Revert "usb-linux: remove unreachable default in switch statement"
[qemu/aliguori-queue.git] / target-i386 / kvm.c
blobf77e4880b32c26a676ce086105a64e424a071021
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "ioport.h"
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
32 #endif
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define dprintf(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define dprintf(fmt, ...) \
41 do { } while (0)
42 #endif
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
47 #ifdef KVM_CAP_EXT_CPUID
49 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
71 return cpuid;
74 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
76 struct kvm_cpuid2 *cpuid;
77 int i, max;
78 uint32_t ret = 0;
79 uint32_t cpuid_1_edx;
81 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
82 return -1U;
85 max = 1;
86 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
87 max *= 2;
90 for (i = 0; i < cpuid->nent; ++i) {
91 if (cpuid->entries[i].function == function) {
92 switch (reg) {
93 case R_EAX:
94 ret = cpuid->entries[i].eax;
95 break;
96 case R_EBX:
97 ret = cpuid->entries[i].ebx;
98 break;
99 case R_ECX:
100 ret = cpuid->entries[i].ecx;
101 break;
102 case R_EDX:
103 ret = cpuid->entries[i].edx;
104 switch (function) {
105 case 1:
106 /* KVM before 2.6.30 misreports the following features */
107 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
108 break;
109 case 0x80000001:
110 /* On Intel, kvm returns cpuid according to the Intel spec,
111 * so add missing bits according to the AMD spec:
113 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
114 ret |= cpuid_1_edx & 0xdfeff7ff;
115 break;
117 break;
122 qemu_free(cpuid);
124 return ret;
127 #else
129 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
131 return -1U;
134 #endif
136 #ifdef CONFIG_KVM_PARA
137 struct kvm_para_features {
138 int cap;
139 int feature;
140 } para_features[] = {
141 #ifdef KVM_CAP_CLOCKSOURCE
142 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
143 #endif
144 #ifdef KVM_CAP_NOP_IO_DELAY
145 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
146 #endif
147 #ifdef KVM_CAP_PV_MMU
148 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
149 #endif
150 { -1, -1 }
153 static int get_para_features(CPUState *env)
155 int i, features = 0;
157 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
158 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
159 features |= (1 << para_features[i].feature);
162 return features;
164 #endif
166 int kvm_arch_init_vcpu(CPUState *env)
168 struct {
169 struct kvm_cpuid2 cpuid;
170 struct kvm_cpuid_entry2 entries[100];
171 } __attribute__((packed)) cpuid_data;
172 uint32_t limit, i, j, cpuid_i;
173 uint32_t unused;
174 struct kvm_cpuid_entry2 *c;
175 #ifdef KVM_CPUID_SIGNATURE
176 uint32_t signature[3];
177 #endif
179 env->mp_state = KVM_MP_STATE_RUNNABLE;
181 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, R_EDX);
183 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
184 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, R_ECX);
185 env->cpuid_ext_features |= i;
187 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
188 R_EDX);
189 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
190 R_ECX);
192 cpuid_i = 0;
194 #ifdef CONFIG_KVM_PARA
195 /* Paravirtualization CPUIDs */
196 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
197 c = &cpuid_data.entries[cpuid_i++];
198 memset(c, 0, sizeof(*c));
199 c->function = KVM_CPUID_SIGNATURE;
200 c->eax = 0;
201 c->ebx = signature[0];
202 c->ecx = signature[1];
203 c->edx = signature[2];
205 c = &cpuid_data.entries[cpuid_i++];
206 memset(c, 0, sizeof(*c));
207 c->function = KVM_CPUID_FEATURES;
208 c->eax = env->cpuid_kvm_features & get_para_features(env);
209 #endif
211 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
213 for (i = 0; i <= limit; i++) {
214 c = &cpuid_data.entries[cpuid_i++];
216 switch (i) {
217 case 2: {
218 /* Keep reading function 2 till all the input is received */
219 int times;
221 c->function = i;
222 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
223 KVM_CPUID_FLAG_STATE_READ_NEXT;
224 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
225 times = c->eax & 0xff;
227 for (j = 1; j < times; ++j) {
228 c = &cpuid_data.entries[cpuid_i++];
229 c->function = i;
230 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
231 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
233 break;
235 case 4:
236 case 0xb:
237 case 0xd:
238 for (j = 0; ; j++) {
239 c->function = i;
240 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
241 c->index = j;
242 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
244 if (i == 4 && c->eax == 0)
245 break;
246 if (i == 0xb && !(c->ecx & 0xff00))
247 break;
248 if (i == 0xd && c->eax == 0)
249 break;
251 c = &cpuid_data.entries[cpuid_i++];
253 break;
254 default:
255 c->function = i;
256 c->flags = 0;
257 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
258 break;
261 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
263 for (i = 0x80000000; i <= limit; i++) {
264 c = &cpuid_data.entries[cpuid_i++];
266 c->function = i;
267 c->flags = 0;
268 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
271 cpuid_data.cpuid.nent = cpuid_i;
273 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
276 void kvm_arch_reset_vcpu(CPUState *env)
278 env->exception_injected = -1;
279 env->interrupt_injected = -1;
280 env->nmi_injected = 0;
281 env->nmi_pending = 0;
284 static int kvm_has_msr_star(CPUState *env)
286 static int has_msr_star;
287 int ret;
289 /* first time */
290 if (has_msr_star == 0) {
291 struct kvm_msr_list msr_list, *kvm_msr_list;
293 has_msr_star = -1;
295 /* Obtain MSR list from KVM. These are the MSRs that we must
296 * save/restore */
297 msr_list.nmsrs = 0;
298 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
299 if (ret < 0 && ret != -E2BIG) {
300 return 0;
302 /* Old kernel modules had a bug and could write beyond the provided
303 memory. Allocate at least a safe amount of 1K. */
304 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
305 msr_list.nmsrs *
306 sizeof(msr_list.indices[0])));
308 kvm_msr_list->nmsrs = msr_list.nmsrs;
309 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
310 if (ret >= 0) {
311 int i;
313 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
314 if (kvm_msr_list->indices[i] == MSR_STAR) {
315 has_msr_star = 1;
316 break;
321 free(kvm_msr_list);
324 if (has_msr_star == 1)
325 return 1;
326 return 0;
329 int kvm_arch_init(KVMState *s, int smp_cpus)
331 int ret;
333 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
334 * directly. In order to use vm86 mode, a TSS is needed. Since this
335 * must be part of guest physical memory, we need to allocate it. Older
336 * versions of KVM just assumed that it would be at the end of physical
337 * memory but that doesn't work with more than 4GB of memory. We simply
338 * refuse to work with those older versions of KVM. */
339 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
340 if (ret <= 0) {
341 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
342 return ret;
345 /* this address is 3 pages before the bios, and the bios should present
346 * as unavaible memory. FIXME, need to ensure the e820 map deals with
347 * this?
350 * Tell fw_cfg to notify the BIOS to reserve the range.
352 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
353 perror("e820_add_entry() table is full");
354 exit(1);
356 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
359 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
361 lhs->selector = rhs->selector;
362 lhs->base = rhs->base;
363 lhs->limit = rhs->limit;
364 lhs->type = 3;
365 lhs->present = 1;
366 lhs->dpl = 3;
367 lhs->db = 0;
368 lhs->s = 1;
369 lhs->l = 0;
370 lhs->g = 0;
371 lhs->avl = 0;
372 lhs->unusable = 0;
375 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
377 unsigned flags = rhs->flags;
378 lhs->selector = rhs->selector;
379 lhs->base = rhs->base;
380 lhs->limit = rhs->limit;
381 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
382 lhs->present = (flags & DESC_P_MASK) != 0;
383 lhs->dpl = rhs->selector & 3;
384 lhs->db = (flags >> DESC_B_SHIFT) & 1;
385 lhs->s = (flags & DESC_S_MASK) != 0;
386 lhs->l = (flags >> DESC_L_SHIFT) & 1;
387 lhs->g = (flags & DESC_G_MASK) != 0;
388 lhs->avl = (flags & DESC_AVL_MASK) != 0;
389 lhs->unusable = 0;
392 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
394 lhs->selector = rhs->selector;
395 lhs->base = rhs->base;
396 lhs->limit = rhs->limit;
397 lhs->flags =
398 (rhs->type << DESC_TYPE_SHIFT)
399 | (rhs->present * DESC_P_MASK)
400 | (rhs->dpl << DESC_DPL_SHIFT)
401 | (rhs->db << DESC_B_SHIFT)
402 | (rhs->s * DESC_S_MASK)
403 | (rhs->l << DESC_L_SHIFT)
404 | (rhs->g * DESC_G_MASK)
405 | (rhs->avl * DESC_AVL_MASK);
408 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
410 if (set)
411 *kvm_reg = *qemu_reg;
412 else
413 *qemu_reg = *kvm_reg;
416 static int kvm_getput_regs(CPUState *env, int set)
418 struct kvm_regs regs;
419 int ret = 0;
421 if (!set) {
422 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
423 if (ret < 0)
424 return ret;
427 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
428 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
429 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
430 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
431 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
432 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
433 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
434 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
435 #ifdef TARGET_X86_64
436 kvm_getput_reg(&regs.r8, &env->regs[8], set);
437 kvm_getput_reg(&regs.r9, &env->regs[9], set);
438 kvm_getput_reg(&regs.r10, &env->regs[10], set);
439 kvm_getput_reg(&regs.r11, &env->regs[11], set);
440 kvm_getput_reg(&regs.r12, &env->regs[12], set);
441 kvm_getput_reg(&regs.r13, &env->regs[13], set);
442 kvm_getput_reg(&regs.r14, &env->regs[14], set);
443 kvm_getput_reg(&regs.r15, &env->regs[15], set);
444 #endif
446 kvm_getput_reg(&regs.rflags, &env->eflags, set);
447 kvm_getput_reg(&regs.rip, &env->eip, set);
449 if (set)
450 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
452 return ret;
455 static int kvm_put_fpu(CPUState *env)
457 struct kvm_fpu fpu;
458 int i;
460 memset(&fpu, 0, sizeof fpu);
461 fpu.fsw = env->fpus & ~(7 << 11);
462 fpu.fsw |= (env->fpstt & 7) << 11;
463 fpu.fcw = env->fpuc;
464 for (i = 0; i < 8; ++i)
465 fpu.ftwx |= (!env->fptags[i]) << i;
466 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
467 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
468 fpu.mxcsr = env->mxcsr;
470 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
473 static int kvm_put_sregs(CPUState *env)
475 struct kvm_sregs sregs;
477 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
478 if (env->interrupt_injected >= 0) {
479 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
480 (uint64_t)1 << (env->interrupt_injected % 64);
483 if ((env->eflags & VM_MASK)) {
484 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
485 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
486 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
487 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
488 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
489 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
490 } else {
491 set_seg(&sregs.cs, &env->segs[R_CS]);
492 set_seg(&sregs.ds, &env->segs[R_DS]);
493 set_seg(&sregs.es, &env->segs[R_ES]);
494 set_seg(&sregs.fs, &env->segs[R_FS]);
495 set_seg(&sregs.gs, &env->segs[R_GS]);
496 set_seg(&sregs.ss, &env->segs[R_SS]);
498 if (env->cr[0] & CR0_PE_MASK) {
499 /* force ss cpl to cs cpl */
500 sregs.ss.selector = (sregs.ss.selector & ~3) |
501 (sregs.cs.selector & 3);
502 sregs.ss.dpl = sregs.ss.selector & 3;
506 set_seg(&sregs.tr, &env->tr);
507 set_seg(&sregs.ldt, &env->ldt);
509 sregs.idt.limit = env->idt.limit;
510 sregs.idt.base = env->idt.base;
511 sregs.gdt.limit = env->gdt.limit;
512 sregs.gdt.base = env->gdt.base;
514 sregs.cr0 = env->cr[0];
515 sregs.cr2 = env->cr[2];
516 sregs.cr3 = env->cr[3];
517 sregs.cr4 = env->cr[4];
519 sregs.cr8 = cpu_get_apic_tpr(env);
520 sregs.apic_base = cpu_get_apic_base(env);
522 sregs.efer = env->efer;
524 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
527 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
528 uint32_t index, uint64_t value)
530 entry->index = index;
531 entry->data = value;
534 static int kvm_put_msrs(CPUState *env, int level)
536 struct {
537 struct kvm_msrs info;
538 struct kvm_msr_entry entries[100];
539 } msr_data;
540 struct kvm_msr_entry *msrs = msr_data.entries;
541 int n = 0;
543 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
544 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
545 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
546 if (kvm_has_msr_star(env))
547 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
548 #ifdef TARGET_X86_64
549 /* FIXME if lm capable */
550 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
551 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
552 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
553 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
554 #endif
555 if (level == KVM_PUT_FULL_STATE) {
556 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
557 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
558 env->system_time_msr);
559 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
562 msr_data.info.nmsrs = n;
564 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
569 static int kvm_get_fpu(CPUState *env)
571 struct kvm_fpu fpu;
572 int i, ret;
574 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
575 if (ret < 0)
576 return ret;
578 env->fpstt = (fpu.fsw >> 11) & 7;
579 env->fpus = fpu.fsw;
580 env->fpuc = fpu.fcw;
581 for (i = 0; i < 8; ++i)
582 env->fptags[i] = !((fpu.ftwx >> i) & 1);
583 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
584 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
585 env->mxcsr = fpu.mxcsr;
587 return 0;
590 static int kvm_get_sregs(CPUState *env)
592 struct kvm_sregs sregs;
593 uint32_t hflags;
594 int bit, i, ret;
596 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
597 if (ret < 0)
598 return ret;
600 /* There can only be one pending IRQ set in the bitmap at a time, so try
601 to find it and save its number instead (-1 for none). */
602 env->interrupt_injected = -1;
603 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
604 if (sregs.interrupt_bitmap[i]) {
605 bit = ctz64(sregs.interrupt_bitmap[i]);
606 env->interrupt_injected = i * 64 + bit;
607 break;
611 get_seg(&env->segs[R_CS], &sregs.cs);
612 get_seg(&env->segs[R_DS], &sregs.ds);
613 get_seg(&env->segs[R_ES], &sregs.es);
614 get_seg(&env->segs[R_FS], &sregs.fs);
615 get_seg(&env->segs[R_GS], &sregs.gs);
616 get_seg(&env->segs[R_SS], &sregs.ss);
618 get_seg(&env->tr, &sregs.tr);
619 get_seg(&env->ldt, &sregs.ldt);
621 env->idt.limit = sregs.idt.limit;
622 env->idt.base = sregs.idt.base;
623 env->gdt.limit = sregs.gdt.limit;
624 env->gdt.base = sregs.gdt.base;
626 env->cr[0] = sregs.cr0;
627 env->cr[2] = sregs.cr2;
628 env->cr[3] = sregs.cr3;
629 env->cr[4] = sregs.cr4;
631 cpu_set_apic_base(env, sregs.apic_base);
633 env->efer = sregs.efer;
634 //cpu_set_apic_tpr(env, sregs.cr8);
636 #define HFLAG_COPY_MASK ~( \
637 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
638 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
639 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
640 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
644 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
645 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
646 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
647 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
648 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
649 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
650 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
652 if (env->efer & MSR_EFER_LMA) {
653 hflags |= HF_LMA_MASK;
656 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
657 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
658 } else {
659 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
660 (DESC_B_SHIFT - HF_CS32_SHIFT);
661 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
662 (DESC_B_SHIFT - HF_SS32_SHIFT);
663 if (!(env->cr[0] & CR0_PE_MASK) ||
664 (env->eflags & VM_MASK) ||
665 !(hflags & HF_CS32_MASK)) {
666 hflags |= HF_ADDSEG_MASK;
667 } else {
668 hflags |= ((env->segs[R_DS].base |
669 env->segs[R_ES].base |
670 env->segs[R_SS].base) != 0) <<
671 HF_ADDSEG_SHIFT;
674 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
676 return 0;
679 static int kvm_get_msrs(CPUState *env)
681 struct {
682 struct kvm_msrs info;
683 struct kvm_msr_entry entries[100];
684 } msr_data;
685 struct kvm_msr_entry *msrs = msr_data.entries;
686 int ret, i, n;
688 n = 0;
689 msrs[n++].index = MSR_IA32_SYSENTER_CS;
690 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
691 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
692 if (kvm_has_msr_star(env))
693 msrs[n++].index = MSR_STAR;
694 msrs[n++].index = MSR_IA32_TSC;
695 #ifdef TARGET_X86_64
696 /* FIXME lm_capable_kernel */
697 msrs[n++].index = MSR_CSTAR;
698 msrs[n++].index = MSR_KERNELGSBASE;
699 msrs[n++].index = MSR_FMASK;
700 msrs[n++].index = MSR_LSTAR;
701 #endif
702 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
703 msrs[n++].index = MSR_KVM_WALL_CLOCK;
705 msr_data.info.nmsrs = n;
706 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
707 if (ret < 0)
708 return ret;
710 for (i = 0; i < ret; i++) {
711 switch (msrs[i].index) {
712 case MSR_IA32_SYSENTER_CS:
713 env->sysenter_cs = msrs[i].data;
714 break;
715 case MSR_IA32_SYSENTER_ESP:
716 env->sysenter_esp = msrs[i].data;
717 break;
718 case MSR_IA32_SYSENTER_EIP:
719 env->sysenter_eip = msrs[i].data;
720 break;
721 case MSR_STAR:
722 env->star = msrs[i].data;
723 break;
724 #ifdef TARGET_X86_64
725 case MSR_CSTAR:
726 env->cstar = msrs[i].data;
727 break;
728 case MSR_KERNELGSBASE:
729 env->kernelgsbase = msrs[i].data;
730 break;
731 case MSR_FMASK:
732 env->fmask = msrs[i].data;
733 break;
734 case MSR_LSTAR:
735 env->lstar = msrs[i].data;
736 break;
737 #endif
738 case MSR_IA32_TSC:
739 env->tsc = msrs[i].data;
740 break;
741 case MSR_KVM_SYSTEM_TIME:
742 env->system_time_msr = msrs[i].data;
743 break;
744 case MSR_KVM_WALL_CLOCK:
745 env->wall_clock_msr = msrs[i].data;
746 break;
750 return 0;
753 static int kvm_put_mp_state(CPUState *env)
755 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
757 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
760 static int kvm_get_mp_state(CPUState *env)
762 struct kvm_mp_state mp_state;
763 int ret;
765 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
766 if (ret < 0) {
767 return ret;
769 env->mp_state = mp_state.mp_state;
770 return 0;
773 static int kvm_put_vcpu_events(CPUState *env, int level)
775 #ifdef KVM_CAP_VCPU_EVENTS
776 struct kvm_vcpu_events events;
778 if (!kvm_has_vcpu_events()) {
779 return 0;
782 events.exception.injected = (env->exception_injected >= 0);
783 events.exception.nr = env->exception_injected;
784 events.exception.has_error_code = env->has_error_code;
785 events.exception.error_code = env->error_code;
787 events.interrupt.injected = (env->interrupt_injected >= 0);
788 events.interrupt.nr = env->interrupt_injected;
789 events.interrupt.soft = env->soft_interrupt;
791 events.nmi.injected = env->nmi_injected;
792 events.nmi.pending = env->nmi_pending;
793 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
795 events.sipi_vector = env->sipi_vector;
797 events.flags = 0;
798 if (level >= KVM_PUT_RESET_STATE) {
799 events.flags |=
800 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
803 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
804 #else
805 return 0;
806 #endif
809 static int kvm_get_vcpu_events(CPUState *env)
811 #ifdef KVM_CAP_VCPU_EVENTS
812 struct kvm_vcpu_events events;
813 int ret;
815 if (!kvm_has_vcpu_events()) {
816 return 0;
819 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
820 if (ret < 0) {
821 return ret;
823 env->exception_injected =
824 events.exception.injected ? events.exception.nr : -1;
825 env->has_error_code = events.exception.has_error_code;
826 env->error_code = events.exception.error_code;
828 env->interrupt_injected =
829 events.interrupt.injected ? events.interrupt.nr : -1;
830 env->soft_interrupt = events.interrupt.soft;
832 env->nmi_injected = events.nmi.injected;
833 env->nmi_pending = events.nmi.pending;
834 if (events.nmi.masked) {
835 env->hflags2 |= HF2_NMI_MASK;
836 } else {
837 env->hflags2 &= ~HF2_NMI_MASK;
840 env->sipi_vector = events.sipi_vector;
841 #endif
843 return 0;
846 static int kvm_guest_debug_workarounds(CPUState *env)
848 int ret = 0;
849 #ifdef KVM_CAP_SET_GUEST_DEBUG
850 unsigned long reinject_trap = 0;
852 if (!kvm_has_vcpu_events()) {
853 if (env->exception_injected == 1) {
854 reinject_trap = KVM_GUESTDBG_INJECT_DB;
855 } else if (env->exception_injected == 3) {
856 reinject_trap = KVM_GUESTDBG_INJECT_BP;
858 env->exception_injected = -1;
862 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
863 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
864 * by updating the debug state once again if single-stepping is on.
865 * Another reason to call kvm_update_guest_debug here is a pending debug
866 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
867 * reinject them via SET_GUEST_DEBUG.
869 if (reinject_trap ||
870 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
871 ret = kvm_update_guest_debug(env, reinject_trap);
873 #endif /* KVM_CAP_SET_GUEST_DEBUG */
874 return ret;
877 int kvm_arch_put_registers(CPUState *env, int level)
879 int ret;
881 ret = kvm_getput_regs(env, 1);
882 if (ret < 0)
883 return ret;
885 ret = kvm_put_fpu(env);
886 if (ret < 0)
887 return ret;
889 ret = kvm_put_sregs(env);
890 if (ret < 0)
891 return ret;
893 ret = kvm_put_msrs(env, level);
894 if (ret < 0)
895 return ret;
897 if (level >= KVM_PUT_RESET_STATE) {
898 ret = kvm_put_mp_state(env);
899 if (ret < 0)
900 return ret;
903 ret = kvm_put_vcpu_events(env, level);
904 if (ret < 0)
905 return ret;
907 /* must be last */
908 ret = kvm_guest_debug_workarounds(env);
909 if (ret < 0)
910 return ret;
912 return 0;
915 int kvm_arch_get_registers(CPUState *env)
917 int ret;
919 ret = kvm_getput_regs(env, 0);
920 if (ret < 0)
921 return ret;
923 ret = kvm_get_fpu(env);
924 if (ret < 0)
925 return ret;
927 ret = kvm_get_sregs(env);
928 if (ret < 0)
929 return ret;
931 ret = kvm_get_msrs(env);
932 if (ret < 0)
933 return ret;
935 ret = kvm_get_mp_state(env);
936 if (ret < 0)
937 return ret;
939 ret = kvm_get_vcpu_events(env);
940 if (ret < 0)
941 return ret;
943 return 0;
946 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
948 /* Try to inject an interrupt if the guest can accept it */
949 if (run->ready_for_interrupt_injection &&
950 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
951 (env->eflags & IF_MASK)) {
952 int irq;
954 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
955 irq = cpu_get_pic_interrupt(env);
956 if (irq >= 0) {
957 struct kvm_interrupt intr;
958 intr.irq = irq;
959 /* FIXME: errors */
960 dprintf("injected interrupt %d\n", irq);
961 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
965 /* If we have an interrupt but the guest is not ready to receive an
966 * interrupt, request an interrupt window exit. This will
967 * cause a return to userspace as soon as the guest is ready to
968 * receive interrupts. */
969 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
970 run->request_interrupt_window = 1;
971 else
972 run->request_interrupt_window = 0;
974 dprintf("setting tpr\n");
975 run->cr8 = cpu_get_apic_tpr(env);
977 return 0;
980 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
982 if (run->if_flag)
983 env->eflags |= IF_MASK;
984 else
985 env->eflags &= ~IF_MASK;
987 cpu_set_apic_tpr(env, run->cr8);
988 cpu_set_apic_base(env, run->apic_base);
990 return 0;
993 static int kvm_handle_halt(CPUState *env)
995 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
996 (env->eflags & IF_MASK)) &&
997 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
998 env->halted = 1;
999 env->exception_index = EXCP_HLT;
1000 return 0;
1003 return 1;
1006 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1008 int ret = 0;
1010 switch (run->exit_reason) {
1011 case KVM_EXIT_HLT:
1012 dprintf("handle_hlt\n");
1013 ret = kvm_handle_halt(env);
1014 break;
1017 return ret;
1020 #ifdef KVM_CAP_SET_GUEST_DEBUG
1021 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1023 static const uint8_t int3 = 0xcc;
1025 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1026 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1027 return -EINVAL;
1028 return 0;
1031 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1033 uint8_t int3;
1035 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1036 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1037 return -EINVAL;
1038 return 0;
1041 static struct {
1042 target_ulong addr;
1043 int len;
1044 int type;
1045 } hw_breakpoint[4];
1047 static int nb_hw_breakpoint;
1049 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1051 int n;
1053 for (n = 0; n < nb_hw_breakpoint; n++)
1054 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1055 (hw_breakpoint[n].len == len || len == -1))
1056 return n;
1057 return -1;
1060 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1061 target_ulong len, int type)
1063 switch (type) {
1064 case GDB_BREAKPOINT_HW:
1065 len = 1;
1066 break;
1067 case GDB_WATCHPOINT_WRITE:
1068 case GDB_WATCHPOINT_ACCESS:
1069 switch (len) {
1070 case 1:
1071 break;
1072 case 2:
1073 case 4:
1074 case 8:
1075 if (addr & (len - 1))
1076 return -EINVAL;
1077 break;
1078 default:
1079 return -EINVAL;
1081 break;
1082 default:
1083 return -ENOSYS;
1086 if (nb_hw_breakpoint == 4)
1087 return -ENOBUFS;
1089 if (find_hw_breakpoint(addr, len, type) >= 0)
1090 return -EEXIST;
1092 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1093 hw_breakpoint[nb_hw_breakpoint].len = len;
1094 hw_breakpoint[nb_hw_breakpoint].type = type;
1095 nb_hw_breakpoint++;
1097 return 0;
1100 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1101 target_ulong len, int type)
1103 int n;
1105 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1106 if (n < 0)
1107 return -ENOENT;
1109 nb_hw_breakpoint--;
1110 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1112 return 0;
1115 void kvm_arch_remove_all_hw_breakpoints(void)
1117 nb_hw_breakpoint = 0;
1120 static CPUWatchpoint hw_watchpoint;
1122 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1124 int handle = 0;
1125 int n;
1127 if (arch_info->exception == 1) {
1128 if (arch_info->dr6 & (1 << 14)) {
1129 if (cpu_single_env->singlestep_enabled)
1130 handle = 1;
1131 } else {
1132 for (n = 0; n < 4; n++)
1133 if (arch_info->dr6 & (1 << n))
1134 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1135 case 0x0:
1136 handle = 1;
1137 break;
1138 case 0x1:
1139 handle = 1;
1140 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1141 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1142 hw_watchpoint.flags = BP_MEM_WRITE;
1143 break;
1144 case 0x3:
1145 handle = 1;
1146 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1147 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1148 hw_watchpoint.flags = BP_MEM_ACCESS;
1149 break;
1152 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1153 handle = 1;
1155 if (!handle) {
1156 cpu_synchronize_state(cpu_single_env);
1157 assert(cpu_single_env->exception_injected == -1);
1159 cpu_single_env->exception_injected = arch_info->exception;
1160 cpu_single_env->has_error_code = 0;
1163 return handle;
1166 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1168 const uint8_t type_code[] = {
1169 [GDB_BREAKPOINT_HW] = 0x0,
1170 [GDB_WATCHPOINT_WRITE] = 0x1,
1171 [GDB_WATCHPOINT_ACCESS] = 0x3
1173 const uint8_t len_code[] = {
1174 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1176 int n;
1178 if (kvm_sw_breakpoints_active(env))
1179 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1181 if (nb_hw_breakpoint > 0) {
1182 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1183 dbg->arch.debugreg[7] = 0x0600;
1184 for (n = 0; n < nb_hw_breakpoint; n++) {
1185 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1186 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1187 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1188 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1192 #endif /* KVM_CAP_SET_GUEST_DEBUG */