sdl: use mouse mode notifier
[qemu/aliguori-queue.git] / kvm-all.c
blob534ead060d81b593a7a3725e183c71bd9d7adde0
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
33 //#define DEBUG_KVM
35 #ifdef DEBUG_KVM
36 #define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define dprintf(fmt, ...) \
40 do { } while (0)
41 #endif
43 typedef struct KVMSlot
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
48 int slot;
49 int flags;
50 } KVMSlot;
52 typedef struct kvm_dirty_log KVMDirtyLog;
54 int kvm_allowed = 0;
56 struct KVMState
58 KVMSlot slots[32];
59 int fd;
60 int vmfd;
61 int coalesced_mmio;
62 #ifdef KVM_CAP_COALESCED_MMIO
63 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
64 #endif
65 int broken_set_mem_region;
66 int migration_log;
67 int vcpu_events;
68 int robust_singlestep;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
71 #endif
72 int irqchip_in_kernel;
73 int pit_in_kernel;
76 static KVMState *kvm_state;
78 static KVMSlot *kvm_alloc_slot(KVMState *s)
80 int i;
82 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
83 /* KVM private memory slots */
84 if (i >= 8 && i < 12)
85 continue;
86 if (s->slots[i].memory_size == 0)
87 return &s->slots[i];
90 fprintf(stderr, "%s: no free slot available\n", __func__);
91 abort();
94 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
95 target_phys_addr_t start_addr,
96 target_phys_addr_t end_addr)
98 int i;
100 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
101 KVMSlot *mem = &s->slots[i];
103 if (start_addr == mem->start_addr &&
104 end_addr == mem->start_addr + mem->memory_size) {
105 return mem;
109 return NULL;
113 * Find overlapping slot with lowest start address
115 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
116 target_phys_addr_t start_addr,
117 target_phys_addr_t end_addr)
119 KVMSlot *found = NULL;
120 int i;
122 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
123 KVMSlot *mem = &s->slots[i];
125 if (mem->memory_size == 0 ||
126 (found && found->start_addr < mem->start_addr)) {
127 continue;
130 if (end_addr > mem->start_addr &&
131 start_addr < mem->start_addr + mem->memory_size) {
132 found = mem;
136 return found;
139 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
141 struct kvm_userspace_memory_region mem;
143 mem.slot = slot->slot;
144 mem.guest_phys_addr = slot->start_addr;
145 mem.memory_size = slot->memory_size;
146 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
147 mem.flags = slot->flags;
148 if (s->migration_log) {
149 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
151 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
154 static void kvm_reset_vcpu(void *opaque)
156 CPUState *env = opaque;
158 kvm_arch_reset_vcpu(env);
161 int kvm_irqchip_in_kernel(void)
163 return kvm_state->irqchip_in_kernel;
166 int kvm_pit_in_kernel(void)
168 return kvm_state->pit_in_kernel;
172 int kvm_init_vcpu(CPUState *env)
174 KVMState *s = kvm_state;
175 long mmap_size;
176 int ret;
178 dprintf("kvm_init_vcpu\n");
180 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
181 if (ret < 0) {
182 dprintf("kvm_create_vcpu failed\n");
183 goto err;
186 env->kvm_fd = ret;
187 env->kvm_state = s;
189 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
190 if (mmap_size < 0) {
191 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
192 goto err;
195 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
196 env->kvm_fd, 0);
197 if (env->kvm_run == MAP_FAILED) {
198 ret = -errno;
199 dprintf("mmap'ing vcpu state failed\n");
200 goto err;
203 #ifdef KVM_CAP_COALESCED_MMIO
204 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
205 s->coalesced_mmio_ring = (void *) env->kvm_run +
206 s->coalesced_mmio * PAGE_SIZE;
207 #endif
209 ret = kvm_arch_init_vcpu(env);
210 if (ret == 0) {
211 qemu_register_reset(kvm_reset_vcpu, env);
212 kvm_arch_reset_vcpu(env);
214 err:
215 return ret;
219 * dirty pages logging control
221 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
222 ram_addr_t size, int flags, int mask)
224 KVMState *s = kvm_state;
225 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
226 int old_flags;
228 if (mem == NULL) {
229 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
230 TARGET_FMT_plx "\n", __func__, phys_addr,
231 (target_phys_addr_t)(phys_addr + size - 1));
232 return -EINVAL;
235 old_flags = mem->flags;
237 flags = (mem->flags & ~mask) | flags;
238 mem->flags = flags;
240 /* If nothing changed effectively, no need to issue ioctl */
241 if (s->migration_log) {
242 flags |= KVM_MEM_LOG_DIRTY_PAGES;
244 if (flags == old_flags) {
245 return 0;
248 return kvm_set_user_memory_region(s, mem);
251 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
253 return kvm_dirty_pages_log_change(phys_addr, size,
254 KVM_MEM_LOG_DIRTY_PAGES,
255 KVM_MEM_LOG_DIRTY_PAGES);
258 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
260 return kvm_dirty_pages_log_change(phys_addr, size,
262 KVM_MEM_LOG_DIRTY_PAGES);
265 static int kvm_set_migration_log(int enable)
267 KVMState *s = kvm_state;
268 KVMSlot *mem;
269 int i, err;
271 s->migration_log = enable;
273 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
274 mem = &s->slots[i];
276 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
277 continue;
279 err = kvm_set_user_memory_region(s, mem);
280 if (err) {
281 return err;
284 return 0;
287 static int test_le_bit(unsigned long nr, unsigned char *addr)
289 return (addr[nr >> 3] >> (nr & 7)) & 1;
293 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
294 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
295 * This means all bits are set to dirty.
297 * @start_add: start of logged region.
298 * @end_addr: end of logged region.
300 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
301 target_phys_addr_t end_addr)
303 KVMState *s = kvm_state;
304 unsigned long size, allocated_size = 0;
305 target_phys_addr_t phys_addr;
306 ram_addr_t addr;
307 KVMDirtyLog d;
308 KVMSlot *mem;
309 int ret = 0;
311 d.dirty_bitmap = NULL;
312 while (start_addr < end_addr) {
313 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
314 if (mem == NULL) {
315 break;
318 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
319 if (!d.dirty_bitmap) {
320 d.dirty_bitmap = qemu_malloc(size);
321 } else if (size > allocated_size) {
322 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
324 allocated_size = size;
325 memset(d.dirty_bitmap, 0, allocated_size);
327 d.slot = mem->slot;
329 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
330 dprintf("ioctl failed %d\n", errno);
331 ret = -1;
332 break;
335 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
336 phys_addr < mem->start_addr + mem->memory_size;
337 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
338 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
339 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
341 if (test_le_bit(nr, bitmap)) {
342 cpu_physical_memory_set_dirty(addr);
345 start_addr = phys_addr;
347 qemu_free(d.dirty_bitmap);
349 return ret;
352 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
354 int ret = -ENOSYS;
355 #ifdef KVM_CAP_COALESCED_MMIO
356 KVMState *s = kvm_state;
358 if (s->coalesced_mmio) {
359 struct kvm_coalesced_mmio_zone zone;
361 zone.addr = start;
362 zone.size = size;
364 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
366 #endif
368 return ret;
371 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
373 int ret = -ENOSYS;
374 #ifdef KVM_CAP_COALESCED_MMIO
375 KVMState *s = kvm_state;
377 if (s->coalesced_mmio) {
378 struct kvm_coalesced_mmio_zone zone;
380 zone.addr = start;
381 zone.size = size;
383 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
385 #endif
387 return ret;
390 int kvm_check_extension(KVMState *s, unsigned int extension)
392 int ret;
394 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
395 if (ret < 0) {
396 ret = 0;
399 return ret;
402 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
403 ram_addr_t size,
404 ram_addr_t phys_offset)
406 KVMState *s = kvm_state;
407 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
408 KVMSlot *mem, old;
409 int err;
411 if (start_addr & ~TARGET_PAGE_MASK) {
412 if (flags >= IO_MEM_UNASSIGNED) {
413 if (!kvm_lookup_overlapping_slot(s, start_addr,
414 start_addr + size)) {
415 return;
417 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
418 } else {
419 fprintf(stderr, "Only page-aligned memory slots supported\n");
421 abort();
424 /* KVM does not support read-only slots */
425 phys_offset &= ~IO_MEM_ROM;
427 while (1) {
428 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
429 if (!mem) {
430 break;
433 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
434 (start_addr + size <= mem->start_addr + mem->memory_size) &&
435 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
436 /* The new slot fits into the existing one and comes with
437 * identical parameters - nothing to be done. */
438 return;
441 old = *mem;
443 /* unregister the overlapping slot */
444 mem->memory_size = 0;
445 err = kvm_set_user_memory_region(s, mem);
446 if (err) {
447 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
448 __func__, strerror(-err));
449 abort();
452 /* Workaround for older KVM versions: we can't join slots, even not by
453 * unregistering the previous ones and then registering the larger
454 * slot. We have to maintain the existing fragmentation. Sigh.
456 * This workaround assumes that the new slot starts at the same
457 * address as the first existing one. If not or if some overlapping
458 * slot comes around later, we will fail (not seen in practice so far)
459 * - and actually require a recent KVM version. */
460 if (s->broken_set_mem_region &&
461 old.start_addr == start_addr && old.memory_size < size &&
462 flags < IO_MEM_UNASSIGNED) {
463 mem = kvm_alloc_slot(s);
464 mem->memory_size = old.memory_size;
465 mem->start_addr = old.start_addr;
466 mem->phys_offset = old.phys_offset;
467 mem->flags = 0;
469 err = kvm_set_user_memory_region(s, mem);
470 if (err) {
471 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
472 strerror(-err));
473 abort();
476 start_addr += old.memory_size;
477 phys_offset += old.memory_size;
478 size -= old.memory_size;
479 continue;
482 /* register prefix slot */
483 if (old.start_addr < start_addr) {
484 mem = kvm_alloc_slot(s);
485 mem->memory_size = start_addr - old.start_addr;
486 mem->start_addr = old.start_addr;
487 mem->phys_offset = old.phys_offset;
488 mem->flags = 0;
490 err = kvm_set_user_memory_region(s, mem);
491 if (err) {
492 fprintf(stderr, "%s: error registering prefix slot: %s\n",
493 __func__, strerror(-err));
494 abort();
498 /* register suffix slot */
499 if (old.start_addr + old.memory_size > start_addr + size) {
500 ram_addr_t size_delta;
502 mem = kvm_alloc_slot(s);
503 mem->start_addr = start_addr + size;
504 size_delta = mem->start_addr - old.start_addr;
505 mem->memory_size = old.memory_size - size_delta;
506 mem->phys_offset = old.phys_offset + size_delta;
507 mem->flags = 0;
509 err = kvm_set_user_memory_region(s, mem);
510 if (err) {
511 fprintf(stderr, "%s: error registering suffix slot: %s\n",
512 __func__, strerror(-err));
513 abort();
518 /* in case the KVM bug workaround already "consumed" the new slot */
519 if (!size)
520 return;
522 /* KVM does not need to know about this memory */
523 if (flags >= IO_MEM_UNASSIGNED)
524 return;
526 mem = kvm_alloc_slot(s);
527 mem->memory_size = size;
528 mem->start_addr = start_addr;
529 mem->phys_offset = phys_offset;
530 mem->flags = 0;
532 err = kvm_set_user_memory_region(s, mem);
533 if (err) {
534 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
535 strerror(-err));
536 abort();
540 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
541 target_phys_addr_t start_addr,
542 ram_addr_t size,
543 ram_addr_t phys_offset)
545 kvm_set_phys_mem(start_addr, size, phys_offset);
548 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
549 target_phys_addr_t start_addr,
550 target_phys_addr_t end_addr)
552 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
555 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
556 int enable)
558 return kvm_set_migration_log(enable);
561 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
562 .set_memory = kvm_client_set_memory,
563 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
564 .migration_log = kvm_client_migration_log,
567 int kvm_init(int smp_cpus)
569 static const char upgrade_note[] =
570 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
571 "(see http://sourceforge.net/projects/kvm).\n";
572 KVMState *s;
573 int ret;
574 int i;
576 if (smp_cpus > 1) {
577 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
578 return -EINVAL;
581 s = qemu_mallocz(sizeof(KVMState));
583 #ifdef KVM_CAP_SET_GUEST_DEBUG
584 QTAILQ_INIT(&s->kvm_sw_breakpoints);
585 #endif
586 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
587 s->slots[i].slot = i;
589 s->vmfd = -1;
590 s->fd = qemu_open("/dev/kvm", O_RDWR);
591 if (s->fd == -1) {
592 fprintf(stderr, "Could not access KVM kernel module: %m\n");
593 ret = -errno;
594 goto err;
597 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
598 if (ret < KVM_API_VERSION) {
599 if (ret > 0)
600 ret = -EINVAL;
601 fprintf(stderr, "kvm version too old\n");
602 goto err;
605 if (ret > KVM_API_VERSION) {
606 ret = -EINVAL;
607 fprintf(stderr, "kvm version not supported\n");
608 goto err;
611 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
612 if (s->vmfd < 0)
613 goto err;
615 /* initially, KVM allocated its own memory and we had to jump through
616 * hooks to make phys_ram_base point to this. Modern versions of KVM
617 * just use a user allocated buffer so we can use regular pages
618 * unmodified. Make sure we have a sufficiently modern version of KVM.
620 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
621 ret = -EINVAL;
622 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
623 upgrade_note);
624 goto err;
627 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
628 * destroyed properly. Since we rely on this capability, refuse to work
629 * with any kernel without this capability. */
630 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
631 ret = -EINVAL;
633 fprintf(stderr,
634 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
635 upgrade_note);
636 goto err;
639 s->coalesced_mmio = 0;
640 #ifdef KVM_CAP_COALESCED_MMIO
641 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
642 s->coalesced_mmio_ring = NULL;
643 #endif
645 s->broken_set_mem_region = 1;
646 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
647 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
648 if (ret > 0) {
649 s->broken_set_mem_region = 0;
651 #endif
653 s->vcpu_events = 0;
654 #ifdef KVM_CAP_VCPU_EVENTS
655 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
656 #endif
658 s->robust_singlestep = 0;
659 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
660 s->robust_singlestep =
661 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
662 #endif
664 ret = kvm_arch_init(s, smp_cpus);
665 if (ret < 0)
666 goto err;
668 kvm_state = s;
669 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
671 return 0;
673 err:
674 if (s) {
675 if (s->vmfd != -1)
676 close(s->vmfd);
677 if (s->fd != -1)
678 close(s->fd);
680 qemu_free(s);
682 return ret;
685 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
686 uint32_t count)
688 int i;
689 uint8_t *ptr = data;
691 for (i = 0; i < count; i++) {
692 if (direction == KVM_EXIT_IO_IN) {
693 switch (size) {
694 case 1:
695 stb_p(ptr, cpu_inb(port));
696 break;
697 case 2:
698 stw_p(ptr, cpu_inw(port));
699 break;
700 case 4:
701 stl_p(ptr, cpu_inl(port));
702 break;
704 } else {
705 switch (size) {
706 case 1:
707 cpu_outb(port, ldub_p(ptr));
708 break;
709 case 2:
710 cpu_outw(port, lduw_p(ptr));
711 break;
712 case 4:
713 cpu_outl(port, ldl_p(ptr));
714 break;
718 ptr += size;
721 return 1;
724 void kvm_flush_coalesced_mmio_buffer(void)
726 #ifdef KVM_CAP_COALESCED_MMIO
727 KVMState *s = kvm_state;
728 if (s->coalesced_mmio_ring) {
729 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
730 while (ring->first != ring->last) {
731 struct kvm_coalesced_mmio *ent;
733 ent = &ring->coalesced_mmio[ring->first];
735 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
736 smp_wmb();
737 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
740 #endif
743 void kvm_cpu_synchronize_state(CPUState *env)
745 if (!env->kvm_vcpu_dirty) {
746 kvm_arch_get_registers(env);
747 env->kvm_vcpu_dirty = 1;
751 void kvm_cpu_synchronize_post_reset(CPUState *env)
753 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
754 env->kvm_vcpu_dirty = 0;
757 void kvm_cpu_synchronize_post_init(CPUState *env)
759 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
760 env->kvm_vcpu_dirty = 0;
763 int kvm_cpu_exec(CPUState *env)
765 struct kvm_run *run = env->kvm_run;
766 int ret;
768 dprintf("kvm_cpu_exec()\n");
770 do {
771 #ifndef CONFIG_IOTHREAD
772 if (env->exit_request) {
773 dprintf("interrupt exit requested\n");
774 ret = 0;
775 break;
777 #endif
779 if (env->kvm_vcpu_dirty) {
780 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
781 env->kvm_vcpu_dirty = 0;
784 kvm_arch_pre_run(env, run);
785 qemu_mutex_unlock_iothread();
786 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
787 qemu_mutex_lock_iothread();
788 kvm_arch_post_run(env, run);
790 if (ret == -EINTR || ret == -EAGAIN) {
791 cpu_exit(env);
792 dprintf("io window exit\n");
793 ret = 0;
794 break;
797 if (ret < 0) {
798 dprintf("kvm run failed %s\n", strerror(-ret));
799 abort();
802 kvm_flush_coalesced_mmio_buffer();
804 ret = 0; /* exit loop */
805 switch (run->exit_reason) {
806 case KVM_EXIT_IO:
807 dprintf("handle_io\n");
808 ret = kvm_handle_io(run->io.port,
809 (uint8_t *)run + run->io.data_offset,
810 run->io.direction,
811 run->io.size,
812 run->io.count);
813 break;
814 case KVM_EXIT_MMIO:
815 dprintf("handle_mmio\n");
816 cpu_physical_memory_rw(run->mmio.phys_addr,
817 run->mmio.data,
818 run->mmio.len,
819 run->mmio.is_write);
820 ret = 1;
821 break;
822 case KVM_EXIT_IRQ_WINDOW_OPEN:
823 dprintf("irq_window_open\n");
824 break;
825 case KVM_EXIT_SHUTDOWN:
826 dprintf("shutdown\n");
827 qemu_system_reset_request();
828 ret = 1;
829 break;
830 case KVM_EXIT_UNKNOWN:
831 dprintf("kvm_exit_unknown\n");
832 break;
833 case KVM_EXIT_FAIL_ENTRY:
834 dprintf("kvm_exit_fail_entry\n");
835 break;
836 case KVM_EXIT_EXCEPTION:
837 dprintf("kvm_exit_exception\n");
838 break;
839 case KVM_EXIT_DEBUG:
840 dprintf("kvm_exit_debug\n");
841 #ifdef KVM_CAP_SET_GUEST_DEBUG
842 if (kvm_arch_debug(&run->debug.arch)) {
843 gdb_set_stop_cpu(env);
844 vm_stop(EXCP_DEBUG);
845 env->exception_index = EXCP_DEBUG;
846 return 0;
848 /* re-enter, this exception was guest-internal */
849 ret = 1;
850 #endif /* KVM_CAP_SET_GUEST_DEBUG */
851 break;
852 default:
853 dprintf("kvm_arch_handle_exit\n");
854 ret = kvm_arch_handle_exit(env, run);
855 break;
857 } while (ret > 0);
859 if (env->exit_request) {
860 env->exit_request = 0;
861 env->exception_index = EXCP_INTERRUPT;
864 return ret;
867 int kvm_ioctl(KVMState *s, int type, ...)
869 int ret;
870 void *arg;
871 va_list ap;
873 va_start(ap, type);
874 arg = va_arg(ap, void *);
875 va_end(ap);
877 ret = ioctl(s->fd, type, arg);
878 if (ret == -1)
879 ret = -errno;
881 return ret;
884 int kvm_vm_ioctl(KVMState *s, int type, ...)
886 int ret;
887 void *arg;
888 va_list ap;
890 va_start(ap, type);
891 arg = va_arg(ap, void *);
892 va_end(ap);
894 ret = ioctl(s->vmfd, type, arg);
895 if (ret == -1)
896 ret = -errno;
898 return ret;
901 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
903 int ret;
904 void *arg;
905 va_list ap;
907 va_start(ap, type);
908 arg = va_arg(ap, void *);
909 va_end(ap);
911 ret = ioctl(env->kvm_fd, type, arg);
912 if (ret == -1)
913 ret = -errno;
915 return ret;
918 int kvm_has_sync_mmu(void)
920 #ifdef KVM_CAP_SYNC_MMU
921 KVMState *s = kvm_state;
923 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
924 #else
925 return 0;
926 #endif
929 int kvm_has_vcpu_events(void)
931 return kvm_state->vcpu_events;
934 int kvm_has_robust_singlestep(void)
936 return kvm_state->robust_singlestep;
939 void kvm_setup_guest_memory(void *start, size_t size)
941 if (!kvm_has_sync_mmu()) {
942 #ifdef MADV_DONTFORK
943 int ret = madvise(start, size, MADV_DONTFORK);
945 if (ret) {
946 perror("madvice");
947 exit(1);
949 #else
950 fprintf(stderr,
951 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
952 exit(1);
953 #endif
957 #ifdef KVM_CAP_SET_GUEST_DEBUG
958 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
960 #ifdef CONFIG_IOTHREAD
961 if (env != cpu_single_env) {
962 abort();
964 #endif
965 func(data);
968 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
969 target_ulong pc)
971 struct kvm_sw_breakpoint *bp;
973 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
974 if (bp->pc == pc)
975 return bp;
977 return NULL;
980 int kvm_sw_breakpoints_active(CPUState *env)
982 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
985 struct kvm_set_guest_debug_data {
986 struct kvm_guest_debug dbg;
987 CPUState *env;
988 int err;
991 static void kvm_invoke_set_guest_debug(void *data)
993 struct kvm_set_guest_debug_data *dbg_data = data;
994 CPUState *env = dbg_data->env;
996 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
999 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1001 struct kvm_set_guest_debug_data data;
1003 data.dbg.control = reinject_trap;
1005 if (env->singlestep_enabled) {
1006 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1008 kvm_arch_update_guest_debug(env, &data.dbg);
1009 data.env = env;
1011 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1012 return data.err;
1015 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1016 target_ulong len, int type)
1018 struct kvm_sw_breakpoint *bp;
1019 CPUState *env;
1020 int err;
1022 if (type == GDB_BREAKPOINT_SW) {
1023 bp = kvm_find_sw_breakpoint(current_env, addr);
1024 if (bp) {
1025 bp->use_count++;
1026 return 0;
1029 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1030 if (!bp)
1031 return -ENOMEM;
1033 bp->pc = addr;
1034 bp->use_count = 1;
1035 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1036 if (err) {
1037 free(bp);
1038 return err;
1041 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1042 bp, entry);
1043 } else {
1044 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1045 if (err)
1046 return err;
1049 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1050 err = kvm_update_guest_debug(env, 0);
1051 if (err)
1052 return err;
1054 return 0;
1057 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1058 target_ulong len, int type)
1060 struct kvm_sw_breakpoint *bp;
1061 CPUState *env;
1062 int err;
1064 if (type == GDB_BREAKPOINT_SW) {
1065 bp = kvm_find_sw_breakpoint(current_env, addr);
1066 if (!bp)
1067 return -ENOENT;
1069 if (bp->use_count > 1) {
1070 bp->use_count--;
1071 return 0;
1074 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1075 if (err)
1076 return err;
1078 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1079 qemu_free(bp);
1080 } else {
1081 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1082 if (err)
1083 return err;
1086 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1087 err = kvm_update_guest_debug(env, 0);
1088 if (err)
1089 return err;
1091 return 0;
1094 void kvm_remove_all_breakpoints(CPUState *current_env)
1096 struct kvm_sw_breakpoint *bp, *next;
1097 KVMState *s = current_env->kvm_state;
1098 CPUState *env;
1100 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1101 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1102 /* Try harder to find a CPU that currently sees the breakpoint. */
1103 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1104 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1105 break;
1109 kvm_arch_remove_all_hw_breakpoints();
1111 for (env = first_cpu; env != NULL; env = env->next_cpu)
1112 kvm_update_guest_debug(env, 0);
1115 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1117 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1119 return -EINVAL;
1122 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1123 target_ulong len, int type)
1125 return -EINVAL;
1128 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1129 target_ulong len, int type)
1131 return -EINVAL;
1134 void kvm_remove_all_breakpoints(CPUState *current_env)
1137 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1139 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1141 struct kvm_signal_mask *sigmask;
1142 int r;
1144 if (!sigset)
1145 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1147 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1149 sigmask->len = 8;
1150 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1151 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1152 free(sigmask);
1154 return r;