rtc: split out macros into a header file and use in test case
[qemu/afaerber.git] / hw / mc146818rtc.c
blob9c64e0ae2564482c441505b2653351c407e8d518
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "mc146818rtc.h"
29 #ifdef TARGET_I386
30 #include "apic.h"
31 #endif
33 //#define DEBUG_CMOS
34 //#define DEBUG_COALESCED
36 #ifdef DEBUG_CMOS
37 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
38 #else
39 # define CMOS_DPRINTF(format, ...) do { } while (0)
40 #endif
42 #ifdef DEBUG_COALESCED
43 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
44 #else
45 # define DPRINTF_C(format, ...) do { } while (0)
46 #endif
48 #define RTC_REINJECT_ON_ACK_COUNT 20
50 typedef struct RTCState {
51 ISADevice dev;
52 MemoryRegion io;
53 uint8_t cmos_data[128];
54 uint8_t cmos_index;
55 struct tm current_tm;
56 int32_t base_year;
57 qemu_irq irq;
58 qemu_irq sqw_irq;
59 int it_shift;
60 /* periodic timer */
61 QEMUTimer *periodic_timer;
62 int64_t next_periodic_time;
63 /* second update */
64 int64_t next_second_time;
65 uint16_t irq_reinject_on_ack_count;
66 uint32_t irq_coalesced;
67 uint32_t period;
68 QEMUTimer *coalesced_timer;
69 QEMUTimer *second_timer;
70 QEMUTimer *second_timer2;
71 Notifier clock_reset_notifier;
72 LostTickPolicy lost_tick_policy;
73 Notifier suspend_notifier;
74 } RTCState;
76 static void rtc_set_time(RTCState *s);
77 static void rtc_copy_date(RTCState *s);
79 #ifdef TARGET_I386
80 static void rtc_coalesced_timer_update(RTCState *s)
82 if (s->irq_coalesced == 0) {
83 qemu_del_timer(s->coalesced_timer);
84 } else {
85 /* divide each RTC interval to 2 - 8 smaller intervals */
86 int c = MIN(s->irq_coalesced, 7) + 1;
87 int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
88 muldiv64(s->period / c, get_ticks_per_sec(), 32768);
89 qemu_mod_timer(s->coalesced_timer, next_clock);
93 static void rtc_coalesced_timer(void *opaque)
95 RTCState *s = opaque;
97 if (s->irq_coalesced != 0) {
98 apic_reset_irq_delivered();
99 s->cmos_data[RTC_REG_C] |= 0xc0;
100 DPRINTF_C("cmos: injecting from timer\n");
101 qemu_irq_raise(s->irq);
102 if (apic_get_irq_delivered()) {
103 s->irq_coalesced--;
104 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
105 s->irq_coalesced);
109 rtc_coalesced_timer_update(s);
111 #endif
113 static void rtc_timer_update(RTCState *s, int64_t current_time)
115 int period_code, period;
116 int64_t cur_clock, next_irq_clock;
118 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
119 if (period_code != 0
120 && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
121 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
122 if (period_code <= 2)
123 period_code += 7;
124 /* period in 32 Khz cycles */
125 period = 1 << (period_code - 1);
126 #ifdef TARGET_I386
127 if (period != s->period) {
128 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
129 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
131 s->period = period;
132 #endif
133 /* compute 32 khz clock */
134 cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
135 next_irq_clock = (cur_clock & ~(period - 1)) + period;
136 s->next_periodic_time =
137 muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
138 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
139 } else {
140 #ifdef TARGET_I386
141 s->irq_coalesced = 0;
142 #endif
143 qemu_del_timer(s->periodic_timer);
147 static void rtc_periodic_timer(void *opaque)
149 RTCState *s = opaque;
151 rtc_timer_update(s, s->next_periodic_time);
152 s->cmos_data[RTC_REG_C] |= REG_C_PF;
153 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
154 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
155 #ifdef TARGET_I386
156 if (s->lost_tick_policy == LOST_TICK_SLEW) {
157 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
158 s->irq_reinject_on_ack_count = 0;
159 apic_reset_irq_delivered();
160 qemu_irq_raise(s->irq);
161 if (!apic_get_irq_delivered()) {
162 s->irq_coalesced++;
163 rtc_coalesced_timer_update(s);
164 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
165 s->irq_coalesced);
167 } else
168 #endif
169 qemu_irq_raise(s->irq);
171 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
172 /* Not square wave at all but we don't want 2048Hz interrupts!
173 Must be seen as a pulse. */
174 qemu_irq_raise(s->sqw_irq);
178 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
180 RTCState *s = opaque;
182 if ((addr & 1) == 0) {
183 s->cmos_index = data & 0x7f;
184 } else {
185 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
186 s->cmos_index, data);
187 switch(s->cmos_index) {
188 case RTC_SECONDS_ALARM:
189 case RTC_MINUTES_ALARM:
190 case RTC_HOURS_ALARM:
191 s->cmos_data[s->cmos_index] = data;
192 break;
193 case RTC_SECONDS:
194 case RTC_MINUTES:
195 case RTC_HOURS:
196 case RTC_DAY_OF_WEEK:
197 case RTC_DAY_OF_MONTH:
198 case RTC_MONTH:
199 case RTC_YEAR:
200 s->cmos_data[s->cmos_index] = data;
201 /* if in set mode, do not update the time */
202 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
203 rtc_set_time(s);
205 break;
206 case RTC_REG_A:
207 /* UIP bit is read only */
208 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
209 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
210 rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
211 break;
212 case RTC_REG_B:
213 if (data & REG_B_SET) {
214 /* set mode: reset UIP mode */
215 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
216 data &= ~REG_B_UIE;
217 } else {
218 /* if disabling set mode, update the time */
219 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
220 rtc_set_time(s);
223 if (((s->cmos_data[RTC_REG_B] ^ data) & (REG_B_DM | REG_B_24H)) &&
224 !(data & REG_B_SET)) {
225 /* If the time format has changed and not in set mode,
226 update the registers immediately. */
227 s->cmos_data[RTC_REG_B] = data;
228 rtc_copy_date(s);
229 } else {
230 s->cmos_data[RTC_REG_B] = data;
232 rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
233 break;
234 case RTC_REG_C:
235 case RTC_REG_D:
236 /* cannot write to them */
237 break;
238 default:
239 s->cmos_data[s->cmos_index] = data;
240 break;
245 static inline int rtc_to_bcd(RTCState *s, int a)
247 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
248 return a;
249 } else {
250 return ((a / 10) << 4) | (a % 10);
254 static inline int rtc_from_bcd(RTCState *s, int a)
256 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
257 return a;
258 } else {
259 return ((a >> 4) * 10) + (a & 0x0f);
263 static void rtc_set_time(RTCState *s)
265 struct tm *tm = &s->current_tm;
267 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
268 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
269 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
270 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
271 tm->tm_hour %= 12;
272 if (s->cmos_data[RTC_HOURS] & 0x80) {
273 tm->tm_hour += 12;
276 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
277 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
278 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
279 tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
281 rtc_change_mon_event(tm);
284 static void rtc_copy_date(RTCState *s)
286 const struct tm *tm = &s->current_tm;
287 int year;
289 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
290 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
291 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
292 /* 24 hour format */
293 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
294 } else {
295 /* 12 hour format */
296 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
297 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
298 if (tm->tm_hour >= 12)
299 s->cmos_data[RTC_HOURS] |= 0x80;
301 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
302 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
303 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
304 year = (tm->tm_year - s->base_year) % 100;
305 if (year < 0)
306 year += 100;
307 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
310 /* month is between 0 and 11. */
311 static int get_days_in_month(int month, int year)
313 static const int days_tab[12] = {
314 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
316 int d;
317 if ((unsigned )month >= 12)
318 return 31;
319 d = days_tab[month];
320 if (month == 1) {
321 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
322 d++;
324 return d;
327 /* update 'tm' to the next second */
328 static void rtc_next_second(struct tm *tm)
330 int days_in_month;
332 tm->tm_sec++;
333 if ((unsigned)tm->tm_sec >= 60) {
334 tm->tm_sec = 0;
335 tm->tm_min++;
336 if ((unsigned)tm->tm_min >= 60) {
337 tm->tm_min = 0;
338 tm->tm_hour++;
339 if ((unsigned)tm->tm_hour >= 24) {
340 tm->tm_hour = 0;
341 /* next day */
342 tm->tm_wday++;
343 if ((unsigned)tm->tm_wday >= 7)
344 tm->tm_wday = 0;
345 days_in_month = get_days_in_month(tm->tm_mon,
346 tm->tm_year + 1900);
347 tm->tm_mday++;
348 if (tm->tm_mday < 1) {
349 tm->tm_mday = 1;
350 } else if (tm->tm_mday > days_in_month) {
351 tm->tm_mday = 1;
352 tm->tm_mon++;
353 if (tm->tm_mon >= 12) {
354 tm->tm_mon = 0;
355 tm->tm_year++;
364 static void rtc_update_second(void *opaque)
366 RTCState *s = opaque;
367 int64_t delay;
369 /* if the oscillator is not in normal operation, we do not update */
370 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
371 s->next_second_time += get_ticks_per_sec();
372 qemu_mod_timer(s->second_timer, s->next_second_time);
373 } else {
374 rtc_next_second(&s->current_tm);
376 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
377 /* update in progress bit */
378 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
380 /* should be 244 us = 8 / 32768 seconds, but currently the
381 timers do not have the necessary resolution. */
382 delay = (get_ticks_per_sec() * 1) / 100;
383 if (delay < 1)
384 delay = 1;
385 qemu_mod_timer(s->second_timer2,
386 s->next_second_time + delay);
390 static void rtc_update_second2(void *opaque)
392 RTCState *s = opaque;
394 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
395 rtc_copy_date(s);
398 /* check alarm */
399 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
400 rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]) == s->current_tm.tm_sec) &&
401 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
402 rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]) == s->current_tm.tm_min) &&
403 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
404 rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]) == s->current_tm.tm_hour)) {
406 s->cmos_data[RTC_REG_C] |= REG_C_AF;
407 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
408 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
409 qemu_irq_raise(s->irq);
410 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
414 /* update ended interrupt */
415 s->cmos_data[RTC_REG_C] |= REG_C_UF;
416 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
417 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
418 qemu_irq_raise(s->irq);
421 /* clear update in progress bit */
422 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
424 s->next_second_time += get_ticks_per_sec();
425 qemu_mod_timer(s->second_timer, s->next_second_time);
428 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
430 RTCState *s = opaque;
431 int ret;
432 if ((addr & 1) == 0) {
433 return 0xff;
434 } else {
435 switch(s->cmos_index) {
436 case RTC_SECONDS:
437 case RTC_MINUTES:
438 case RTC_HOURS:
439 case RTC_DAY_OF_WEEK:
440 case RTC_DAY_OF_MONTH:
441 case RTC_MONTH:
442 case RTC_YEAR:
443 ret = s->cmos_data[s->cmos_index];
444 break;
445 case RTC_REG_A:
446 ret = s->cmos_data[s->cmos_index];
447 break;
448 case RTC_REG_C:
449 ret = s->cmos_data[s->cmos_index];
450 qemu_irq_lower(s->irq);
451 s->cmos_data[RTC_REG_C] = 0x00;
452 #ifdef TARGET_I386
453 if(s->irq_coalesced &&
454 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
455 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
456 s->irq_reinject_on_ack_count++;
457 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
458 apic_reset_irq_delivered();
459 DPRINTF_C("cmos: injecting on ack\n");
460 qemu_irq_raise(s->irq);
461 if (apic_get_irq_delivered()) {
462 s->irq_coalesced--;
463 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
464 s->irq_coalesced);
467 #endif
468 break;
469 default:
470 ret = s->cmos_data[s->cmos_index];
471 break;
473 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
474 s->cmos_index, ret);
475 return ret;
479 void rtc_set_memory(ISADevice *dev, int addr, int val)
481 RTCState *s = DO_UPCAST(RTCState, dev, dev);
482 if (addr >= 0 && addr <= 127)
483 s->cmos_data[addr] = val;
486 void rtc_set_date(ISADevice *dev, const struct tm *tm)
488 RTCState *s = DO_UPCAST(RTCState, dev, dev);
489 s->current_tm = *tm;
490 rtc_copy_date(s);
493 /* PC cmos mappings */
494 #define REG_IBM_CENTURY_BYTE 0x32
495 #define REG_IBM_PS2_CENTURY_BYTE 0x37
497 static void rtc_set_date_from_host(ISADevice *dev)
499 RTCState *s = DO_UPCAST(RTCState, dev, dev);
500 struct tm tm;
501 int val;
503 /* set the CMOS date */
504 qemu_get_timedate(&tm, 0);
505 rtc_set_date(dev, &tm);
507 val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
508 rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
509 rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
512 static int rtc_post_load(void *opaque, int version_id)
514 #ifdef TARGET_I386
515 RTCState *s = opaque;
517 if (version_id >= 2) {
518 if (s->lost_tick_policy == LOST_TICK_SLEW) {
519 rtc_coalesced_timer_update(s);
522 #endif
523 return 0;
526 static const VMStateDescription vmstate_rtc = {
527 .name = "mc146818rtc",
528 .version_id = 2,
529 .minimum_version_id = 1,
530 .minimum_version_id_old = 1,
531 .post_load = rtc_post_load,
532 .fields = (VMStateField []) {
533 VMSTATE_BUFFER(cmos_data, RTCState),
534 VMSTATE_UINT8(cmos_index, RTCState),
535 VMSTATE_INT32(current_tm.tm_sec, RTCState),
536 VMSTATE_INT32(current_tm.tm_min, RTCState),
537 VMSTATE_INT32(current_tm.tm_hour, RTCState),
538 VMSTATE_INT32(current_tm.tm_wday, RTCState),
539 VMSTATE_INT32(current_tm.tm_mday, RTCState),
540 VMSTATE_INT32(current_tm.tm_mon, RTCState),
541 VMSTATE_INT32(current_tm.tm_year, RTCState),
542 VMSTATE_TIMER(periodic_timer, RTCState),
543 VMSTATE_INT64(next_periodic_time, RTCState),
544 VMSTATE_INT64(next_second_time, RTCState),
545 VMSTATE_TIMER(second_timer, RTCState),
546 VMSTATE_TIMER(second_timer2, RTCState),
547 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
548 VMSTATE_UINT32_V(period, RTCState, 2),
549 VMSTATE_END_OF_LIST()
553 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
555 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
556 int64_t now = *(int64_t *)data;
558 rtc_set_date_from_host(&s->dev);
559 s->next_second_time = now + (get_ticks_per_sec() * 99) / 100;
560 qemu_mod_timer(s->second_timer2, s->next_second_time);
561 rtc_timer_update(s, now);
562 #ifdef TARGET_I386
563 if (s->lost_tick_policy == LOST_TICK_SLEW) {
564 rtc_coalesced_timer_update(s);
566 #endif
569 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
570 BIOS will read it and start S3 resume at POST Entry */
571 static void rtc_notify_suspend(Notifier *notifier, void *data)
573 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
574 rtc_set_memory(&s->dev, 0xF, 0xFE);
577 static void rtc_reset(void *opaque)
579 RTCState *s = opaque;
581 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
582 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
584 qemu_irq_lower(s->irq);
586 #ifdef TARGET_I386
587 if (s->lost_tick_policy == LOST_TICK_SLEW) {
588 s->irq_coalesced = 0;
590 #endif
593 static const MemoryRegionPortio cmos_portio[] = {
594 {0, 2, 1, .read = cmos_ioport_read, .write = cmos_ioport_write },
595 PORTIO_END_OF_LIST(),
598 static const MemoryRegionOps cmos_ops = {
599 .old_portio = cmos_portio
602 // FIXME add int32 visitor
603 static void visit_type_int32(Visitor *v, int *value, const char *name, Error **errp)
605 int64_t val = *value;
606 visit_type_int(v, &val, name, errp);
609 static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
610 const char *name, Error **errp)
612 ISADevice *isa = ISA_DEVICE(obj);
613 RTCState *s = DO_UPCAST(RTCState, dev, isa);
615 visit_start_struct(v, NULL, "struct tm", name, 0, errp);
616 visit_type_int32(v, &s->current_tm.tm_year, "tm_year", errp);
617 visit_type_int32(v, &s->current_tm.tm_mon, "tm_mon", errp);
618 visit_type_int32(v, &s->current_tm.tm_mday, "tm_mday", errp);
619 visit_type_int32(v, &s->current_tm.tm_hour, "tm_hour", errp);
620 visit_type_int32(v, &s->current_tm.tm_min, "tm_min", errp);
621 visit_type_int32(v, &s->current_tm.tm_sec, "tm_sec", errp);
622 visit_end_struct(v, errp);
625 static int rtc_initfn(ISADevice *dev)
627 RTCState *s = DO_UPCAST(RTCState, dev, dev);
628 int base = 0x70;
630 s->cmos_data[RTC_REG_A] = 0x26;
631 s->cmos_data[RTC_REG_B] = 0x02;
632 s->cmos_data[RTC_REG_C] = 0x00;
633 s->cmos_data[RTC_REG_D] = 0x80;
635 rtc_set_date_from_host(dev);
637 #ifdef TARGET_I386
638 switch (s->lost_tick_policy) {
639 case LOST_TICK_SLEW:
640 s->coalesced_timer =
641 qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
642 break;
643 case LOST_TICK_DISCARD:
644 break;
645 default:
646 return -EINVAL;
648 #endif
650 s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
651 s->second_timer = qemu_new_timer_ns(rtc_clock, rtc_update_second, s);
652 s->second_timer2 = qemu_new_timer_ns(rtc_clock, rtc_update_second2, s);
654 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
655 qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
657 s->suspend_notifier.notify = rtc_notify_suspend;
658 qemu_register_suspend_notifier(&s->suspend_notifier);
660 s->next_second_time =
661 qemu_get_clock_ns(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
662 qemu_mod_timer(s->second_timer2, s->next_second_time);
664 memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
665 isa_register_ioport(dev, &s->io, base);
667 qdev_set_legacy_instance_id(&dev->qdev, base, 2);
668 qemu_register_reset(rtc_reset, s);
670 object_property_add(OBJECT(s), "date", "struct tm",
671 rtc_get_date, NULL, NULL, s, NULL);
673 return 0;
676 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
678 ISADevice *dev;
679 RTCState *s;
681 dev = isa_create(bus, "mc146818rtc");
682 s = DO_UPCAST(RTCState, dev, dev);
683 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
684 qdev_init_nofail(&dev->qdev);
685 if (intercept_irq) {
686 s->irq = intercept_irq;
687 } else {
688 isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
690 return dev;
693 static Property mc146818rtc_properties[] = {
694 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
695 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
696 lost_tick_policy, LOST_TICK_DISCARD),
697 DEFINE_PROP_END_OF_LIST(),
700 static void rtc_class_initfn(ObjectClass *klass, void *data)
702 DeviceClass *dc = DEVICE_CLASS(klass);
703 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
704 ic->init = rtc_initfn;
705 dc->no_user = 1;
706 dc->vmsd = &vmstate_rtc;
707 dc->props = mc146818rtc_properties;
710 static TypeInfo mc146818rtc_info = {
711 .name = "mc146818rtc",
712 .parent = TYPE_ISA_DEVICE,
713 .instance_size = sizeof(RTCState),
714 .class_init = rtc_class_initfn,
717 static void mc146818rtc_register_types(void)
719 type_register_static(&mc146818rtc_info);
722 type_init(mc146818rtc_register_types)