Introduce a default qmp session
[qemu/aliguori-queue.git] / hw / mips_malta.c
blob91498c262cc82415b5307464623f4997fe1f0628
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "pci.h"
35 #include "usb-uhci.h"
36 #include "vmware_vga.h"
37 #include "qemu-char.h"
38 #include "sysemu.h"
39 #include "audio/audio.h"
40 #include "boards.h"
41 #include "qemu-log.h"
42 #include "mips-bios.h"
43 #include "ide.h"
44 #include "loader.h"
45 #include "elf.h"
47 //#define DEBUG_BOARD_INIT
49 #define ENVP_ADDR 0x80002000l
50 #define ENVP_NB_ENTRIES 16
51 #define ENVP_ENTRY_SIZE 256
53 #define MAX_IDE_BUS 2
55 typedef struct {
56 uint32_t leds;
57 uint32_t brk;
58 uint32_t gpout;
59 uint32_t i2cin;
60 uint32_t i2coe;
61 uint32_t i2cout;
62 uint32_t i2csel;
63 CharDriverState *display;
64 char display_text[9];
65 SerialState *uart;
66 } MaltaFPGAState;
68 static PITState *pit;
70 static struct _loaderparams {
71 int ram_size;
72 const char *kernel_filename;
73 const char *kernel_cmdline;
74 const char *initrd_filename;
75 } loaderparams;
77 /* Malta FPGA */
78 static void malta_fpga_update_display(void *opaque)
80 char leds_text[9];
81 int i;
82 MaltaFPGAState *s = opaque;
84 for (i = 7 ; i >= 0 ; i--) {
85 if (s->leds & (1 << i))
86 leds_text[i] = '#';
87 else
88 leds_text[i] = ' ';
90 leds_text[8] = '\0';
92 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
93 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
97 * EEPROM 24C01 / 24C02 emulation.
99 * Emulation for serial EEPROMs:
100 * 24C01 - 1024 bit (128 x 8)
101 * 24C02 - 2048 bit (256 x 8)
103 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
106 //~ #define DEBUG
108 #if defined(DEBUG)
109 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
110 #else
111 # define logout(fmt, ...) ((void)0)
112 #endif
114 struct _eeprom24c0x_t {
115 uint8_t tick;
116 uint8_t address;
117 uint8_t command;
118 uint8_t ack;
119 uint8_t scl;
120 uint8_t sda;
121 uint8_t data;
122 //~ uint16_t size;
123 uint8_t contents[256];
126 typedef struct _eeprom24c0x_t eeprom24c0x_t;
128 static eeprom24c0x_t eeprom = {
129 .contents = {
130 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
131 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
132 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
133 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
134 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
135 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
136 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
137 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
138 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
141 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
149 static uint8_t eeprom24c0x_read(void)
151 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
152 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
153 return eeprom.sda;
156 static void eeprom24c0x_write(int scl, int sda)
158 if (eeprom.scl && scl && (eeprom.sda != sda)) {
159 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
160 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
161 if (!sda) {
162 eeprom.tick = 1;
163 eeprom.command = 0;
165 } else if (eeprom.tick == 0 && !eeprom.ack) {
166 /* Waiting for start. */
167 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
168 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
169 } else if (!eeprom.scl && scl) {
170 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
171 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
172 if (eeprom.ack) {
173 logout("\ti2c ack bit = 0\n");
174 sda = 0;
175 eeprom.ack = 0;
176 } else if (eeprom.sda == sda) {
177 uint8_t bit = (sda != 0);
178 logout("\ti2c bit = %d\n", bit);
179 if (eeprom.tick < 9) {
180 eeprom.command <<= 1;
181 eeprom.command += bit;
182 eeprom.tick++;
183 if (eeprom.tick == 9) {
184 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
185 eeprom.ack = 1;
187 } else if (eeprom.tick < 17) {
188 if (eeprom.command & 1) {
189 sda = ((eeprom.data & 0x80) != 0);
191 eeprom.address <<= 1;
192 eeprom.address += bit;
193 eeprom.tick++;
194 eeprom.data <<= 1;
195 if (eeprom.tick == 17) {
196 eeprom.data = eeprom.contents[eeprom.address];
197 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
198 eeprom.ack = 1;
199 eeprom.tick = 0;
201 } else if (eeprom.tick >= 17) {
202 sda = 0;
204 } else {
205 logout("\tsda changed with raising scl\n");
207 } else {
208 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
210 eeprom.scl = scl;
211 eeprom.sda = sda;
214 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
216 MaltaFPGAState *s = opaque;
217 uint32_t val = 0;
218 uint32_t saddr;
220 saddr = (addr & 0xfffff);
222 switch (saddr) {
224 /* SWITCH Register */
225 case 0x00200:
226 val = 0x00000000; /* All switches closed */
227 break;
229 /* STATUS Register */
230 case 0x00208:
231 #ifdef TARGET_WORDS_BIGENDIAN
232 val = 0x00000012;
233 #else
234 val = 0x00000010;
235 #endif
236 break;
238 /* JMPRS Register */
239 case 0x00210:
240 val = 0x00;
241 break;
243 /* LEDBAR Register */
244 case 0x00408:
245 val = s->leds;
246 break;
248 /* BRKRES Register */
249 case 0x00508:
250 val = s->brk;
251 break;
253 /* UART Registers are handled directly by the serial device */
255 /* GPOUT Register */
256 case 0x00a00:
257 val = s->gpout;
258 break;
260 /* XXX: implement a real I2C controller */
262 /* GPINP Register */
263 case 0x00a08:
264 /* IN = OUT until a real I2C control is implemented */
265 if (s->i2csel)
266 val = s->i2cout;
267 else
268 val = 0x00;
269 break;
271 /* I2CINP Register */
272 case 0x00b00:
273 val = ((s->i2cin & ~1) | eeprom24c0x_read());
274 break;
276 /* I2COE Register */
277 case 0x00b08:
278 val = s->i2coe;
279 break;
281 /* I2COUT Register */
282 case 0x00b10:
283 val = s->i2cout;
284 break;
286 /* I2CSEL Register */
287 case 0x00b18:
288 val = s->i2csel;
289 break;
291 default:
292 #if 0
293 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
294 addr);
295 #endif
296 break;
298 return val;
301 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
302 uint32_t val)
304 MaltaFPGAState *s = opaque;
305 uint32_t saddr;
307 saddr = (addr & 0xfffff);
309 switch (saddr) {
311 /* SWITCH Register */
312 case 0x00200:
313 break;
315 /* JMPRS Register */
316 case 0x00210:
317 break;
319 /* LEDBAR Register */
320 /* XXX: implement a 8-LED array */
321 case 0x00408:
322 s->leds = val & 0xff;
323 break;
325 /* ASCIIWORD Register */
326 case 0x00410:
327 snprintf(s->display_text, 9, "%08X", val);
328 malta_fpga_update_display(s);
329 break;
331 /* ASCIIPOS0 to ASCIIPOS7 Registers */
332 case 0x00418:
333 case 0x00420:
334 case 0x00428:
335 case 0x00430:
336 case 0x00438:
337 case 0x00440:
338 case 0x00448:
339 case 0x00450:
340 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
341 malta_fpga_update_display(s);
342 break;
344 /* SOFTRES Register */
345 case 0x00500:
346 if (val == 0x42)
347 qemu_system_reset_request ();
348 break;
350 /* BRKRES Register */
351 case 0x00508:
352 s->brk = val & 0xff;
353 break;
355 /* UART Registers are handled directly by the serial device */
357 /* GPOUT Register */
358 case 0x00a00:
359 s->gpout = val & 0xff;
360 break;
362 /* I2COE Register */
363 case 0x00b08:
364 s->i2coe = val & 0x03;
365 break;
367 /* I2COUT Register */
368 case 0x00b10:
369 eeprom24c0x_write(val & 0x02, val & 0x01);
370 s->i2cout = val;
371 break;
373 /* I2CSEL Register */
374 case 0x00b18:
375 s->i2csel = val & 0x01;
376 break;
378 default:
379 #if 0
380 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
381 addr);
382 #endif
383 break;
387 static CPUReadMemoryFunc * const malta_fpga_read[] = {
388 malta_fpga_readl,
389 malta_fpga_readl,
390 malta_fpga_readl
393 static CPUWriteMemoryFunc * const malta_fpga_write[] = {
394 malta_fpga_writel,
395 malta_fpga_writel,
396 malta_fpga_writel
399 static void malta_fpga_reset(void *opaque)
401 MaltaFPGAState *s = opaque;
403 s->leds = 0x00;
404 s->brk = 0x0a;
405 s->gpout = 0x00;
406 s->i2cin = 0x3;
407 s->i2coe = 0x0;
408 s->i2cout = 0x3;
409 s->i2csel = 0x1;
411 s->display_text[8] = '\0';
412 snprintf(s->display_text, 9, " ");
415 static void malta_fpga_led_init(CharDriverState *chr)
417 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
418 qemu_chr_printf(chr, "+--------+\r\n");
419 qemu_chr_printf(chr, "+ +\r\n");
420 qemu_chr_printf(chr, "+--------+\r\n");
421 qemu_chr_printf(chr, "\n");
422 qemu_chr_printf(chr, "Malta ASCII\r\n");
423 qemu_chr_printf(chr, "+--------+\r\n");
424 qemu_chr_printf(chr, "+ +\r\n");
425 qemu_chr_printf(chr, "+--------+\r\n");
428 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
430 MaltaFPGAState *s;
431 int malta;
433 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
435 malta = cpu_register_io_memory(malta_fpga_read,
436 malta_fpga_write, s);
438 cpu_register_physical_memory(base, 0x900, malta);
439 /* 0xa00 is less than a page, so will still get the right offsets. */
440 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
442 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
444 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1);
446 malta_fpga_reset(s);
447 qemu_register_reset(malta_fpga_reset, s);
449 return s;
452 /* Audio support */
453 #ifdef HAS_AUDIO
454 static void audio_init (PCIBus *pci_bus)
456 struct soundhw *c;
457 int audio_enabled = 0;
459 for (c = soundhw; !audio_enabled && c->name; ++c) {
460 audio_enabled = c->enabled;
463 if (audio_enabled) {
464 for (c = soundhw; c->name; ++c) {
465 if (c->enabled) {
466 c->init.init_pci(pci_bus);
471 #endif
473 /* Network support */
474 static void network_init(void)
476 int i;
478 for(i = 0; i < nb_nics; i++) {
479 NICInfo *nd = &nd_table[i];
480 const char *default_devaddr = NULL;
482 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
483 /* The malta board has a PCNet card using PCI SLOT 11 */
484 default_devaddr = "0b";
486 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
490 /* ROM and pseudo bootloader
492 The following code implements a very very simple bootloader. It first
493 loads the registers a0 to a3 to the values expected by the OS, and
494 then jump at the kernel address.
496 The bootloader should pass the locations of the kernel arguments and
497 environment variables tables. Those tables contain the 32-bit address
498 of NULL terminated strings. The environment variables table should be
499 terminated by a NULL address.
501 For a simpler implementation, the number of kernel arguments is fixed
502 to two (the name of the kernel and the command line), and the two
503 tables are actually the same one.
505 The registers a0 to a3 should contain the following values:
506 a0 - number of kernel arguments
507 a1 - 32-bit address of the kernel arguments table
508 a2 - 32-bit address of the environment variables table
509 a3 - RAM size in bytes
512 static void write_bootloader (CPUState *env, uint8_t *base,
513 int64_t kernel_entry)
515 uint32_t *p;
517 /* Small bootloader */
518 p = (uint32_t *)base;
519 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
520 stl_raw(p++, 0x00000000); /* nop */
522 /* YAMON service vector */
523 stl_raw(base + 0x500, 0xbfc00580); /* start: */
524 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
525 stl_raw(base + 0x520, 0xbfc00580); /* start: */
526 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
527 stl_raw(base + 0x534, 0xbfc00808); /* print: */
528 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
529 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
530 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
531 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
532 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
533 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
534 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
535 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
538 /* Second part of the bootloader */
539 p = (uint32_t *) (base + 0x580);
540 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
541 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
542 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
543 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
544 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
545 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
546 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
547 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
548 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
550 /* Load BAR registers as done by YAMON */
551 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
553 #ifdef TARGET_WORDS_BIGENDIAN
554 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
555 #else
556 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
557 #endif
558 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
560 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
562 #ifdef TARGET_WORDS_BIGENDIAN
563 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
564 #else
565 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
566 #endif
567 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
568 #ifdef TARGET_WORDS_BIGENDIAN
569 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
570 #else
571 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
572 #endif
573 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
575 #ifdef TARGET_WORDS_BIGENDIAN
576 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
577 #else
578 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
579 #endif
580 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
581 #ifdef TARGET_WORDS_BIGENDIAN
582 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
583 #else
584 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
585 #endif
586 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
588 #ifdef TARGET_WORDS_BIGENDIAN
589 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
590 #else
591 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
592 #endif
593 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
594 #ifdef TARGET_WORDS_BIGENDIAN
595 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
596 #else
597 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
598 #endif
599 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
601 /* Jump to kernel code */
602 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
603 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
604 stl_raw(p++, 0x03e00008); /* jr ra */
605 stl_raw(p++, 0x00000000); /* nop */
607 /* YAMON subroutines */
608 p = (uint32_t *) (base + 0x800);
609 stl_raw(p++, 0x03e00008); /* jr ra */
610 stl_raw(p++, 0x24020000); /* li v0,0 */
611 /* 808 YAMON print */
612 stl_raw(p++, 0x03e06821); /* move t5,ra */
613 stl_raw(p++, 0x00805821); /* move t3,a0 */
614 stl_raw(p++, 0x00a05021); /* move t2,a1 */
615 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
616 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
617 stl_raw(p++, 0x10800005); /* beqz a0,834 */
618 stl_raw(p++, 0x00000000); /* nop */
619 stl_raw(p++, 0x0ff0021c); /* jal 870 */
620 stl_raw(p++, 0x00000000); /* nop */
621 stl_raw(p++, 0x08000205); /* j 814 */
622 stl_raw(p++, 0x00000000); /* nop */
623 stl_raw(p++, 0x01a00008); /* jr t5 */
624 stl_raw(p++, 0x01602021); /* move a0,t3 */
625 /* 0x83c YAMON print_count */
626 stl_raw(p++, 0x03e06821); /* move t5,ra */
627 stl_raw(p++, 0x00805821); /* move t3,a0 */
628 stl_raw(p++, 0x00a05021); /* move t2,a1 */
629 stl_raw(p++, 0x00c06021); /* move t4,a2 */
630 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
631 stl_raw(p++, 0x0ff0021c); /* jal 870 */
632 stl_raw(p++, 0x00000000); /* nop */
633 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
634 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
635 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
636 stl_raw(p++, 0x00000000); /* nop */
637 stl_raw(p++, 0x01a00008); /* jr t5 */
638 stl_raw(p++, 0x01602021); /* move a0,t3 */
639 /* 0x870 */
640 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
641 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
642 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
643 stl_raw(p++, 0x00000000); /* nop */
644 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
645 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
646 stl_raw(p++, 0x00000000); /* nop */
647 stl_raw(p++, 0x03e00008); /* jr ra */
648 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
652 static void prom_set(uint32_t* prom_buf, int index, const char *string, ...)
654 va_list ap;
655 int32_t table_addr;
657 if (index >= ENVP_NB_ENTRIES)
658 return;
660 if (string == NULL) {
661 prom_buf[index] = 0;
662 return;
665 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
666 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
668 va_start(ap, string);
669 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
670 va_end(ap);
673 /* Kernel */
674 static int64_t load_kernel (void)
676 int64_t kernel_entry, kernel_high;
677 long initrd_size;
678 ram_addr_t initrd_offset;
679 int big_endian;
680 uint32_t *prom_buf;
681 long prom_size;
682 int prom_index = 0;
684 #ifdef TARGET_WORDS_BIGENDIAN
685 big_endian = 1;
686 #else
687 big_endian = 0;
688 #endif
690 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
691 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
692 big_endian, ELF_MACHINE, 1) < 0) {
693 fprintf(stderr, "qemu: could not load kernel '%s'\n",
694 loaderparams.kernel_filename);
695 exit(1);
698 /* load initrd */
699 initrd_size = 0;
700 initrd_offset = 0;
701 if (loaderparams.initrd_filename) {
702 initrd_size = get_image_size (loaderparams.initrd_filename);
703 if (initrd_size > 0) {
704 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
705 if (initrd_offset + initrd_size > ram_size) {
706 fprintf(stderr,
707 "qemu: memory too small for initial ram disk '%s'\n",
708 loaderparams.initrd_filename);
709 exit(1);
711 initrd_size = load_image_targphys(loaderparams.initrd_filename,
712 initrd_offset,
713 ram_size - initrd_offset);
715 if (initrd_size == (target_ulong) -1) {
716 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
717 loaderparams.initrd_filename);
718 exit(1);
722 /* Setup prom parameters. */
723 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
724 prom_buf = qemu_malloc(prom_size);
726 prom_set(prom_buf, prom_index++, loaderparams.kernel_filename);
727 if (initrd_size > 0) {
728 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
729 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
730 loaderparams.kernel_cmdline);
731 } else {
732 prom_set(prom_buf, prom_index++, loaderparams.kernel_cmdline);
735 prom_set(prom_buf, prom_index++, "memsize");
736 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
737 prom_set(prom_buf, prom_index++, "modetty0");
738 prom_set(prom_buf, prom_index++, "38400n8r");
739 prom_set(prom_buf, prom_index++, NULL);
741 rom_add_blob_fixed("prom", prom_buf, prom_size,
742 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
744 return kernel_entry;
747 static void main_cpu_reset(void *opaque)
749 CPUState *env = opaque;
750 cpu_reset(env);
752 /* The bootloader does not need to be rewritten as it is located in a
753 read only location. The kernel location and the arguments table
754 location does not change. */
755 if (loaderparams.kernel_filename) {
756 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
760 static
761 void mips_malta_init (ram_addr_t ram_size,
762 const char *boot_device,
763 const char *kernel_filename, const char *kernel_cmdline,
764 const char *initrd_filename, const char *cpu_model)
766 char *filename;
767 ram_addr_t ram_offset;
768 ram_addr_t bios_offset;
769 target_long bios_size;
770 int64_t kernel_entry;
771 PCIBus *pci_bus;
772 ISADevice *isa_dev;
773 CPUState *env;
774 RTCState *rtc_state;
775 FDCtrl *floppy_controller;
776 MaltaFPGAState *malta_fpga;
777 qemu_irq *i8259;
778 int piix4_devfn;
779 uint8_t *eeprom_buf;
780 i2c_bus *smbus;
781 int i;
782 DriveInfo *dinfo;
783 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
784 DriveInfo *fd[MAX_FD];
785 int fl_idx = 0;
786 int fl_sectors = 0;
788 /* Make sure the first 3 serial ports are associated with a device. */
789 for(i = 0; i < 3; i++) {
790 if (!serial_hds[i]) {
791 char label[32];
792 snprintf(label, sizeof(label), "serial%d", i);
793 serial_hds[i] = qemu_chr_open(label, "null", NULL);
797 /* init CPUs */
798 if (cpu_model == NULL) {
799 #ifdef TARGET_MIPS64
800 cpu_model = "20Kc";
801 #else
802 cpu_model = "24Kf";
803 #endif
805 env = cpu_init(cpu_model);
806 if (!env) {
807 fprintf(stderr, "Unable to find CPU definition\n");
808 exit(1);
810 qemu_register_reset(main_cpu_reset, env);
812 /* allocate RAM */
813 if (ram_size > (256 << 20)) {
814 fprintf(stderr,
815 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
816 ((unsigned int)ram_size / (1 << 20)));
817 exit(1);
819 ram_offset = qemu_ram_alloc(ram_size);
820 bios_offset = qemu_ram_alloc(BIOS_SIZE);
823 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
825 /* Map the bios at two physical locations, as on the real board. */
826 cpu_register_physical_memory(0x1e000000LL,
827 BIOS_SIZE, bios_offset | IO_MEM_ROM);
828 cpu_register_physical_memory(0x1fc00000LL,
829 BIOS_SIZE, bios_offset | IO_MEM_ROM);
831 /* FPGA */
832 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
834 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
835 if (kernel_filename) {
836 /* Write a small bootloader to the flash location. */
837 loaderparams.ram_size = ram_size;
838 loaderparams.kernel_filename = kernel_filename;
839 loaderparams.kernel_cmdline = kernel_cmdline;
840 loaderparams.initrd_filename = initrd_filename;
841 kernel_entry = load_kernel();
842 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
843 } else {
844 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
845 if (dinfo) {
846 /* Load firmware from flash. */
847 bios_size = 0x400000;
848 fl_sectors = bios_size >> 16;
849 #ifdef DEBUG_BOARD_INIT
850 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
851 "offset %08lx addr %08llx '%s' %x\n",
852 fl_idx, bios_size, bios_offset, 0x1e000000LL,
853 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
854 #endif
855 pflash_cfi01_register(0x1e000000LL, bios_offset,
856 dinfo->bdrv, 65536, fl_sectors,
857 4, 0x0000, 0x0000, 0x0000, 0x0000);
858 fl_idx++;
859 } else {
860 /* Load a BIOS image. */
861 if (bios_name == NULL)
862 bios_name = BIOS_FILENAME;
863 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
864 if (filename) {
865 bios_size = load_image_targphys(filename, 0x1fc00000LL,
866 BIOS_SIZE);
867 qemu_free(filename);
868 } else {
869 bios_size = -1;
871 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
872 fprintf(stderr,
873 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
874 bios_name);
875 exit(1);
878 /* In little endian mode the 32bit words in the bios are swapped,
879 a neat trick which allows bi-endian firmware. */
880 #ifndef TARGET_WORDS_BIGENDIAN
882 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
883 uint32_t *end = addr + bios_size;
884 while (addr < end) {
885 bswap32s(addr);
888 #endif
891 /* Board ID = 0x420 (Malta Board with CoreLV)
892 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
893 map to the board ID. */
894 stl_phys(0x1fc00010LL, 0x00000420);
896 /* Init internal devices */
897 cpu_mips_irq_init_cpu(env);
898 cpu_mips_clock_init(env);
900 /* Interrupt controller */
901 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
902 i8259 = i8259_init(env->irq[2]);
904 /* Northbridge */
905 pci_bus = pci_gt64120_init(i8259);
907 /* Southbridge */
909 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
910 fprintf(stderr, "qemu: too many IDE bus\n");
911 exit(1);
914 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
915 hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
918 piix4_devfn = piix4_init(pci_bus, 80);
919 isa_bus_irqs(i8259);
920 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
921 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
922 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_reserve_irq(9));
923 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
924 for (i = 0; i < 8; i++) {
925 /* TODO: Populate SPD eeprom data. */
926 DeviceState *eeprom;
927 eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
928 qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
929 qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
930 qdev_init_nofail(eeprom);
932 pit = pit_init(0x40, isa_reserve_irq(0));
933 DMA_init(0);
935 /* Super I/O */
936 isa_dev = isa_create_simple("i8042");
938 rtc_state = rtc_init(2000);
939 serial_isa_init(0, serial_hds[0]);
940 serial_isa_init(1, serial_hds[1]);
941 if (parallel_hds[0])
942 parallel_init(0, parallel_hds[0]);
943 for(i = 0; i < MAX_FD; i++) {
944 fd[i] = drive_get(IF_FLOPPY, 0, i);
946 floppy_controller = fdctrl_init_isa(fd);
948 /* Sound card */
949 #ifdef HAS_AUDIO
950 audio_init(pci_bus);
951 #endif
953 /* Network card */
954 network_init();
956 /* Optional PCI video card */
957 if (cirrus_vga_enabled) {
958 pci_cirrus_vga_init(pci_bus);
959 } else if (vmsvga_enabled) {
960 pci_vmsvga_init(pci_bus);
961 } else if (std_vga_enabled) {
962 pci_vga_init(pci_bus, 0, 0);
966 static QEMUMachine mips_malta_machine = {
967 .name = "malta",
968 .desc = "MIPS Malta Core LV",
969 .init = mips_malta_init,
970 .is_default = 1,
973 static void mips_malta_machine_init(void)
975 qemu_register_machine(&mips_malta_machine);
978 machine_init(mips_malta_machine_init);