space_ldl(as, addr, attrs, &res);
2508 break;
2509 case 8:
2510 data = address_space_ldq(as, addr, attrs, &res);
2511 break;
2512 default: abort();
2514 *pdata = data;
2515 return res;
2518 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2519 uint64_t val, unsigned size,
2520 MemTxAttrs attrs)
2522 MemTxResult res;
2523 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2524 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2526 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2527 switch (size) {
2528 case 1:
2529 address_space_stb(as, addr, val, attrs, &res);
2530 break;
2531 case 2:
2532 address_space_stw(as, addr, val, attrs, &res);
2533 break;
2534 case 4:
2535 address_space_stl(as, addr, val, attrs, &res);
2536 break;
2537 case 8:
2538 address_space_stq(as, addr, val, attrs, &res);
2539 break;
2540 default: abort();
2542 return res;
2545 static const MemoryRegionOps watch_mem_ops = {
2546 .read_with_attrs = watch_mem_read,
2547 .write_with_attrs = watch_mem_write,
2548 .endianness = DEVICE_NATIVE_ENDIAN,
2549 .valid = {
2550 .min_access_size = 1,
2551 .max_access_size = 8,
2552 .unaligned = false,
2554 .impl = {
2555 .min_access_size = 1,
2556 .max_access_size = 8,
2557 .unaligned = false,
2561 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2562 const uint8_t *buf, int len);
2563 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2564 bool is_write);
2566 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2567 unsigned len, MemTxAttrs attrs)
2569 subpage_t *subpage = opaque;
2570 uint8_t buf[8];
2571 MemTxResult res;
2573 #if defined(DEBUG_SUBPAGE)
2574 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2575 subpage, len, addr);
2576 #endif
2577 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2578 if (res) {
2579 return res;
2581 switch (len) {
2582 case 1:
2583 *data = ldub_p(buf);
2584 return MEMTX_OK;
2585 case 2:
2586 *data = lduw_p(buf);
2587 return MEMTX_OK;
2588 case 4:
2589 *data = ldl_p(buf);
2590 return MEMTX_OK;
2591 case 8:
2592 *data = ldq_p(buf);
2593 return MEMTX_OK;
2594 default:
2595 abort();
2599 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2600 uint64_t value, unsigned len, MemTxAttrs attrs)
2602 subpage_t *subpage = opaque;
2603 uint8_t buf[8];
2605 #if defined(DEBUG_SUBPAGE)
2606 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2607 " value %"PRIx64"\n",
2608 __func__, subpage, len, addr, value);
2609 #endif
2610 switch (len) {
2611 case 1:
2612 stb_p(buf, value);
2613 break;
2614 case 2:
2615 stw_p(buf, value);
2616 break;
2617 case 4:
2618 stl_p(buf, value);
2619 break;
2620 case 8:
2621 stq_p(buf, value);
2622 break;
2623 default:
2624 abort();
2626 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2629 static bool subpage_accepts(void *opaque, hwaddr addr,
2630 unsigned len, bool is_write)
2632 subpage_t *subpage = opaque;
2633 #if defined(DEBUG_SUBPAGE)
2634 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2635 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2636 #endif
2638 return flatview_access_valid(subpage->fv, addr + subpage->base,
2639 len, is_write);
2642 static const MemoryRegionOps subpage_ops = {
2643 .read_with_attrs = subpage_read,
2644 .write_with_attrs = subpage_write,
2645 .impl.min_access_size = 1,
2646 .impl.max_access_size = 8,
2647 .valid.min_access_size = 1,
2648 .valid.max_access_size = 8,
2649 .valid.accepts = subpage_accepts,
2650 .endianness = DEVICE_NATIVE_ENDIAN,
2653 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2654 uint16_t section)
2656 int idx, eidx;
2658 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2659 return -1;
2660 idx = SUBPAGE_IDX(start);
2661 eidx = SUBPAGE_IDX(end);
2662 #if defined(DEBUG_SUBPAGE)
2663 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2664 __func__, mmio, start, end, idx, eidx, section);
2665 #endif
2666 for (; idx <= eidx; idx++) {
2667 mmio->sub_section[idx] = section;
2670 return 0;
2673 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2675 subpage_t *mmio;
2677 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2678 mmio->fv = fv;
2679 mmio->base = base;
2680 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2681 NULL, TARGET_PAGE_SIZE);
2682 mmio->iomem.subpage = true;
2683 #if defined(DEBUG_SUBPAGE)
2684 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2685 mmio, base, TARGET_PAGE_SIZE);
2686 #endif
2687 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2689 return mmio;
2692 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2694 assert(fv);
2695 MemoryRegionSection section = {
2696 .fv = fv,
2697 .mr = mr,
2698 .offset_within_address_space = 0,
2699 .offset_within_region = 0,
2700 .size = int128_2_64(),
2703 return phys_section_add(map, &section);
2706 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2708 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2709 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2710 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2711 MemoryRegionSection *sections = d->map.sections;
2713 return sections[index & ~TARGET_PAGE_MASK].mr;
2716 static void io_mem_init(void)
2718 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2719 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2720 NULL, UINT64_MAX);
2722 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2723 * which can be called without the iothread mutex.
2725 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2726 NULL, UINT64_MAX);
2727 memory_region_clear_global_locking(&io_mem_notdirty);
2729 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2730 NULL, UINT64_MAX);
2733 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2735 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2736 uint16_t n;
2738 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2739 assert(n == PHYS_SECTION_UNASSIGNED);
2740 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2741 assert(n == PHYS_SECTION_NOTDIRTY);
2742 n = dummy_section(&d->map, fv, &io_mem_rom);
2743 assert(n == PHYS_SECTION_ROM);
2744 n = dummy_section(&d->map, fv, &io_mem_watch);
2745 assert(n == PHYS_SECTION_WATCH);
2747 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2749 return d;
2752 void address_space_dispatch_free(AddressSpaceDispatch *d)
2754 phys_sections_free(&d->map);
2755 g_free(d);
2758 static void tcg_commit(MemoryListener *listener)
2760 CPUAddressSpace *cpuas;
2761 AddressSpaceDispatch *d;
2763 /* since each CPU stores ram addresses in its TLB cache, we must
2764 reset the modified entries */
2765 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2766 cpu_reloading_memory_map();
2767 /* The CPU and TLB are protected by the iothread lock.
2768 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2769 * may have split the RCU critical section.
2771 d = address_space_to_dispatch(cpuas->as);
2772 atomic_rcu_set(&cpuas->memory_dispatch, d);
2773 tlb_flush(cpuas->cpu);
2776 static void memory_map_init(void)
2778 system_memory = g_malloc(sizeof(*system_memory));
2780 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2781 address_space_init(&address_space_memory, system_memory, "memory");
2783 system_io = g_malloc(sizeof(*system_io));
2784 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2785 65536);
2786 address_space_init(&address_space_io, system_io, "I/O");
2789 MemoryRegion *get_system_memory(void)
2791 return system_memory;
2794 MemoryRegion *get_system_io(void)
2796 return system_io;
2799 #endif /* !defined(CONFIG_USER_ONLY) */
2801 /* physical memory access (slow version, mainly for debug) */
2802 #if defined(CONFIG_USER_ONLY)
2803 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2804 uint8_t *buf, int len, int is_write)
2806 int l, flags;
2807 target_ulong page;
2808 void * p;
2810 while (len > 0) {
2811 page = addr & TARGET_PAGE_MASK;
2812 l = (page + TARGET_PAGE_SIZE) - addr;
2813 if (l > len)
2814 l = len;
2815 flags = page_get_flags(page);
2816 if (!(flags & PAGE_VALID))
2817 return -1;
2818 if (is_write) {
2819 if (!(flags & PAGE_WRITE))
2820 return -1;
2821 /* XXX: this code should not depend on lock_user */
2822 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2823 return -1;
2824 memcpy(p, buf, l);
2825 unlock_user(p, addr, l);
2826 } else {
2827 if (!(flags & PAGE_READ))
2828 return -1;
2829 /* XXX: this code should not depend on lock_user */
2830 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2831 return -1;
2832 memcpy(buf, p, l);
2833 unlock_user(p, addr, 0);
2835 len -= l;
2836 buf += l;
2837 addr += l;
2839 return 0;
2842 #else
2844 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2845 hwaddr length)
2847 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2848 addr += memory_region_get_ram_addr(mr);
2850 /* No early return if dirty_log_mask is or becomes 0, because
2851 * cpu_physical_memory_set_dirty_range will still call
2852 * xen_modified_memory.
2854 if (dirty_log_mask) {
2855 dirty_log_mask =
2856 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2858 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2859 assert(tcg_enabled());
2860 tb_lock();
2861 tb_invalidate_phys_range(addr, addr + length);
2862 tb_unlock();
2863 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2865 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2868 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2870 unsigned access_size_max = mr->ops->valid.max_access_size;
2872 /* Regions are assumed to support 1-4 byte accesses unless
2873 otherwise specified. */
2874 if (access_size_max == 0) {
2875 access_size_max = 4;
2878 /* Bound the maximum access by the alignment of the address. */
2879 if (!mr->ops->impl.unaligned) {
2880 unsigned align_size_max = addr & -addr;
2881 if (align_size_max != 0 && align_size_max < access_size_max) {
2882 access_size_max = align_size_max;
2886 /* Don't attempt accesses larger than the maximum. */
2887 if (l > access_size_max) {
2888 l = access_size_max;
2890 l = pow2floor(l);
2892 return l;
2895 static bool prepare_mmio_access(MemoryRegion *mr)
2897 bool unlocked = !qemu_mutex_iothread_locked();
2898 bool release_lock = false;
2900 if (unlocked && mr->global_locking) {
2901 qemu_mutex_lock_iothread();
2902 unlocked = false;
2903 release_lock = true;
2905 if (mr->flush_coalesced_mmio) {
2906 if (unlocked) {
2907 qemu_mutex_lock_iothread();
2909 qemu_flush_coalesced_mmio_buffer();
2910 if (unlocked) {
2911 qemu_mutex_unlock_iothread();
2915 return release_lock;
2918 /* Called within RCU critical section. */
2919 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2920 MemTxAttrs attrs,
2921 const uint8_t *buf,
2922 int len, hwaddr addr1,
2923 hwaddr l, MemoryRegion *mr)
2925 uint8_t *ptr;
2926 uint64_t val;
2927 MemTxResult result = MEMTX_OK;
2928 bool release_lock = false;
2930 for (;;) {
2931 if (!memory_access_is_direct(mr, true)) {
2932 release_lock |= prepare_mmio_access(mr);
2933 l = memory_access_size(mr, l, addr1);
2934 /* XXX: could force current_cpu to NULL to avoid
2935 potential bugs */
2936 switch (l) {
2937 case 8:
2938 /* 64 bit write access */
2939 val = ldq_p(buf);
2940 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2941 attrs);
2942 break;
2943 case 4:
2944 /* 32 bit write access */
2945 val = (uint32_t)ldl_p(buf);
2946 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2947 attrs);
2948 break;
2949 case 2:
2950 /* 16 bit write access */
2951 val = lduw_p(buf);
2952 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2953 attrs);
2954 break;
2955 case 1:
2956 /* 8 bit write access */
2957 val = ldub_p(buf);
2958 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2959 attrs);
2960 break;
2961 default:
2962 abort();
2964 } else {
2965 /* RAM case */
2966 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2967 memcpy(ptr, buf, l);
2968 invalidate_and_set_dirty(mr, addr1, l);
2971 if (release_lock) {
2972 qemu_mutex_unlock_iothread();
2973 release_lock = false;
2976 len -= l;
2977 buf += l;
2978 addr += l;
2980 if (!len) {
2981 break;
2984 l = len;
2985 mr = flatview_translate(fv, addr, &addr1, &l, true);
2988 return result;
2991 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2992 const uint8_t *buf, int len)
2994 hwaddr l;
2995 hwaddr addr1;
2996 MemoryRegion *mr;
2997 MemTxResult result = MEMTX_OK;
2999 if (len > 0) {
3000 rcu_read_lock();
3001 l = len;
3002 mr = flatview_translate(fv, addr, &addr1, &l, true);
3003 result = flatview_write_continue(fv, addr, attrs, buf, len,
3004 addr1, l, mr);
3005 rcu_read_unlock();
3008 return result;
3011 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3012 MemTxAttrs attrs,
3013 const uint8_t *buf, int len)
3015 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3018 /* Called within RCU critical section. */
3019 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3020 MemTxAttrs attrs, uint8_t *buf,
3021 int len, hwaddr addr1, hwaddr l,
3022 MemoryRegion *mr)
3024 uint8_t *ptr;
3025 uint64_t val;
3026 MemTxResult result = MEMTX_OK;
3027 bool release_lock = false;
3029 for (;;) {
3030 if (!memory_access_is_direct(mr, false)) {
3031 /* I/O case */
3032 release_lock |= prepare_mmio_access(mr);
3033 l = memory_access_size(mr, l, addr1);
3034 switch (l) {
3035 case 8:
3036 /* 64 bit read access */
3037 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3038 attrs);
3039 stq_p(buf, val);
3040 break;
3041 case 4:
3042 /* 32 bit read access */
3043 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3044 attrs);
3045 stl_p(buf, val);
3046 break;
3047 case 2:
3048 /* 16 bit read access */
3049 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3050 attrs);
3051 stw_p(buf, val);
3052 break;
3053 case 1:
3054 /* 8 bit read access */
3055 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3056 attrs);
3057 stb_p(buf, val);
3058 break;
3059 default:
3060 abort();
3062 } else {
3063 /* RAM case */
3064 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3065 memcpy(buf, ptr, l);
3068 if (release_lock) {
3069 qemu_mutex_unlock_iothread();
3070 release_lock = false;
3073 len -= l;
3074 buf += l;
3075 addr += l;
3077 if (!len) {
3078 break;
3081 l = len;
3082 mr = flatview_translate(fv, addr, &addr1, &l, false);
3085 return result;
3088 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3089 MemTxAttrs attrs, uint8_t *buf, int len)
3091 hwaddr l;
3092 hwaddr addr1;
3093 MemoryRegion *mr;
3094 MemTxResult result = MEMTX_OK;
3096 if (len > 0) {
3097 rcu_read_lock();
3098 l = len;
3099 mr = flatview_translate(fv, addr, &addr1, &l, false);
3100 result = flatview_read_continue(fv, addr, attrs, buf, len,
3101 addr1, l, mr);
3102 rcu_read_unlock();
3105 return result;
3108 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3109 uint8_t *buf, int len, bool is_write)
3111 if (is_write) {
3112 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3113 } else {
3114 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3118 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3119 MemTxAttrs attrs, uint8_t *buf,
3120 int len, bool is_write)
3122 return flatview_rw(address_space_to_flatview(as),
3123 addr, attrs, buf, len, is_write);
3126 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3127 int len, int is_write)
3129 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3130 buf, len, is_write);
3133 enum write_rom_type {
3134 WRITE_DATA,
3135 FLUSH_CACHE,
3138 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3139 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3141 hwaddr l;
3142 uint8_t *ptr;
3143 hwaddr addr1;
3144 MemoryRegion *mr;
3146 rcu_read_lock();
3147 while (len > 0) {
3148 l = len;
3149 mr = address_space_translate(as, addr, &addr1, &l, true);
3151 if (!(memory_region_is_ram(mr) ||
3152 memory_region_is_romd(mr))) {
3153 l = memory_access_size(mr, l, addr1);
3154 } else {
3155 /* ROM/RAM case */
3156 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3157 switch (type) {
3158 case WRITE_DATA:
3159 memcpy(ptr, buf, l);
3160 invalidate_and_set_dirty(mr, addr1, l);
3161 break;
3162 case FLUSH_CACHE:
3163 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3164 break;
3167 len -= l;
3168 buf += l;
3169 addr += l;
3171 rcu_read_unlock();
3174 /* used for ROM loading : can write in RAM and ROM */
3175 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3176 const uint8_t *buf, int len)
3178 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3181 void cpu_flush_icache_range(hwaddr start, int len)
3184 * This function should do the same thing as an icache flush that was
3185 * triggered from within the guest. For TCG we are always cache coherent,
3186 * so there is no need to flush anything. For KVM / Xen we need to flush
3187 * the host's instruction cache at least.
3189 if (tcg_enabled()) {
3190 return;
3193 cpu_physical_memory_write_rom_internal(&address_space_memory,
3194 start, NULL, len, FLUSH_CACHE);
3197 typedef struct {
3198 MemoryRegion *mr;
3199 void *buffer;
3200 hwaddr addr;
3201 hwaddr len;
3202 bool in_use;
3203 } BounceBuffer;
3205 static BounceBuffer bounce;
3207 typedef struct MapClient {
3208 QEMUBH *bh;
3209 QLIST_ENTRY(MapClient) link;
3210 } MapClient;
3212 QemuMutex map_client_list_lock;
3213 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3214 = QLIST_HEAD_INITIALIZER(map_client_list);
3216 static void cpu_unregister_map_client_do(MapClient *client)
3218 QLIST_REMOVE(client, link);
3219 g_free(client);
3222 static void cpu_notify_map_clients_locked(void)
3224 MapClient *client;
3226 while (!QLIST_EMPTY(&map_client_list)) {
3227 client = QLIST_FIRST(&map_client_list);
3228 qemu_bh_schedule(client->bh);
3229 cpu_unregister_map_client_do(client);
3233 void cpu_register_map_client(QEMUBH *bh)
3235 MapClient *client = g_malloc(sizeof(*client));
3237 qemu_mutex_lock(&map_client_list_lock);
3238 client->bh = bh;
3239 QLIST_INSERT_HEAD(&map_client_list, client, link);
3240 if (!atomic_read(&bounce.in_use)) {
3241 cpu_notify_map_clients_locked();
3243 qemu_mutex_unlock(&map_client_list_lock);
3246 void cpu_exec_init_all(void)
3248 qemu_mutex_init(&ram_list.mutex);
3249 /* The data structures we set up here depend on knowing the page size,
3250 * so no more changes can be made after this point.
3251 * In an ideal world, nothing we did before we had finished the
3252 * machine setup would care about the target page size, and we could
3253 * do this much later, rather than requiring board models to state
3254 * up front what their requirements are.
3256 finalize_target_page_bits();
3257 io_mem_init();
3258 memory_map_init();
3259 qemu_mutex_init(&map_client_list_lock);
3262 void cpu_unregister_map_client(QEMUBH *bh)
3264 MapClient *client;
3266 qemu_mutex_lock(&map_client_list_lock);
3267 QLIST_FOREACH(client, &map_client_list, link) {
3268 if (client->bh == bh) {
3269 cpu_unregister_map_client_do(client);
3270 break;
3273 qemu_mutex_unlock(&map_client_list_lock);
3276 static void cpu_notify_map_clients(void)
3278 qemu_mutex_lock(&map_client_list_lock);
3279 cpu_notify_map_clients_locked();
3280 qemu_mutex_unlock(&map_client_list_lock);
3283 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3284 bool is_write)
3286 MemoryRegion *mr;
3287 hwaddr l, xlat;
3289 rcu_read_lock();
3290 while (len > 0) {
3291 l = len;
3292 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3293 if (!memory_access_is_direct(mr, is_write)) {
3294 l = memory_access_size(mr, l, addr);
3295 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3296 rcu_read_unlock();
3297 return false;
3301 len -= l;
3302 addr += l;
3304 rcu_read_unlock();
3305 return true;
3308 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3309 int len, bool is_write)
3311 return flatview_access_valid(address_space_to_flatview(as),
3312 addr, len, is_write);
3315 static hwaddr
3316 flatview_extend_translation(FlatView *fv, hwaddr addr,
3317 hwaddr target_len,
3318 MemoryRegion *mr, hwaddr base, hwaddr len,
3319 bool is_write)
3321 hwaddr done = 0;
3322 hwaddr xlat;
3323 MemoryRegion *this_mr;
3325 for (;;) {
3326 target_len -= len;
3327 addr += len;
3328 done += len;
3329 if (target_len == 0) {
3330 return done;
3333 len = target_len;
3334 this_mr = flatview_translate(fv, addr, &xlat,
3335 &len, is_write);
3336 if (this_mr != mr || xlat != base + done) {
3337 return done;
3342 /* Map a physical memory region into a host virtual address.
3343 * May map a subset of the requested range, given by and returned in *plen.
3344 * May return NULL if resources needed to perform the mapping are exhausted.
3345 * Use only for reads OR writes - not for read-modify-write operations.
3346 * Use cpu_register_map_client() to know when retrying the map operation is
3347 * likely to succeed.
3349 void *address_space_map(AddressSpace *as,
3350 hwaddr addr,
3351 hwaddr *plen,
3352 bool is_write)
3354 hwaddr len = *plen;
3355 hwaddr l, xlat;
3356 MemoryRegion *mr;
3357 void *ptr;
3358 FlatView *fv = address_space_to_flatview(as);
3360 if (len == 0) {
3361 return NULL;
3364 l = len;
3365 rcu_read_lock();
3366 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3368 if (!memory_access_is_direct(mr, is_write)) {
3369 if (atomic_xchg(&bounce.in_use, true)) {
3370 rcu_read_unlock();
3371 return NULL;
3373 /* Avoid unbounded allocations */
3374 l = MIN(l, TARGET_PAGE_SIZE);
3375 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3376 bounce.addr = addr;
3377 bounce.len = l;
3379 memory_region_ref(mr);
3380 bounce.mr = mr;
3381 if (!is_write) {
3382 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3383 bounce.buffer, l);
3386 rcu_read_unlock();
3387 *plen = l;
3388 return bounce.buffer;
3392 memory_region_ref(mr);
3393 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3394 l, is_write);
3395 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3396 rcu_read_unlock();
3398 return ptr;
3401 /* Unmaps a memory region previously mapped by address_space_map().
3402 * Will also mark the memory as dirty if is_write == 1. access_len gives
3403 * the amount of memory that was actually read or written by the caller.
3405 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3406 int is_write, hwaddr access_len)
3408 if (buffer != bounce.buffer) {
3409 MemoryRegion *mr;
3410 ram_addr_t addr1;
3412 mr = memory_region_from_host(buffer, &addr1);
3413 assert(mr != NULL);
3414 if (is_write) {
3415 invalidate_and_set_dirty(mr, addr1, access_len);
3417 if (xen_enabled()) {
3418 xen_invalidate_map_cache_entry(buffer);
3420 memory_region_unref(mr);
3421 return;
3423 if (is_write) {
3424 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3425 bounce.buffer, access_len);
3427 qemu_vfree(bounce.buffer);
3428 bounce.buffer = NULL;
3429 memory_region_unref(bounce.mr);
3430 atomic_mb_set(&bounce.in_use, false);
3431 cpu_notify_map_clients();
3434 void *cpu_physical_memory_map(hwaddr addr,
3435 hwaddr *plen,
3436 int is_write)
3438 return address_space_map(&address_space_memory, addr, plen, is_write);
3441 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3442 int is_write, hwaddr access_len)
3444 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3447 #define ARG1_DECL AddressSpace *as
3448 #define ARG1 as
3449 #define SUFFIX
3450 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3451 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3452 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3453 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3454 #define RCU_READ_LOCK(...) rcu_read_lock()
3455 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3456 #include "memory_ldst.inc.c"
3458 int64_t address_space_cache_init(MemoryRegionCache *cache,
3459 AddressSpace *as,
3460 hwaddr addr,
3461 hwaddr len,
3462 bool is_write)
3464 cache->len = len;
3465 cache->as = as;
3466 cache->xlat = addr;
3467 return len;
3470 void address_space_cache_invalidate(MemoryRegionCache *cache,
3471 hwaddr addr,
3472 hwaddr access_len)
3476 void address_space_cache_destroy(MemoryRegionCache *cache)
3478 cache->as = NULL;
3481 #define ARG1_DECL MemoryRegionCache *cache
3482 #define ARG1 cache
3483 #define SUFFIX _cached
3484 #define TRANSLATE(addr, ...) \
3485 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3486 #define IS_DIRECT(mr, is_write) true
3487 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3488 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3489 #define RCU_READ_LOCK() rcu_read_lock()
3490 #define RCU_READ_UNLOCK() rcu_read_unlock()
3491 #include "memory_ldst.inc.c"
3493 /* virtual memory access for debug (includes writing to ROM) */
3494 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3495 uint8_t *buf, int len, int is_write)
3497 int l;
3498 hwaddr phys_addr;
3499 target_ulong page;
3501 cpu_synchronize_state(cpu);
3502 while (len > 0) {
3503 int asidx;
3504 MemTxAttrs attrs;
3506 page = addr & TARGET_PAGE_MASK;
3507 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3508 asidx = cpu_asidx_from_attrs(cpu, attrs);
3509 /* if no physical page mapped, return an error */
3510 if (phys_addr == -1)
3511 return -1;
3512 l = (page + TARGET_PAGE_SIZE) - addr;
3513 if (l > len)
3514 l = len;
3515 phys_addr += (addr & ~TARGET_PAGE_MASK);
3516 if (is_write) {
3517 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3518 phys_addr, buf, l);
3519 } else {
3520 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3521 MEMTXATTRS_UNSPECIFIED,
3522 buf, l, 0);
3524 len -= l;
3525 buf += l;
3526 addr += l;
3528 return 0;
3532 * Allows code that needs to deal with migration bitmaps etc to still be built
3533 * target independent.
3535 size_t qemu_target_page_size(void)
3537 return TARGET_PAGE_SIZE;
3540 int qemu_target_page_bits(void)
3542 return TARGET_PAGE_BITS;
3545 int qemu_target_page_bits_min(void)
3547 return TARGET_PAGE_BITS_MIN;
3549 #endif
3552 * A helper function for the _utterly broken_ virtio device model to find out if
3553 * it's running on a big endian machine. Don't do this at home kids!
3555 bool target_words_bigendian(void);
3556 bool target_words_bigendian(void)
3558 #if defined(TARGET_WORDS_BIGENDIAN)
3559 return true;
3560 #else
3561 return false;
3562 #endif
3565 #ifndef CONFIG_USER_ONLY
3566 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3568 MemoryRegion*mr;
3569 hwaddr l = 1;
3570 bool res;
3572 rcu_read_lock();
3573 mr = address_space_translate(&address_space_memory,
3574 phys_addr, &phys_addr, &l, false);
3576 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3577 rcu_read_unlock();
3578 return res;
3581 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3583 RAMBlock *block;
3584 int ret = 0;
3586 rcu_read_lock();
3587 RAMBLOCK_FOREACH(block) {
3588 ret = func(block->idstr, block->host, block->offset,
3589 block->used_length, opaque);
3590 if (ret) {
3591 break;
3594 rcu_read_unlock();
3595 return ret;
3599 * Unmap pages of memory from start to start+length such that
3600 * they a) read as 0, b) Trigger whatever fault mechanism
3601 * the OS provides for postcopy.
3602 * The pages must be unmapped by the end of the function.
3603 * Returns: 0 on success, none-0 on failure
3606 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3608 int ret = -1;
3610 uint8_t *host_startaddr = rb->host + start;
3612 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3613 error_report("ram_block_discard_range: Unaligned start address: %p",
3614 host_startaddr);
3615 goto err;
3618 if ((start + length) <= rb->used_length) {
3619 uint8_t *host_endaddr = host_startaddr + length;
3620 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3621 error_report("ram_block_discard_range: Unaligned end address: %p",
3622 host_endaddr);
3623 goto err;
3626 errno = ENOTSUP; /* If we are missing MADVISE etc */
3628 if (rb->page_size == qemu_host_page_size) {
3629 #if defined(CONFIG_MADVISE)
3630 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3631 * freeing the page.
3633 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3634 #endif
3635 } else {
3636 /* Huge page case - unfortunately it can't do DONTNEED, but
3637 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3638 * huge page file.
3640 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3641 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3642 start, length);
3643 #endif
3645 if (ret) {
3646 ret = -errno;
3647 error_report("ram_block_discard_range: Failed to discard range "
3648 "%s:%" PRIx64 " +%zx (%d)",
3649 rb->idstr, start, length, ret);
3651 } else {
3652 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3653 "/%zx/" RAM_ADDR_FMT")",
3654 rb->idstr, start, length, rb->used_length);
3657 err:
3658 return ret;
3661 #endif
3663 void page_size_init(void)
3665 /* NOTE: we can always suppose that qemu_host_page_size >=
3666 TARGET_PAGE_SIZE */
3667 if (qemu_host_page_size == 0) {
3668 qemu_host_page_size = qemu_real_host_page_size;
3670 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3671 qemu_host_page_size = TARGET_PAGE_SIZE;
3673 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3676 #if !defined(CONFIG_USER_ONLY)
3678 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3679 int start, int end, int skip, int ptr)
3681 if (start == end - 1) {
3682 mon(f, "\t%3d ", start);
3683 } else {
3684 mon(f, "\t%3d..%-3d ", start, end - 1);
3686 mon(f, " skip=%d ", skip);
3687 if (ptr == PHYS_MAP_NODE_NIL) {
3688 mon(f, " ptr=NIL");
3689 } else if (!skip) {
3690 mon(f, " ptr=#%d", ptr);
3691 } else {
3692 mon(f, " ptr=[%d]", ptr);
3694 mon(f, "\n");
3697 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3698 int128_sub((size), int128_one())) : 0)
3700 void mtree_print_dispatch(fprintf_function mon, void *f,
3701 AddressSpaceDispatch *d, MemoryRegion *root)
3703 int i;
3705 mon(f, " Dispatch\n");
3706 mon(f, " Physical sections\n");
3708 for (i = 0; i < d->map.sections_nb; ++i) {
3709 MemoryRegionSection *s = d->map.sections + i;
3710 const char *names[] = { " [unassigned]", " [not dirty]",
3711 " [ROM]", " [watch]" };
3713 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3715 s->offset_within_address_space,
3716 s->offset_within_address_space + MR_SIZE(s->mr->size),
3717 s->mr->name ? s->mr->name : "(noname)",
3718 i < ARRAY_SIZE(names) ? names[i] : "",
3719 s->mr == root ? " [ROOT]" : "",
3720 s == d->mru_section ? " [MRU]" : "",
3721 s->mr->is_iommu ? " [iommu]" : "");
3723 if (s->mr->alias) {
3724 mon(f, " alias=%s", s->mr->alias->name ?
3725 s->mr->alias->name : "noname");
3727 mon(f, "\n");
3730 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3731 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3732 for (i = 0; i < d->map.nodes_nb; ++i) {
3733 int j, jprev;
3734 PhysPageEntry prev;
3735 Node *n = d->map.nodes + i;
3737 mon(f, " [%d]\n", i);
3739 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3740 PhysPageEntry *pe = *n + j;
3742 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3743 continue;
3746 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3748 jprev = j;
3749 prev = *pe;
3752 if (jprev != ARRAY_SIZE(*n)) {
3753 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3758 #endif