virtio-pci: compile per-target
[qemu/aliguori-queue.git] / hw / mips_malta.c
blob586c1c3b2f2a17928fe207b5cca8243379135f96
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "usb-uhci.h"
37 #include "vmware_vga.h"
38 #include "qemu-char.h"
39 #include "sysemu.h"
40 #include "audio/audio.h"
41 #include "boards.h"
42 #include "qemu-log.h"
43 #include "mips-bios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
48 //#define DEBUG_BOARD_INIT
50 #define ENVP_ADDR 0x80002000l
51 #define ENVP_NB_ENTRIES 16
52 #define ENVP_ENTRY_SIZE 256
54 #define MAX_IDE_BUS 2
56 typedef struct {
57 uint32_t leds;
58 uint32_t brk;
59 uint32_t gpout;
60 uint32_t i2cin;
61 uint32_t i2coe;
62 uint32_t i2cout;
63 uint32_t i2csel;
64 CharDriverState *display;
65 char display_text[9];
66 SerialState *uart;
67 } MaltaFPGAState;
69 static PITState *pit;
71 static struct _loaderparams {
72 int ram_size;
73 const char *kernel_filename;
74 const char *kernel_cmdline;
75 const char *initrd_filename;
76 } loaderparams;
78 /* Malta FPGA */
79 static void malta_fpga_update_display(void *opaque)
81 char leds_text[9];
82 int i;
83 MaltaFPGAState *s = opaque;
85 for (i = 7 ; i >= 0 ; i--) {
86 if (s->leds & (1 << i))
87 leds_text[i] = '#';
88 else
89 leds_text[i] = ' ';
91 leds_text[8] = '\0';
93 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
94 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
98 * EEPROM 24C01 / 24C02 emulation.
100 * Emulation for serial EEPROMs:
101 * 24C01 - 1024 bit (128 x 8)
102 * 24C02 - 2048 bit (256 x 8)
104 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
107 //~ #define DEBUG
109 #if defined(DEBUG)
110 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
111 #else
112 # define logout(fmt, ...) ((void)0)
113 #endif
115 struct _eeprom24c0x_t {
116 uint8_t tick;
117 uint8_t address;
118 uint8_t command;
119 uint8_t ack;
120 uint8_t scl;
121 uint8_t sda;
122 uint8_t data;
123 //~ uint16_t size;
124 uint8_t contents[256];
127 typedef struct _eeprom24c0x_t eeprom24c0x_t;
129 static eeprom24c0x_t eeprom = {
130 .contents = {
131 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
132 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
133 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
134 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
135 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
136 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
137 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
138 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
139 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
141 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
150 static uint8_t eeprom24c0x_read(void)
152 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
153 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
154 return eeprom.sda;
157 static void eeprom24c0x_write(int scl, int sda)
159 if (eeprom.scl && scl && (eeprom.sda != sda)) {
160 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
161 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
162 if (!sda) {
163 eeprom.tick = 1;
164 eeprom.command = 0;
166 } else if (eeprom.tick == 0 && !eeprom.ack) {
167 /* Waiting for start. */
168 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
169 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
170 } else if (!eeprom.scl && scl) {
171 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
172 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
173 if (eeprom.ack) {
174 logout("\ti2c ack bit = 0\n");
175 sda = 0;
176 eeprom.ack = 0;
177 } else if (eeprom.sda == sda) {
178 uint8_t bit = (sda != 0);
179 logout("\ti2c bit = %d\n", bit);
180 if (eeprom.tick < 9) {
181 eeprom.command <<= 1;
182 eeprom.command += bit;
183 eeprom.tick++;
184 if (eeprom.tick == 9) {
185 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
186 eeprom.ack = 1;
188 } else if (eeprom.tick < 17) {
189 if (eeprom.command & 1) {
190 sda = ((eeprom.data & 0x80) != 0);
192 eeprom.address <<= 1;
193 eeprom.address += bit;
194 eeprom.tick++;
195 eeprom.data <<= 1;
196 if (eeprom.tick == 17) {
197 eeprom.data = eeprom.contents[eeprom.address];
198 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
199 eeprom.ack = 1;
200 eeprom.tick = 0;
202 } else if (eeprom.tick >= 17) {
203 sda = 0;
205 } else {
206 logout("\tsda changed with raising scl\n");
208 } else {
209 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
211 eeprom.scl = scl;
212 eeprom.sda = sda;
215 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
217 MaltaFPGAState *s = opaque;
218 uint32_t val = 0;
219 uint32_t saddr;
221 saddr = (addr & 0xfffff);
223 switch (saddr) {
225 /* SWITCH Register */
226 case 0x00200:
227 val = 0x00000000; /* All switches closed */
228 break;
230 /* STATUS Register */
231 case 0x00208:
232 #ifdef TARGET_WORDS_BIGENDIAN
233 val = 0x00000012;
234 #else
235 val = 0x00000010;
236 #endif
237 break;
239 /* JMPRS Register */
240 case 0x00210:
241 val = 0x00;
242 break;
244 /* LEDBAR Register */
245 case 0x00408:
246 val = s->leds;
247 break;
249 /* BRKRES Register */
250 case 0x00508:
251 val = s->brk;
252 break;
254 /* UART Registers are handled directly by the serial device */
256 /* GPOUT Register */
257 case 0x00a00:
258 val = s->gpout;
259 break;
261 /* XXX: implement a real I2C controller */
263 /* GPINP Register */
264 case 0x00a08:
265 /* IN = OUT until a real I2C control is implemented */
266 if (s->i2csel)
267 val = s->i2cout;
268 else
269 val = 0x00;
270 break;
272 /* I2CINP Register */
273 case 0x00b00:
274 val = ((s->i2cin & ~1) | eeprom24c0x_read());
275 break;
277 /* I2COE Register */
278 case 0x00b08:
279 val = s->i2coe;
280 break;
282 /* I2COUT Register */
283 case 0x00b10:
284 val = s->i2cout;
285 break;
287 /* I2CSEL Register */
288 case 0x00b18:
289 val = s->i2csel;
290 break;
292 default:
293 #if 0
294 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
295 addr);
296 #endif
297 break;
299 return val;
302 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
303 uint32_t val)
305 MaltaFPGAState *s = opaque;
306 uint32_t saddr;
308 saddr = (addr & 0xfffff);
310 switch (saddr) {
312 /* SWITCH Register */
313 case 0x00200:
314 break;
316 /* JMPRS Register */
317 case 0x00210:
318 break;
320 /* LEDBAR Register */
321 /* XXX: implement a 8-LED array */
322 case 0x00408:
323 s->leds = val & 0xff;
324 break;
326 /* ASCIIWORD Register */
327 case 0x00410:
328 snprintf(s->display_text, 9, "%08X", val);
329 malta_fpga_update_display(s);
330 break;
332 /* ASCIIPOS0 to ASCIIPOS7 Registers */
333 case 0x00418:
334 case 0x00420:
335 case 0x00428:
336 case 0x00430:
337 case 0x00438:
338 case 0x00440:
339 case 0x00448:
340 case 0x00450:
341 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
342 malta_fpga_update_display(s);
343 break;
345 /* SOFTRES Register */
346 case 0x00500:
347 if (val == 0x42)
348 qemu_system_reset_request ();
349 break;
351 /* BRKRES Register */
352 case 0x00508:
353 s->brk = val & 0xff;
354 break;
356 /* UART Registers are handled directly by the serial device */
358 /* GPOUT Register */
359 case 0x00a00:
360 s->gpout = val & 0xff;
361 break;
363 /* I2COE Register */
364 case 0x00b08:
365 s->i2coe = val & 0x03;
366 break;
368 /* I2COUT Register */
369 case 0x00b10:
370 eeprom24c0x_write(val & 0x02, val & 0x01);
371 s->i2cout = val;
372 break;
374 /* I2CSEL Register */
375 case 0x00b18:
376 s->i2csel = val & 0x01;
377 break;
379 default:
380 #if 0
381 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
382 addr);
383 #endif
384 break;
388 static CPUReadMemoryFunc * const malta_fpga_read[] = {
389 malta_fpga_readl,
390 malta_fpga_readl,
391 malta_fpga_readl
394 static CPUWriteMemoryFunc * const malta_fpga_write[] = {
395 malta_fpga_writel,
396 malta_fpga_writel,
397 malta_fpga_writel
400 static void malta_fpga_reset(void *opaque)
402 MaltaFPGAState *s = opaque;
404 s->leds = 0x00;
405 s->brk = 0x0a;
406 s->gpout = 0x00;
407 s->i2cin = 0x3;
408 s->i2coe = 0x0;
409 s->i2cout = 0x3;
410 s->i2csel = 0x1;
412 s->display_text[8] = '\0';
413 snprintf(s->display_text, 9, " ");
416 static void malta_fpga_led_init(CharDriverState *chr)
418 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
419 qemu_chr_printf(chr, "+--------+\r\n");
420 qemu_chr_printf(chr, "+ +\r\n");
421 qemu_chr_printf(chr, "+--------+\r\n");
422 qemu_chr_printf(chr, "\n");
423 qemu_chr_printf(chr, "Malta ASCII\r\n");
424 qemu_chr_printf(chr, "+--------+\r\n");
425 qemu_chr_printf(chr, "+ +\r\n");
426 qemu_chr_printf(chr, "+--------+\r\n");
429 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
431 MaltaFPGAState *s;
432 int malta;
434 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
436 malta = cpu_register_io_memory(malta_fpga_read,
437 malta_fpga_write, s);
439 cpu_register_physical_memory(base, 0x900, malta);
440 /* 0xa00 is less than a page, so will still get the right offsets. */
441 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
443 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
445 #ifdef TARGET_WORDS_BIGENDIAN
446 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
447 #else
448 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
449 #endif
451 malta_fpga_reset(s);
452 qemu_register_reset(malta_fpga_reset, s);
454 return s;
457 /* Audio support */
458 #ifdef HAS_AUDIO
459 static void audio_init (PCIBus *pci_bus)
461 struct soundhw *c;
462 int audio_enabled = 0;
464 for (c = soundhw; !audio_enabled && c->name; ++c) {
465 audio_enabled = c->enabled;
468 if (audio_enabled) {
469 for (c = soundhw; c->name; ++c) {
470 if (c->enabled) {
471 c->init.init_pci(pci_bus);
476 #endif
478 /* Network support */
479 static void network_init(void)
481 int i;
483 for(i = 0; i < nb_nics; i++) {
484 NICInfo *nd = &nd_table[i];
485 const char *default_devaddr = NULL;
487 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
488 /* The malta board has a PCNet card using PCI SLOT 11 */
489 default_devaddr = "0b";
491 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
495 /* ROM and pseudo bootloader
497 The following code implements a very very simple bootloader. It first
498 loads the registers a0 to a3 to the values expected by the OS, and
499 then jump at the kernel address.
501 The bootloader should pass the locations of the kernel arguments and
502 environment variables tables. Those tables contain the 32-bit address
503 of NULL terminated strings. The environment variables table should be
504 terminated by a NULL address.
506 For a simpler implementation, the number of kernel arguments is fixed
507 to two (the name of the kernel and the command line), and the two
508 tables are actually the same one.
510 The registers a0 to a3 should contain the following values:
511 a0 - number of kernel arguments
512 a1 - 32-bit address of the kernel arguments table
513 a2 - 32-bit address of the environment variables table
514 a3 - RAM size in bytes
517 static void write_bootloader (CPUState *env, uint8_t *base,
518 int64_t kernel_entry)
520 uint32_t *p;
522 /* Small bootloader */
523 p = (uint32_t *)base;
524 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
525 stl_raw(p++, 0x00000000); /* nop */
527 /* YAMON service vector */
528 stl_raw(base + 0x500, 0xbfc00580); /* start: */
529 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
530 stl_raw(base + 0x520, 0xbfc00580); /* start: */
531 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
532 stl_raw(base + 0x534, 0xbfc00808); /* print: */
533 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
534 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
535 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
536 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
537 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
538 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
539 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
540 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
543 /* Second part of the bootloader */
544 p = (uint32_t *) (base + 0x580);
545 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
546 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
547 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
548 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
549 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
550 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
551 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
552 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
553 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
555 /* Load BAR registers as done by YAMON */
556 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
558 #ifdef TARGET_WORDS_BIGENDIAN
559 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
560 #else
561 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
562 #endif
563 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
565 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
567 #ifdef TARGET_WORDS_BIGENDIAN
568 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
569 #else
570 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
571 #endif
572 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
573 #ifdef TARGET_WORDS_BIGENDIAN
574 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
575 #else
576 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
577 #endif
578 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
580 #ifdef TARGET_WORDS_BIGENDIAN
581 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
582 #else
583 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
584 #endif
585 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
586 #ifdef TARGET_WORDS_BIGENDIAN
587 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
588 #else
589 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
590 #endif
591 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
593 #ifdef TARGET_WORDS_BIGENDIAN
594 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
595 #else
596 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
597 #endif
598 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
599 #ifdef TARGET_WORDS_BIGENDIAN
600 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
601 #else
602 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
603 #endif
604 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
606 /* Jump to kernel code */
607 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
608 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
609 stl_raw(p++, 0x03e00008); /* jr ra */
610 stl_raw(p++, 0x00000000); /* nop */
612 /* YAMON subroutines */
613 p = (uint32_t *) (base + 0x800);
614 stl_raw(p++, 0x03e00008); /* jr ra */
615 stl_raw(p++, 0x24020000); /* li v0,0 */
616 /* 808 YAMON print */
617 stl_raw(p++, 0x03e06821); /* move t5,ra */
618 stl_raw(p++, 0x00805821); /* move t3,a0 */
619 stl_raw(p++, 0x00a05021); /* move t2,a1 */
620 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
621 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
622 stl_raw(p++, 0x10800005); /* beqz a0,834 */
623 stl_raw(p++, 0x00000000); /* nop */
624 stl_raw(p++, 0x0ff0021c); /* jal 870 */
625 stl_raw(p++, 0x00000000); /* nop */
626 stl_raw(p++, 0x08000205); /* j 814 */
627 stl_raw(p++, 0x00000000); /* nop */
628 stl_raw(p++, 0x01a00008); /* jr t5 */
629 stl_raw(p++, 0x01602021); /* move a0,t3 */
630 /* 0x83c YAMON print_count */
631 stl_raw(p++, 0x03e06821); /* move t5,ra */
632 stl_raw(p++, 0x00805821); /* move t3,a0 */
633 stl_raw(p++, 0x00a05021); /* move t2,a1 */
634 stl_raw(p++, 0x00c06021); /* move t4,a2 */
635 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
636 stl_raw(p++, 0x0ff0021c); /* jal 870 */
637 stl_raw(p++, 0x00000000); /* nop */
638 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
639 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
640 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
641 stl_raw(p++, 0x00000000); /* nop */
642 stl_raw(p++, 0x01a00008); /* jr t5 */
643 stl_raw(p++, 0x01602021); /* move a0,t3 */
644 /* 0x870 */
645 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
646 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
647 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
648 stl_raw(p++, 0x00000000); /* nop */
649 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
650 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
651 stl_raw(p++, 0x00000000); /* nop */
652 stl_raw(p++, 0x03e00008); /* jr ra */
653 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
657 static void prom_set(uint32_t* prom_buf, int index, const char *string, ...)
659 va_list ap;
660 int32_t table_addr;
662 if (index >= ENVP_NB_ENTRIES)
663 return;
665 if (string == NULL) {
666 prom_buf[index] = 0;
667 return;
670 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
671 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
673 va_start(ap, string);
674 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
675 va_end(ap);
678 /* Kernel */
679 static int64_t load_kernel (void)
681 int64_t kernel_entry, kernel_high;
682 long initrd_size;
683 ram_addr_t initrd_offset;
684 int big_endian;
685 uint32_t *prom_buf;
686 long prom_size;
687 int prom_index = 0;
689 #ifdef TARGET_WORDS_BIGENDIAN
690 big_endian = 1;
691 #else
692 big_endian = 0;
693 #endif
695 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
696 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
697 big_endian, ELF_MACHINE, 1) < 0) {
698 fprintf(stderr, "qemu: could not load kernel '%s'\n",
699 loaderparams.kernel_filename);
700 exit(1);
703 /* load initrd */
704 initrd_size = 0;
705 initrd_offset = 0;
706 if (loaderparams.initrd_filename) {
707 initrd_size = get_image_size (loaderparams.initrd_filename);
708 if (initrd_size > 0) {
709 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
710 if (initrd_offset + initrd_size > ram_size) {
711 fprintf(stderr,
712 "qemu: memory too small for initial ram disk '%s'\n",
713 loaderparams.initrd_filename);
714 exit(1);
716 initrd_size = load_image_targphys(loaderparams.initrd_filename,
717 initrd_offset,
718 ram_size - initrd_offset);
720 if (initrd_size == (target_ulong) -1) {
721 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
722 loaderparams.initrd_filename);
723 exit(1);
727 /* Setup prom parameters. */
728 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
729 prom_buf = qemu_malloc(prom_size);
731 prom_set(prom_buf, prom_index++, loaderparams.kernel_filename);
732 if (initrd_size > 0) {
733 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
734 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
735 loaderparams.kernel_cmdline);
736 } else {
737 prom_set(prom_buf, prom_index++, loaderparams.kernel_cmdline);
740 prom_set(prom_buf, prom_index++, "memsize");
741 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
742 prom_set(prom_buf, prom_index++, "modetty0");
743 prom_set(prom_buf, prom_index++, "38400n8r");
744 prom_set(prom_buf, prom_index++, NULL);
746 rom_add_blob_fixed("prom", prom_buf, prom_size,
747 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
749 return kernel_entry;
752 static void main_cpu_reset(void *opaque)
754 CPUState *env = opaque;
755 cpu_reset(env);
757 /* The bootloader does not need to be rewritten as it is located in a
758 read only location. The kernel location and the arguments table
759 location does not change. */
760 if (loaderparams.kernel_filename) {
761 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
765 static
766 void mips_malta_init (ram_addr_t ram_size,
767 const char *boot_device,
768 const char *kernel_filename, const char *kernel_cmdline,
769 const char *initrd_filename, const char *cpu_model)
771 char *filename;
772 ram_addr_t ram_offset;
773 ram_addr_t bios_offset;
774 target_long bios_size;
775 int64_t kernel_entry;
776 PCIBus *pci_bus;
777 ISADevice *isa_dev;
778 CPUState *env;
779 RTCState *rtc_state;
780 FDCtrl *floppy_controller;
781 MaltaFPGAState *malta_fpga;
782 qemu_irq *i8259;
783 int piix4_devfn;
784 uint8_t *eeprom_buf;
785 i2c_bus *smbus;
786 int i;
787 DriveInfo *dinfo;
788 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
789 DriveInfo *fd[MAX_FD];
790 int fl_idx = 0;
791 int fl_sectors = 0;
792 int be;
794 /* Make sure the first 3 serial ports are associated with a device. */
795 for(i = 0; i < 3; i++) {
796 if (!serial_hds[i]) {
797 char label[32];
798 snprintf(label, sizeof(label), "serial%d", i);
799 serial_hds[i] = qemu_chr_open(label, "null", NULL);
803 /* init CPUs */
804 if (cpu_model == NULL) {
805 #ifdef TARGET_MIPS64
806 cpu_model = "20Kc";
807 #else
808 cpu_model = "24Kf";
809 #endif
811 env = cpu_init(cpu_model);
812 if (!env) {
813 fprintf(stderr, "Unable to find CPU definition\n");
814 exit(1);
816 qemu_register_reset(main_cpu_reset, env);
818 /* allocate RAM */
819 if (ram_size > (256 << 20)) {
820 fprintf(stderr,
821 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
822 ((unsigned int)ram_size / (1 << 20)));
823 exit(1);
825 ram_offset = qemu_ram_alloc(ram_size);
826 bios_offset = qemu_ram_alloc(BIOS_SIZE);
829 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
831 /* Map the bios at two physical locations, as on the real board. */
832 cpu_register_physical_memory(0x1e000000LL,
833 BIOS_SIZE, bios_offset | IO_MEM_ROM);
834 cpu_register_physical_memory(0x1fc00000LL,
835 BIOS_SIZE, bios_offset | IO_MEM_ROM);
837 #ifdef TARGET_WORDS_BIGENDIAN
838 be = 1;
839 #else
840 be = 0;
841 #endif
842 /* FPGA */
843 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
845 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
846 if (kernel_filename) {
847 /* Write a small bootloader to the flash location. */
848 loaderparams.ram_size = ram_size;
849 loaderparams.kernel_filename = kernel_filename;
850 loaderparams.kernel_cmdline = kernel_cmdline;
851 loaderparams.initrd_filename = initrd_filename;
852 kernel_entry = load_kernel();
853 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
854 } else {
855 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
856 if (dinfo) {
857 /* Load firmware from flash. */
858 bios_size = 0x400000;
859 fl_sectors = bios_size >> 16;
860 #ifdef DEBUG_BOARD_INIT
861 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
862 "offset %08lx addr %08llx '%s' %x\n",
863 fl_idx, bios_size, bios_offset, 0x1e000000LL,
864 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
865 #endif
866 pflash_cfi01_register(0x1e000000LL, bios_offset,
867 dinfo->bdrv, 65536, fl_sectors,
868 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
869 fl_idx++;
870 } else {
871 /* Load a BIOS image. */
872 if (bios_name == NULL)
873 bios_name = BIOS_FILENAME;
874 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
875 if (filename) {
876 bios_size = load_image_targphys(filename, 0x1fc00000LL,
877 BIOS_SIZE);
878 qemu_free(filename);
879 } else {
880 bios_size = -1;
882 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
883 fprintf(stderr,
884 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
885 bios_name);
886 exit(1);
889 /* In little endian mode the 32bit words in the bios are swapped,
890 a neat trick which allows bi-endian firmware. */
891 #ifndef TARGET_WORDS_BIGENDIAN
893 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
894 uint32_t *end = addr + bios_size;
895 while (addr < end) {
896 bswap32s(addr);
899 #endif
902 /* Board ID = 0x420 (Malta Board with CoreLV)
903 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
904 map to the board ID. */
905 stl_phys(0x1fc00010LL, 0x00000420);
907 /* Init internal devices */
908 cpu_mips_irq_init_cpu(env);
909 cpu_mips_clock_init(env);
911 /* Interrupt controller */
912 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
913 i8259 = i8259_init(env->irq[2]);
915 /* Northbridge */
916 pci_bus = pci_gt64120_init(i8259);
918 /* Southbridge */
920 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
921 fprintf(stderr, "qemu: too many IDE bus\n");
922 exit(1);
925 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
926 hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
929 piix4_devfn = piix4_init(pci_bus, 80);
930 isa_bus_irqs(i8259);
931 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
932 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
933 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_reserve_irq(9),
934 NULL, NULL, 0);
935 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
936 for (i = 0; i < 8; i++) {
937 /* TODO: Populate SPD eeprom data. */
938 DeviceState *eeprom;
939 eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
940 qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
941 qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
942 qdev_init_nofail(eeprom);
944 pit = pit_init(0x40, isa_reserve_irq(0));
945 DMA_init(0);
947 /* Super I/O */
948 isa_dev = isa_create_simple("i8042");
950 rtc_state = rtc_init(2000);
951 serial_isa_init(0, serial_hds[0]);
952 serial_isa_init(1, serial_hds[1]);
953 if (parallel_hds[0])
954 parallel_init(0, parallel_hds[0]);
955 for(i = 0; i < MAX_FD; i++) {
956 fd[i] = drive_get(IF_FLOPPY, 0, i);
958 floppy_controller = fdctrl_init_isa(fd);
960 /* Sound card */
961 #ifdef HAS_AUDIO
962 audio_init(pci_bus);
963 #endif
965 /* Network card */
966 network_init();
968 /* Optional PCI video card */
969 if (cirrus_vga_enabled) {
970 pci_cirrus_vga_init(pci_bus);
971 } else if (vmsvga_enabled) {
972 pci_vmsvga_init(pci_bus);
973 } else if (std_vga_enabled) {
974 pci_vga_init(pci_bus, 0, 0);
978 static QEMUMachine mips_malta_machine = {
979 .name = "malta",
980 .desc = "MIPS Malta Core LV",
981 .init = mips_malta_init,
982 .is_default = 1,
985 static void mips_malta_machine_init(void)
987 qemu_register_machine(&mips_malta_machine);
990 machine_init(mips_malta_machine_init);