Merge remote branch 'linux-user/linux-user-for-upstream' into staging-tmp
[qemu/aliguori-queue.git] / kvm-all.c
blob6c0fd373a2aebe504f62c02de6935c2d5c0d74fe
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63 #endif
64 int broken_set_mem_region;
65 int migration_log;
66 int vcpu_events;
67 #ifdef KVM_CAP_SET_GUEST_DEBUG
68 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
69 #endif
70 int irqchip_in_kernel;
71 int pit_in_kernel;
74 static KVMState *kvm_state;
76 static KVMSlot *kvm_alloc_slot(KVMState *s)
78 int i;
80 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
81 /* KVM private memory slots */
82 if (i >= 8 && i < 12)
83 continue;
84 if (s->slots[i].memory_size == 0)
85 return &s->slots[i];
88 fprintf(stderr, "%s: no free slot available\n", __func__);
89 abort();
92 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
93 target_phys_addr_t start_addr,
94 target_phys_addr_t end_addr)
96 int i;
98 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99 KVMSlot *mem = &s->slots[i];
101 if (start_addr == mem->start_addr &&
102 end_addr == mem->start_addr + mem->memory_size) {
103 return mem;
107 return NULL;
111 * Find overlapping slot with lowest start address
113 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
114 target_phys_addr_t start_addr,
115 target_phys_addr_t end_addr)
117 KVMSlot *found = NULL;
118 int i;
120 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121 KVMSlot *mem = &s->slots[i];
123 if (mem->memory_size == 0 ||
124 (found && found->start_addr < mem->start_addr)) {
125 continue;
128 if (end_addr > mem->start_addr &&
129 start_addr < mem->start_addr + mem->memory_size) {
130 found = mem;
134 return found;
137 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
139 struct kvm_userspace_memory_region mem;
141 mem.slot = slot->slot;
142 mem.guest_phys_addr = slot->start_addr;
143 mem.memory_size = slot->memory_size;
144 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
145 mem.flags = slot->flags;
146 if (s->migration_log) {
147 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
149 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
152 static void kvm_reset_vcpu(void *opaque)
154 CPUState *env = opaque;
156 kvm_arch_reset_vcpu(env);
157 if (kvm_arch_put_registers(env)) {
158 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
159 abort();
163 int kvm_irqchip_in_kernel(void)
165 return kvm_state->irqchip_in_kernel;
168 int kvm_pit_in_kernel(void)
170 return kvm_state->pit_in_kernel;
174 int kvm_init_vcpu(CPUState *env)
176 KVMState *s = kvm_state;
177 long mmap_size;
178 int ret;
180 dprintf("kvm_init_vcpu\n");
182 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
183 if (ret < 0) {
184 dprintf("kvm_create_vcpu failed\n");
185 goto err;
188 env->kvm_fd = ret;
189 env->kvm_state = s;
191 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
192 if (mmap_size < 0) {
193 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
194 goto err;
197 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
198 env->kvm_fd, 0);
199 if (env->kvm_run == MAP_FAILED) {
200 ret = -errno;
201 dprintf("mmap'ing vcpu state failed\n");
202 goto err;
205 #ifdef KVM_CAP_COALESCED_MMIO
206 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
207 s->coalesced_mmio_ring = (void *) env->kvm_run +
208 s->coalesced_mmio * PAGE_SIZE;
209 #endif
211 ret = kvm_arch_init_vcpu(env);
212 if (ret == 0) {
213 qemu_register_reset(kvm_reset_vcpu, env);
214 kvm_arch_reset_vcpu(env);
215 ret = kvm_arch_put_registers(env);
217 err:
218 return ret;
222 * dirty pages logging control
224 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
225 ram_addr_t size, int flags, int mask)
227 KVMState *s = kvm_state;
228 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
229 int old_flags;
231 if (mem == NULL) {
232 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
233 TARGET_FMT_plx "\n", __func__, phys_addr,
234 (target_phys_addr_t)(phys_addr + size - 1));
235 return -EINVAL;
238 old_flags = mem->flags;
240 flags = (mem->flags & ~mask) | flags;
241 mem->flags = flags;
243 /* If nothing changed effectively, no need to issue ioctl */
244 if (s->migration_log) {
245 flags |= KVM_MEM_LOG_DIRTY_PAGES;
247 if (flags == old_flags) {
248 return 0;
251 return kvm_set_user_memory_region(s, mem);
254 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
256 return kvm_dirty_pages_log_change(phys_addr, size,
257 KVM_MEM_LOG_DIRTY_PAGES,
258 KVM_MEM_LOG_DIRTY_PAGES);
261 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
263 return kvm_dirty_pages_log_change(phys_addr, size,
265 KVM_MEM_LOG_DIRTY_PAGES);
268 int kvm_set_migration_log(int enable)
270 KVMState *s = kvm_state;
271 KVMSlot *mem;
272 int i, err;
274 s->migration_log = enable;
276 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
277 mem = &s->slots[i];
279 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
280 continue;
282 err = kvm_set_user_memory_region(s, mem);
283 if (err) {
284 return err;
287 return 0;
290 static int test_le_bit(unsigned long nr, unsigned char *addr)
292 return (addr[nr >> 3] >> (nr & 7)) & 1;
296 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
297 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
298 * This means all bits are set to dirty.
300 * @start_add: start of logged region.
301 * @end_addr: end of logged region.
303 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
304 target_phys_addr_t end_addr)
306 KVMState *s = kvm_state;
307 unsigned long size, allocated_size = 0;
308 target_phys_addr_t phys_addr;
309 ram_addr_t addr;
310 KVMDirtyLog d;
311 KVMSlot *mem;
312 int ret = 0;
314 d.dirty_bitmap = NULL;
315 while (start_addr < end_addr) {
316 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
317 if (mem == NULL) {
318 break;
321 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
322 if (!d.dirty_bitmap) {
323 d.dirty_bitmap = qemu_malloc(size);
324 } else if (size > allocated_size) {
325 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
327 allocated_size = size;
328 memset(d.dirty_bitmap, 0, allocated_size);
330 d.slot = mem->slot;
332 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
333 dprintf("ioctl failed %d\n", errno);
334 ret = -1;
335 break;
338 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
339 phys_addr < mem->start_addr + mem->memory_size;
340 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
341 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
342 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
344 if (test_le_bit(nr, bitmap)) {
345 cpu_physical_memory_set_dirty(addr);
348 start_addr = phys_addr;
350 qemu_free(d.dirty_bitmap);
352 return ret;
355 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
357 int ret = -ENOSYS;
358 #ifdef KVM_CAP_COALESCED_MMIO
359 KVMState *s = kvm_state;
361 if (s->coalesced_mmio) {
362 struct kvm_coalesced_mmio_zone zone;
364 zone.addr = start;
365 zone.size = size;
367 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
369 #endif
371 return ret;
374 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
376 int ret = -ENOSYS;
377 #ifdef KVM_CAP_COALESCED_MMIO
378 KVMState *s = kvm_state;
380 if (s->coalesced_mmio) {
381 struct kvm_coalesced_mmio_zone zone;
383 zone.addr = start;
384 zone.size = size;
386 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
388 #endif
390 return ret;
393 int kvm_check_extension(KVMState *s, unsigned int extension)
395 int ret;
397 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
398 if (ret < 0) {
399 ret = 0;
402 return ret;
405 int kvm_init(int smp_cpus)
407 static const char upgrade_note[] =
408 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
409 "(see http://sourceforge.net/projects/kvm).\n";
410 KVMState *s;
411 int ret;
412 int i;
414 if (smp_cpus > 1) {
415 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
416 return -EINVAL;
419 s = qemu_mallocz(sizeof(KVMState));
421 #ifdef KVM_CAP_SET_GUEST_DEBUG
422 QTAILQ_INIT(&s->kvm_sw_breakpoints);
423 #endif
424 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
425 s->slots[i].slot = i;
427 s->vmfd = -1;
428 s->fd = qemu_open("/dev/kvm", O_RDWR);
429 if (s->fd == -1) {
430 fprintf(stderr, "Could not access KVM kernel module: %m\n");
431 ret = -errno;
432 goto err;
435 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
436 if (ret < KVM_API_VERSION) {
437 if (ret > 0)
438 ret = -EINVAL;
439 fprintf(stderr, "kvm version too old\n");
440 goto err;
443 if (ret > KVM_API_VERSION) {
444 ret = -EINVAL;
445 fprintf(stderr, "kvm version not supported\n");
446 goto err;
449 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
450 if (s->vmfd < 0)
451 goto err;
453 /* initially, KVM allocated its own memory and we had to jump through
454 * hooks to make phys_ram_base point to this. Modern versions of KVM
455 * just use a user allocated buffer so we can use regular pages
456 * unmodified. Make sure we have a sufficiently modern version of KVM.
458 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
459 ret = -EINVAL;
460 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
461 upgrade_note);
462 goto err;
465 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
466 * destroyed properly. Since we rely on this capability, refuse to work
467 * with any kernel without this capability. */
468 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
469 ret = -EINVAL;
471 fprintf(stderr,
472 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
473 upgrade_note);
474 goto err;
477 s->coalesced_mmio = 0;
478 #ifdef KVM_CAP_COALESCED_MMIO
479 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
480 s->coalesced_mmio_ring = NULL;
481 #endif
483 s->broken_set_mem_region = 1;
484 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
485 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
486 if (ret > 0) {
487 s->broken_set_mem_region = 0;
489 #endif
491 s->vcpu_events = 0;
492 #ifdef KVM_CAP_VCPU_EVENTS
493 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
494 #endif
496 ret = kvm_arch_init(s, smp_cpus);
497 if (ret < 0)
498 goto err;
500 kvm_state = s;
502 return 0;
504 err:
505 if (s) {
506 if (s->vmfd != -1)
507 close(s->vmfd);
508 if (s->fd != -1)
509 close(s->fd);
511 qemu_free(s);
513 return ret;
516 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
517 uint32_t count)
519 int i;
520 uint8_t *ptr = data;
522 for (i = 0; i < count; i++) {
523 if (direction == KVM_EXIT_IO_IN) {
524 switch (size) {
525 case 1:
526 stb_p(ptr, cpu_inb(port));
527 break;
528 case 2:
529 stw_p(ptr, cpu_inw(port));
530 break;
531 case 4:
532 stl_p(ptr, cpu_inl(port));
533 break;
535 } else {
536 switch (size) {
537 case 1:
538 cpu_outb(port, ldub_p(ptr));
539 break;
540 case 2:
541 cpu_outw(port, lduw_p(ptr));
542 break;
543 case 4:
544 cpu_outl(port, ldl_p(ptr));
545 break;
549 ptr += size;
552 return 1;
555 void kvm_flush_coalesced_mmio_buffer(void)
557 #ifdef KVM_CAP_COALESCED_MMIO
558 KVMState *s = kvm_state;
559 if (s->coalesced_mmio_ring) {
560 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
561 while (ring->first != ring->last) {
562 struct kvm_coalesced_mmio *ent;
564 ent = &ring->coalesced_mmio[ring->first];
566 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
567 /* FIXME smp_wmb() */
568 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
571 #endif
574 void kvm_cpu_synchronize_state(CPUState *env)
576 if (!env->kvm_vcpu_dirty) {
577 kvm_arch_get_registers(env);
578 env->kvm_vcpu_dirty = 1;
582 int kvm_cpu_exec(CPUState *env)
584 struct kvm_run *run = env->kvm_run;
585 int ret;
587 dprintf("kvm_cpu_exec()\n");
589 do {
590 if (env->exit_request) {
591 dprintf("interrupt exit requested\n");
592 ret = 0;
593 break;
596 if (env->kvm_vcpu_dirty) {
597 kvm_arch_put_registers(env);
598 env->kvm_vcpu_dirty = 0;
601 kvm_arch_pre_run(env, run);
602 qemu_mutex_unlock_iothread();
603 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
604 qemu_mutex_lock_iothread();
605 kvm_arch_post_run(env, run);
607 if (ret == -EINTR || ret == -EAGAIN) {
608 dprintf("io window exit\n");
609 ret = 0;
610 break;
613 if (ret < 0) {
614 dprintf("kvm run failed %s\n", strerror(-ret));
615 abort();
618 kvm_flush_coalesced_mmio_buffer();
620 ret = 0; /* exit loop */
621 switch (run->exit_reason) {
622 case KVM_EXIT_IO:
623 dprintf("handle_io\n");
624 ret = kvm_handle_io(run->io.port,
625 (uint8_t *)run + run->io.data_offset,
626 run->io.direction,
627 run->io.size,
628 run->io.count);
629 break;
630 case KVM_EXIT_MMIO:
631 dprintf("handle_mmio\n");
632 cpu_physical_memory_rw(run->mmio.phys_addr,
633 run->mmio.data,
634 run->mmio.len,
635 run->mmio.is_write);
636 ret = 1;
637 break;
638 case KVM_EXIT_IRQ_WINDOW_OPEN:
639 dprintf("irq_window_open\n");
640 break;
641 case KVM_EXIT_SHUTDOWN:
642 dprintf("shutdown\n");
643 qemu_system_reset_request();
644 ret = 1;
645 break;
646 case KVM_EXIT_UNKNOWN:
647 dprintf("kvm_exit_unknown\n");
648 break;
649 case KVM_EXIT_FAIL_ENTRY:
650 dprintf("kvm_exit_fail_entry\n");
651 break;
652 case KVM_EXIT_EXCEPTION:
653 dprintf("kvm_exit_exception\n");
654 break;
655 case KVM_EXIT_DEBUG:
656 dprintf("kvm_exit_debug\n");
657 #ifdef KVM_CAP_SET_GUEST_DEBUG
658 if (kvm_arch_debug(&run->debug.arch)) {
659 gdb_set_stop_cpu(env);
660 vm_stop(EXCP_DEBUG);
661 env->exception_index = EXCP_DEBUG;
662 return 0;
664 /* re-enter, this exception was guest-internal */
665 ret = 1;
666 #endif /* KVM_CAP_SET_GUEST_DEBUG */
667 break;
668 default:
669 dprintf("kvm_arch_handle_exit\n");
670 ret = kvm_arch_handle_exit(env, run);
671 break;
673 } while (ret > 0);
675 if (env->exit_request) {
676 env->exit_request = 0;
677 env->exception_index = EXCP_INTERRUPT;
680 return ret;
683 void kvm_set_phys_mem(target_phys_addr_t start_addr,
684 ram_addr_t size,
685 ram_addr_t phys_offset)
687 KVMState *s = kvm_state;
688 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
689 KVMSlot *mem, old;
690 int err;
692 if (start_addr & ~TARGET_PAGE_MASK) {
693 if (flags >= IO_MEM_UNASSIGNED) {
694 if (!kvm_lookup_overlapping_slot(s, start_addr,
695 start_addr + size)) {
696 return;
698 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
699 } else {
700 fprintf(stderr, "Only page-aligned memory slots supported\n");
702 abort();
705 /* KVM does not support read-only slots */
706 phys_offset &= ~IO_MEM_ROM;
708 while (1) {
709 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
710 if (!mem) {
711 break;
714 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
715 (start_addr + size <= mem->start_addr + mem->memory_size) &&
716 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
717 /* The new slot fits into the existing one and comes with
718 * identical parameters - nothing to be done. */
719 return;
722 old = *mem;
724 /* unregister the overlapping slot */
725 mem->memory_size = 0;
726 err = kvm_set_user_memory_region(s, mem);
727 if (err) {
728 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
729 __func__, strerror(-err));
730 abort();
733 /* Workaround for older KVM versions: we can't join slots, even not by
734 * unregistering the previous ones and then registering the larger
735 * slot. We have to maintain the existing fragmentation. Sigh.
737 * This workaround assumes that the new slot starts at the same
738 * address as the first existing one. If not or if some overlapping
739 * slot comes around later, we will fail (not seen in practice so far)
740 * - and actually require a recent KVM version. */
741 if (s->broken_set_mem_region &&
742 old.start_addr == start_addr && old.memory_size < size &&
743 flags < IO_MEM_UNASSIGNED) {
744 mem = kvm_alloc_slot(s);
745 mem->memory_size = old.memory_size;
746 mem->start_addr = old.start_addr;
747 mem->phys_offset = old.phys_offset;
748 mem->flags = 0;
750 err = kvm_set_user_memory_region(s, mem);
751 if (err) {
752 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
753 strerror(-err));
754 abort();
757 start_addr += old.memory_size;
758 phys_offset += old.memory_size;
759 size -= old.memory_size;
760 continue;
763 /* register prefix slot */
764 if (old.start_addr < start_addr) {
765 mem = kvm_alloc_slot(s);
766 mem->memory_size = start_addr - old.start_addr;
767 mem->start_addr = old.start_addr;
768 mem->phys_offset = old.phys_offset;
769 mem->flags = 0;
771 err = kvm_set_user_memory_region(s, mem);
772 if (err) {
773 fprintf(stderr, "%s: error registering prefix slot: %s\n",
774 __func__, strerror(-err));
775 abort();
779 /* register suffix slot */
780 if (old.start_addr + old.memory_size > start_addr + size) {
781 ram_addr_t size_delta;
783 mem = kvm_alloc_slot(s);
784 mem->start_addr = start_addr + size;
785 size_delta = mem->start_addr - old.start_addr;
786 mem->memory_size = old.memory_size - size_delta;
787 mem->phys_offset = old.phys_offset + size_delta;
788 mem->flags = 0;
790 err = kvm_set_user_memory_region(s, mem);
791 if (err) {
792 fprintf(stderr, "%s: error registering suffix slot: %s\n",
793 __func__, strerror(-err));
794 abort();
799 /* in case the KVM bug workaround already "consumed" the new slot */
800 if (!size)
801 return;
803 /* KVM does not need to know about this memory */
804 if (flags >= IO_MEM_UNASSIGNED)
805 return;
807 mem = kvm_alloc_slot(s);
808 mem->memory_size = size;
809 mem->start_addr = start_addr;
810 mem->phys_offset = phys_offset;
811 mem->flags = 0;
813 err = kvm_set_user_memory_region(s, mem);
814 if (err) {
815 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
816 strerror(-err));
817 abort();
821 int kvm_ioctl(KVMState *s, int type, ...)
823 int ret;
824 void *arg;
825 va_list ap;
827 va_start(ap, type);
828 arg = va_arg(ap, void *);
829 va_end(ap);
831 ret = ioctl(s->fd, type, arg);
832 if (ret == -1)
833 ret = -errno;
835 return ret;
838 int kvm_vm_ioctl(KVMState *s, int type, ...)
840 int ret;
841 void *arg;
842 va_list ap;
844 va_start(ap, type);
845 arg = va_arg(ap, void *);
846 va_end(ap);
848 ret = ioctl(s->vmfd, type, arg);
849 if (ret == -1)
850 ret = -errno;
852 return ret;
855 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
857 int ret;
858 void *arg;
859 va_list ap;
861 va_start(ap, type);
862 arg = va_arg(ap, void *);
863 va_end(ap);
865 ret = ioctl(env->kvm_fd, type, arg);
866 if (ret == -1)
867 ret = -errno;
869 return ret;
872 int kvm_has_sync_mmu(void)
874 #ifdef KVM_CAP_SYNC_MMU
875 KVMState *s = kvm_state;
877 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
878 #else
879 return 0;
880 #endif
883 int kvm_has_vcpu_events(void)
885 return kvm_state->vcpu_events;
888 void kvm_setup_guest_memory(void *start, size_t size)
890 if (!kvm_has_sync_mmu()) {
891 #ifdef MADV_DONTFORK
892 int ret = madvise(start, size, MADV_DONTFORK);
894 if (ret) {
895 perror("madvice");
896 exit(1);
898 #else
899 fprintf(stderr,
900 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
901 exit(1);
902 #endif
906 #ifdef KVM_CAP_SET_GUEST_DEBUG
907 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
909 #ifdef CONFIG_IOTHREAD
910 if (env == cpu_single_env) {
911 func(data);
912 return;
914 abort();
915 #else
916 func(data);
917 #endif
920 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
921 target_ulong pc)
923 struct kvm_sw_breakpoint *bp;
925 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
926 if (bp->pc == pc)
927 return bp;
929 return NULL;
932 int kvm_sw_breakpoints_active(CPUState *env)
934 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
937 struct kvm_set_guest_debug_data {
938 struct kvm_guest_debug dbg;
939 CPUState *env;
940 int err;
943 static void kvm_invoke_set_guest_debug(void *data)
945 struct kvm_set_guest_debug_data *dbg_data = data;
946 CPUState *env = dbg_data->env;
948 if (env->kvm_vcpu_dirty) {
949 kvm_arch_put_registers(env);
950 env->kvm_vcpu_dirty = 0;
952 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
955 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
957 struct kvm_set_guest_debug_data data;
959 data.dbg.control = 0;
960 if (env->singlestep_enabled)
961 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
963 kvm_arch_update_guest_debug(env, &data.dbg);
964 data.dbg.control |= reinject_trap;
965 data.env = env;
967 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
968 return data.err;
971 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
972 target_ulong len, int type)
974 struct kvm_sw_breakpoint *bp;
975 CPUState *env;
976 int err;
978 if (type == GDB_BREAKPOINT_SW) {
979 bp = kvm_find_sw_breakpoint(current_env, addr);
980 if (bp) {
981 bp->use_count++;
982 return 0;
985 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
986 if (!bp)
987 return -ENOMEM;
989 bp->pc = addr;
990 bp->use_count = 1;
991 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
992 if (err) {
993 free(bp);
994 return err;
997 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
998 bp, entry);
999 } else {
1000 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1001 if (err)
1002 return err;
1005 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1006 err = kvm_update_guest_debug(env, 0);
1007 if (err)
1008 return err;
1010 return 0;
1013 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1014 target_ulong len, int type)
1016 struct kvm_sw_breakpoint *bp;
1017 CPUState *env;
1018 int err;
1020 if (type == GDB_BREAKPOINT_SW) {
1021 bp = kvm_find_sw_breakpoint(current_env, addr);
1022 if (!bp)
1023 return -ENOENT;
1025 if (bp->use_count > 1) {
1026 bp->use_count--;
1027 return 0;
1030 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1031 if (err)
1032 return err;
1034 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1035 qemu_free(bp);
1036 } else {
1037 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1038 if (err)
1039 return err;
1042 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1043 err = kvm_update_guest_debug(env, 0);
1044 if (err)
1045 return err;
1047 return 0;
1050 void kvm_remove_all_breakpoints(CPUState *current_env)
1052 struct kvm_sw_breakpoint *bp, *next;
1053 KVMState *s = current_env->kvm_state;
1054 CPUState *env;
1056 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1057 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1058 /* Try harder to find a CPU that currently sees the breakpoint. */
1059 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1060 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1061 break;
1065 kvm_arch_remove_all_hw_breakpoints();
1067 for (env = first_cpu; env != NULL; env = env->next_cpu)
1068 kvm_update_guest_debug(env, 0);
1071 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1073 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1075 return -EINVAL;
1078 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1079 target_ulong len, int type)
1081 return -EINVAL;
1084 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1085 target_ulong len, int type)
1087 return -EINVAL;
1090 void kvm_remove_all_breakpoints(CPUState *current_env)
1093 #endif /* !KVM_CAP_SET_GUEST_DEBUG */