Merge remote-tracking branch 'riku/linux-user-for-upstream' into staging
[qemu.git] / cpus.c
blobf768683ad62029c8679313c1f58605ec040e9a57
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "main-loop.h"
39 #ifndef _WIN32
40 #include "compatfd.h"
41 #endif
43 #ifdef CONFIG_LINUX
45 #include <sys/prctl.h>
47 #ifndef PR_MCE_KILL
48 #define PR_MCE_KILL 33
49 #endif
51 #ifndef PR_MCE_KILL_SET
52 #define PR_MCE_KILL_SET 1
53 #endif
55 #ifndef PR_MCE_KILL_EARLY
56 #define PR_MCE_KILL_EARLY 1
57 #endif
59 #endif /* CONFIG_LINUX */
61 static CPUState *next_cpu;
63 /***********************************************************/
64 /* guest cycle counter */
66 /* Conversion factor from emulated instructions to virtual clock ticks. */
67 static int icount_time_shift;
68 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
69 #define MAX_ICOUNT_SHIFT 10
70 /* Compensate for varying guest execution speed. */
71 static int64_t qemu_icount_bias;
72 static QEMUTimer *icount_rt_timer;
73 static QEMUTimer *icount_vm_timer;
74 static QEMUTimer *icount_warp_timer;
75 static int64_t vm_clock_warp_start;
76 static int64_t qemu_icount;
78 typedef struct TimersState {
79 int64_t cpu_ticks_prev;
80 int64_t cpu_ticks_offset;
81 int64_t cpu_clock_offset;
82 int32_t cpu_ticks_enabled;
83 int64_t dummy;
84 } TimersState;
86 TimersState timers_state;
88 /* Return the virtual CPU time, based on the instruction counter. */
89 int64_t cpu_get_icount(void)
91 int64_t icount;
92 CPUState *env = cpu_single_env;;
94 icount = qemu_icount;
95 if (env) {
96 if (!can_do_io(env)) {
97 fprintf(stderr, "Bad clock read\n");
99 icount -= (env->icount_decr.u16.low + env->icount_extra);
101 return qemu_icount_bias + (icount << icount_time_shift);
104 /* return the host CPU cycle counter and handle stop/restart */
105 int64_t cpu_get_ticks(void)
107 if (use_icount) {
108 return cpu_get_icount();
110 if (!timers_state.cpu_ticks_enabled) {
111 return timers_state.cpu_ticks_offset;
112 } else {
113 int64_t ticks;
114 ticks = cpu_get_real_ticks();
115 if (timers_state.cpu_ticks_prev > ticks) {
116 /* Note: non increasing ticks may happen if the host uses
117 software suspend */
118 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
120 timers_state.cpu_ticks_prev = ticks;
121 return ticks + timers_state.cpu_ticks_offset;
125 /* return the host CPU monotonic timer and handle stop/restart */
126 int64_t cpu_get_clock(void)
128 int64_t ti;
129 if (!timers_state.cpu_ticks_enabled) {
130 return timers_state.cpu_clock_offset;
131 } else {
132 ti = get_clock();
133 return ti + timers_state.cpu_clock_offset;
137 /* enable cpu_get_ticks() */
138 void cpu_enable_ticks(void)
140 if (!timers_state.cpu_ticks_enabled) {
141 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
142 timers_state.cpu_clock_offset -= get_clock();
143 timers_state.cpu_ticks_enabled = 1;
147 /* disable cpu_get_ticks() : the clock is stopped. You must not call
148 cpu_get_ticks() after that. */
149 void cpu_disable_ticks(void)
151 if (timers_state.cpu_ticks_enabled) {
152 timers_state.cpu_ticks_offset = cpu_get_ticks();
153 timers_state.cpu_clock_offset = cpu_get_clock();
154 timers_state.cpu_ticks_enabled = 0;
158 /* Correlation between real and virtual time is always going to be
159 fairly approximate, so ignore small variation.
160 When the guest is idle real and virtual time will be aligned in
161 the IO wait loop. */
162 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
164 static void icount_adjust(void)
166 int64_t cur_time;
167 int64_t cur_icount;
168 int64_t delta;
169 static int64_t last_delta;
170 /* If the VM is not running, then do nothing. */
171 if (!runstate_is_running()) {
172 return;
174 cur_time = cpu_get_clock();
175 cur_icount = qemu_get_clock_ns(vm_clock);
176 delta = cur_icount - cur_time;
177 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
178 if (delta > 0
179 && last_delta + ICOUNT_WOBBLE < delta * 2
180 && icount_time_shift > 0) {
181 /* The guest is getting too far ahead. Slow time down. */
182 icount_time_shift--;
184 if (delta < 0
185 && last_delta - ICOUNT_WOBBLE > delta * 2
186 && icount_time_shift < MAX_ICOUNT_SHIFT) {
187 /* The guest is getting too far behind. Speed time up. */
188 icount_time_shift++;
190 last_delta = delta;
191 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
194 static void icount_adjust_rt(void *opaque)
196 qemu_mod_timer(icount_rt_timer,
197 qemu_get_clock_ms(rt_clock) + 1000);
198 icount_adjust();
201 static void icount_adjust_vm(void *opaque)
203 qemu_mod_timer(icount_vm_timer,
204 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
205 icount_adjust();
208 static int64_t qemu_icount_round(int64_t count)
210 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
213 static void icount_warp_rt(void *opaque)
215 if (vm_clock_warp_start == -1) {
216 return;
219 if (runstate_is_running()) {
220 int64_t clock = qemu_get_clock_ns(rt_clock);
221 int64_t warp_delta = clock - vm_clock_warp_start;
222 if (use_icount == 1) {
223 qemu_icount_bias += warp_delta;
224 } else {
226 * In adaptive mode, do not let the vm_clock run too
227 * far ahead of real time.
229 int64_t cur_time = cpu_get_clock();
230 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
231 int64_t delta = cur_time - cur_icount;
232 qemu_icount_bias += MIN(warp_delta, delta);
234 if (qemu_clock_expired(vm_clock)) {
235 qemu_notify_event();
238 vm_clock_warp_start = -1;
241 void qemu_clock_warp(QEMUClock *clock)
243 int64_t deadline;
246 * There are too many global variables to make the "warp" behavior
247 * applicable to other clocks. But a clock argument removes the
248 * need for if statements all over the place.
250 if (clock != vm_clock || !use_icount) {
251 return;
255 * If the CPUs have been sleeping, advance the vm_clock timer now. This
256 * ensures that the deadline for the timer is computed correctly below.
257 * This also makes sure that the insn counter is synchronized before the
258 * CPU starts running, in case the CPU is woken by an event other than
259 * the earliest vm_clock timer.
261 icount_warp_rt(NULL);
262 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
263 qemu_del_timer(icount_warp_timer);
264 return;
267 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
268 deadline = qemu_clock_deadline(vm_clock);
269 if (deadline > 0) {
271 * Ensure the vm_clock proceeds even when the virtual CPU goes to
272 * sleep. Otherwise, the CPU might be waiting for a future timer
273 * interrupt to wake it up, but the interrupt never comes because
274 * the vCPU isn't running any insns and thus doesn't advance the
275 * vm_clock.
277 * An extreme solution for this problem would be to never let VCPUs
278 * sleep in icount mode if there is a pending vm_clock timer; rather
279 * time could just advance to the next vm_clock event. Instead, we
280 * do stop VCPUs and only advance vm_clock after some "real" time,
281 * (related to the time left until the next event) has passed. This
282 * rt_clock timer will do this. This avoids that the warps are too
283 * visible externally---for example, you will not be sending network
284 * packets continously instead of every 100ms.
286 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
287 } else {
288 qemu_notify_event();
292 static const VMStateDescription vmstate_timers = {
293 .name = "timer",
294 .version_id = 2,
295 .minimum_version_id = 1,
296 .minimum_version_id_old = 1,
297 .fields = (VMStateField[]) {
298 VMSTATE_INT64(cpu_ticks_offset, TimersState),
299 VMSTATE_INT64(dummy, TimersState),
300 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
301 VMSTATE_END_OF_LIST()
305 void configure_icount(const char *option)
307 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
308 if (!option) {
309 return;
312 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
313 if (strcmp(option, "auto") != 0) {
314 icount_time_shift = strtol(option, NULL, 0);
315 use_icount = 1;
316 return;
319 use_icount = 2;
321 /* 125MIPS seems a reasonable initial guess at the guest speed.
322 It will be corrected fairly quickly anyway. */
323 icount_time_shift = 3;
325 /* Have both realtime and virtual time triggers for speed adjustment.
326 The realtime trigger catches emulated time passing too slowly,
327 the virtual time trigger catches emulated time passing too fast.
328 Realtime triggers occur even when idle, so use them less frequently
329 than VM triggers. */
330 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
331 qemu_mod_timer(icount_rt_timer,
332 qemu_get_clock_ms(rt_clock) + 1000);
333 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
334 qemu_mod_timer(icount_vm_timer,
335 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
338 /***********************************************************/
339 void hw_error(const char *fmt, ...)
341 va_list ap;
342 CPUState *env;
344 va_start(ap, fmt);
345 fprintf(stderr, "qemu: hardware error: ");
346 vfprintf(stderr, fmt, ap);
347 fprintf(stderr, "\n");
348 for(env = first_cpu; env != NULL; env = env->next_cpu) {
349 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
350 #ifdef TARGET_I386
351 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
352 #else
353 cpu_dump_state(env, stderr, fprintf, 0);
354 #endif
356 va_end(ap);
357 abort();
360 void cpu_synchronize_all_states(void)
362 CPUState *cpu;
364 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
365 cpu_synchronize_state(cpu);
369 void cpu_synchronize_all_post_reset(void)
371 CPUState *cpu;
373 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
374 cpu_synchronize_post_reset(cpu);
378 void cpu_synchronize_all_post_init(void)
380 CPUState *cpu;
382 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
383 cpu_synchronize_post_init(cpu);
387 int cpu_is_stopped(CPUState *env)
389 return !runstate_is_running() || env->stopped;
392 static void do_vm_stop(RunState state)
394 if (runstate_is_running()) {
395 cpu_disable_ticks();
396 pause_all_vcpus();
397 runstate_set(state);
398 vm_state_notify(0, state);
399 qemu_aio_flush();
400 bdrv_flush_all();
401 monitor_protocol_event(QEVENT_STOP, NULL);
405 static int cpu_can_run(CPUState *env)
407 if (env->stop) {
408 return 0;
410 if (env->stopped || !runstate_is_running()) {
411 return 0;
413 return 1;
416 static bool cpu_thread_is_idle(CPUState *env)
418 if (env->stop || env->queued_work_first) {
419 return false;
421 if (env->stopped || !runstate_is_running()) {
422 return true;
424 if (!env->halted || qemu_cpu_has_work(env) ||
425 (kvm_enabled() && kvm_irqchip_in_kernel())) {
426 return false;
428 return true;
431 bool all_cpu_threads_idle(void)
433 CPUState *env;
435 for (env = first_cpu; env != NULL; env = env->next_cpu) {
436 if (!cpu_thread_is_idle(env)) {
437 return false;
440 return true;
443 static void cpu_handle_guest_debug(CPUState *env)
445 gdb_set_stop_cpu(env);
446 qemu_system_debug_request();
447 env->stopped = 1;
450 static void cpu_signal(int sig)
452 if (cpu_single_env) {
453 cpu_exit(cpu_single_env);
455 exit_request = 1;
458 #ifdef CONFIG_LINUX
459 static void sigbus_reraise(void)
461 sigset_t set;
462 struct sigaction action;
464 memset(&action, 0, sizeof(action));
465 action.sa_handler = SIG_DFL;
466 if (!sigaction(SIGBUS, &action, NULL)) {
467 raise(SIGBUS);
468 sigemptyset(&set);
469 sigaddset(&set, SIGBUS);
470 sigprocmask(SIG_UNBLOCK, &set, NULL);
472 perror("Failed to re-raise SIGBUS!\n");
473 abort();
476 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
477 void *ctx)
479 if (kvm_on_sigbus(siginfo->ssi_code,
480 (void *)(intptr_t)siginfo->ssi_addr)) {
481 sigbus_reraise();
485 static void qemu_init_sigbus(void)
487 struct sigaction action;
489 memset(&action, 0, sizeof(action));
490 action.sa_flags = SA_SIGINFO;
491 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
492 sigaction(SIGBUS, &action, NULL);
494 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
497 static void qemu_kvm_eat_signals(CPUState *env)
499 struct timespec ts = { 0, 0 };
500 siginfo_t siginfo;
501 sigset_t waitset;
502 sigset_t chkset;
503 int r;
505 sigemptyset(&waitset);
506 sigaddset(&waitset, SIG_IPI);
507 sigaddset(&waitset, SIGBUS);
509 do {
510 r = sigtimedwait(&waitset, &siginfo, &ts);
511 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
512 perror("sigtimedwait");
513 exit(1);
516 switch (r) {
517 case SIGBUS:
518 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
519 sigbus_reraise();
521 break;
522 default:
523 break;
526 r = sigpending(&chkset);
527 if (r == -1) {
528 perror("sigpending");
529 exit(1);
531 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
534 #else /* !CONFIG_LINUX */
536 static void qemu_init_sigbus(void)
540 static void qemu_kvm_eat_signals(CPUState *env)
543 #endif /* !CONFIG_LINUX */
545 #ifndef _WIN32
546 static void dummy_signal(int sig)
550 static void qemu_kvm_init_cpu_signals(CPUState *env)
552 int r;
553 sigset_t set;
554 struct sigaction sigact;
556 memset(&sigact, 0, sizeof(sigact));
557 sigact.sa_handler = dummy_signal;
558 sigaction(SIG_IPI, &sigact, NULL);
560 pthread_sigmask(SIG_BLOCK, NULL, &set);
561 sigdelset(&set, SIG_IPI);
562 sigdelset(&set, SIGBUS);
563 r = kvm_set_signal_mask(env, &set);
564 if (r) {
565 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
566 exit(1);
569 sigdelset(&set, SIG_IPI);
570 sigdelset(&set, SIGBUS);
571 r = kvm_set_signal_mask(env, &set);
572 if (r) {
573 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
574 exit(1);
578 static void qemu_tcg_init_cpu_signals(void)
580 sigset_t set;
581 struct sigaction sigact;
583 memset(&sigact, 0, sizeof(sigact));
584 sigact.sa_handler = cpu_signal;
585 sigaction(SIG_IPI, &sigact, NULL);
587 sigemptyset(&set);
588 sigaddset(&set, SIG_IPI);
589 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
592 #else /* _WIN32 */
593 static void qemu_kvm_init_cpu_signals(CPUState *env)
595 abort();
598 static void qemu_tcg_init_cpu_signals(void)
601 #endif /* _WIN32 */
603 QemuMutex qemu_global_mutex;
604 static QemuCond qemu_io_proceeded_cond;
605 static bool iothread_requesting_mutex;
607 static QemuThread io_thread;
609 static QemuThread *tcg_cpu_thread;
610 static QemuCond *tcg_halt_cond;
612 /* cpu creation */
613 static QemuCond qemu_cpu_cond;
614 /* system init */
615 static QemuCond qemu_pause_cond;
616 static QemuCond qemu_work_cond;
618 void qemu_init_cpu_loop(void)
620 qemu_init_sigbus();
621 qemu_cond_init(&qemu_cpu_cond);
622 qemu_cond_init(&qemu_pause_cond);
623 qemu_cond_init(&qemu_work_cond);
624 qemu_cond_init(&qemu_io_proceeded_cond);
625 qemu_mutex_init(&qemu_global_mutex);
627 qemu_thread_get_self(&io_thread);
630 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
632 struct qemu_work_item wi;
634 if (qemu_cpu_is_self(env)) {
635 func(data);
636 return;
639 wi.func = func;
640 wi.data = data;
641 if (!env->queued_work_first) {
642 env->queued_work_first = &wi;
643 } else {
644 env->queued_work_last->next = &wi;
646 env->queued_work_last = &wi;
647 wi.next = NULL;
648 wi.done = false;
650 qemu_cpu_kick(env);
651 while (!wi.done) {
652 CPUState *self_env = cpu_single_env;
654 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
655 cpu_single_env = self_env;
659 static void flush_queued_work(CPUState *env)
661 struct qemu_work_item *wi;
663 if (!env->queued_work_first) {
664 return;
667 while ((wi = env->queued_work_first)) {
668 env->queued_work_first = wi->next;
669 wi->func(wi->data);
670 wi->done = true;
672 env->queued_work_last = NULL;
673 qemu_cond_broadcast(&qemu_work_cond);
676 static void qemu_wait_io_event_common(CPUState *env)
678 if (env->stop) {
679 env->stop = 0;
680 env->stopped = 1;
681 qemu_cond_signal(&qemu_pause_cond);
683 flush_queued_work(env);
684 env->thread_kicked = false;
687 static void qemu_tcg_wait_io_event(void)
689 CPUState *env;
691 while (all_cpu_threads_idle()) {
692 /* Start accounting real time to the virtual clock if the CPUs
693 are idle. */
694 qemu_clock_warp(vm_clock);
695 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
698 while (iothread_requesting_mutex) {
699 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
702 for (env = first_cpu; env != NULL; env = env->next_cpu) {
703 qemu_wait_io_event_common(env);
707 static void qemu_kvm_wait_io_event(CPUState *env)
709 while (cpu_thread_is_idle(env)) {
710 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
713 qemu_kvm_eat_signals(env);
714 qemu_wait_io_event_common(env);
717 static void *qemu_kvm_cpu_thread_fn(void *arg)
719 CPUState *env = arg;
720 int r;
722 qemu_mutex_lock(&qemu_global_mutex);
723 qemu_thread_get_self(env->thread);
724 env->thread_id = qemu_get_thread_id();
726 r = kvm_init_vcpu(env);
727 if (r < 0) {
728 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
729 exit(1);
732 qemu_kvm_init_cpu_signals(env);
734 /* signal CPU creation */
735 env->created = 1;
736 qemu_cond_signal(&qemu_cpu_cond);
738 while (1) {
739 if (cpu_can_run(env)) {
740 r = kvm_cpu_exec(env);
741 if (r == EXCP_DEBUG) {
742 cpu_handle_guest_debug(env);
745 qemu_kvm_wait_io_event(env);
748 return NULL;
751 static void *qemu_tcg_cpu_thread_fn(void *arg)
753 CPUState *env = arg;
755 qemu_tcg_init_cpu_signals();
756 qemu_thread_get_self(env->thread);
758 /* signal CPU creation */
759 qemu_mutex_lock(&qemu_global_mutex);
760 for (env = first_cpu; env != NULL; env = env->next_cpu) {
761 env->thread_id = qemu_get_thread_id();
762 env->created = 1;
764 qemu_cond_signal(&qemu_cpu_cond);
766 /* wait for initial kick-off after machine start */
767 while (first_cpu->stopped) {
768 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
771 while (1) {
772 cpu_exec_all();
773 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
774 qemu_notify_event();
776 qemu_tcg_wait_io_event();
779 return NULL;
782 static void qemu_cpu_kick_thread(CPUState *env)
784 #ifndef _WIN32
785 int err;
787 err = pthread_kill(env->thread->thread, SIG_IPI);
788 if (err) {
789 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
790 exit(1);
792 #else /* _WIN32 */
793 if (!qemu_cpu_is_self(env)) {
794 SuspendThread(env->thread->thread);
795 cpu_signal(0);
796 ResumeThread(env->thread->thread);
798 #endif
801 void qemu_cpu_kick(void *_env)
803 CPUState *env = _env;
805 qemu_cond_broadcast(env->halt_cond);
806 if (kvm_enabled() && !env->thread_kicked) {
807 qemu_cpu_kick_thread(env);
808 env->thread_kicked = true;
812 void qemu_cpu_kick_self(void)
814 #ifndef _WIN32
815 assert(cpu_single_env);
817 if (!cpu_single_env->thread_kicked) {
818 qemu_cpu_kick_thread(cpu_single_env);
819 cpu_single_env->thread_kicked = true;
821 #else
822 abort();
823 #endif
826 int qemu_cpu_is_self(void *_env)
828 CPUState *env = _env;
830 return qemu_thread_is_self(env->thread);
833 void qemu_mutex_lock_iothread(void)
835 if (kvm_enabled()) {
836 qemu_mutex_lock(&qemu_global_mutex);
837 } else {
838 iothread_requesting_mutex = true;
839 if (qemu_mutex_trylock(&qemu_global_mutex)) {
840 qemu_cpu_kick_thread(first_cpu);
841 qemu_mutex_lock(&qemu_global_mutex);
843 iothread_requesting_mutex = false;
844 qemu_cond_broadcast(&qemu_io_proceeded_cond);
848 void qemu_mutex_unlock_iothread(void)
850 qemu_mutex_unlock(&qemu_global_mutex);
853 static int all_vcpus_paused(void)
855 CPUState *penv = first_cpu;
857 while (penv) {
858 if (!penv->stopped) {
859 return 0;
861 penv = (CPUState *)penv->next_cpu;
864 return 1;
867 void pause_all_vcpus(void)
869 CPUState *penv = first_cpu;
871 qemu_clock_enable(vm_clock, false);
872 while (penv) {
873 penv->stop = 1;
874 qemu_cpu_kick(penv);
875 penv = (CPUState *)penv->next_cpu;
878 while (!all_vcpus_paused()) {
879 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
880 penv = first_cpu;
881 while (penv) {
882 qemu_cpu_kick(penv);
883 penv = (CPUState *)penv->next_cpu;
888 void resume_all_vcpus(void)
890 CPUState *penv = first_cpu;
892 while (penv) {
893 penv->stop = 0;
894 penv->stopped = 0;
895 qemu_cpu_kick(penv);
896 penv = (CPUState *)penv->next_cpu;
900 static void qemu_tcg_init_vcpu(void *_env)
902 CPUState *env = _env;
904 /* share a single thread for all cpus with TCG */
905 if (!tcg_cpu_thread) {
906 env->thread = g_malloc0(sizeof(QemuThread));
907 env->halt_cond = g_malloc0(sizeof(QemuCond));
908 qemu_cond_init(env->halt_cond);
909 tcg_halt_cond = env->halt_cond;
910 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
911 while (env->created == 0) {
912 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
914 tcg_cpu_thread = env->thread;
915 } else {
916 env->thread = tcg_cpu_thread;
917 env->halt_cond = tcg_halt_cond;
921 static void qemu_kvm_start_vcpu(CPUState *env)
923 env->thread = g_malloc0(sizeof(QemuThread));
924 env->halt_cond = g_malloc0(sizeof(QemuCond));
925 qemu_cond_init(env->halt_cond);
926 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
927 while (env->created == 0) {
928 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
932 void qemu_init_vcpu(void *_env)
934 CPUState *env = _env;
936 env->nr_cores = smp_cores;
937 env->nr_threads = smp_threads;
938 env->stopped = 1;
939 if (kvm_enabled()) {
940 qemu_kvm_start_vcpu(env);
941 } else {
942 qemu_tcg_init_vcpu(env);
946 void cpu_stop_current(void)
948 if (cpu_single_env) {
949 cpu_single_env->stop = 0;
950 cpu_single_env->stopped = 1;
951 cpu_exit(cpu_single_env);
952 qemu_cond_signal(&qemu_pause_cond);
956 void vm_stop(RunState state)
958 if (!qemu_thread_is_self(&io_thread)) {
959 qemu_system_vmstop_request(state);
961 * FIXME: should not return to device code in case
962 * vm_stop() has been requested.
964 cpu_stop_current();
965 return;
967 do_vm_stop(state);
970 /* does a state transition even if the VM is already stopped,
971 current state is forgotten forever */
972 void vm_stop_force_state(RunState state)
974 if (runstate_is_running()) {
975 vm_stop(state);
976 } else {
977 runstate_set(state);
981 static int tcg_cpu_exec(CPUState *env)
983 int ret;
984 #ifdef CONFIG_PROFILER
985 int64_t ti;
986 #endif
988 #ifdef CONFIG_PROFILER
989 ti = profile_getclock();
990 #endif
991 if (use_icount) {
992 int64_t count;
993 int decr;
994 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
995 env->icount_decr.u16.low = 0;
996 env->icount_extra = 0;
997 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
998 qemu_icount += count;
999 decr = (count > 0xffff) ? 0xffff : count;
1000 count -= decr;
1001 env->icount_decr.u16.low = decr;
1002 env->icount_extra = count;
1004 ret = cpu_exec(env);
1005 #ifdef CONFIG_PROFILER
1006 qemu_time += profile_getclock() - ti;
1007 #endif
1008 if (use_icount) {
1009 /* Fold pending instructions back into the
1010 instruction counter, and clear the interrupt flag. */
1011 qemu_icount -= (env->icount_decr.u16.low
1012 + env->icount_extra);
1013 env->icount_decr.u32 = 0;
1014 env->icount_extra = 0;
1016 return ret;
1019 bool cpu_exec_all(void)
1021 int r;
1023 /* Account partial waits to the vm_clock. */
1024 qemu_clock_warp(vm_clock);
1026 if (next_cpu == NULL) {
1027 next_cpu = first_cpu;
1029 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1030 CPUState *env = next_cpu;
1032 qemu_clock_enable(vm_clock,
1033 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1035 if (cpu_can_run(env)) {
1036 if (kvm_enabled()) {
1037 r = kvm_cpu_exec(env);
1038 qemu_kvm_eat_signals(env);
1039 } else {
1040 r = tcg_cpu_exec(env);
1042 if (r == EXCP_DEBUG) {
1043 cpu_handle_guest_debug(env);
1044 break;
1046 } else if (env->stop || env->stopped) {
1047 break;
1050 exit_request = 0;
1051 return !all_cpu_threads_idle();
1054 void set_numa_modes(void)
1056 CPUState *env;
1057 int i;
1059 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1060 for (i = 0; i < nb_numa_nodes; i++) {
1061 if (node_cpumask[i] & (1 << env->cpu_index)) {
1062 env->numa_node = i;
1068 void set_cpu_log(const char *optarg)
1070 int mask;
1071 const CPULogItem *item;
1073 mask = cpu_str_to_log_mask(optarg);
1074 if (!mask) {
1075 printf("Log items (comma separated):\n");
1076 for (item = cpu_log_items; item->mask != 0; item++) {
1077 printf("%-10s %s\n", item->name, item->help);
1079 exit(1);
1081 cpu_set_log(mask);
1084 void set_cpu_log_filename(const char *optarg)
1086 cpu_set_log_filename(optarg);
1089 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1091 /* XXX: implement xxx_cpu_list for targets that still miss it */
1092 #if defined(cpu_list_id)
1093 cpu_list_id(f, cpu_fprintf, optarg);
1094 #elif defined(cpu_list)
1095 cpu_list(f, cpu_fprintf); /* deprecated */
1096 #endif
1099 CpuInfoList *qmp_query_cpus(Error **errp)
1101 CpuInfoList *head = NULL, *cur_item = NULL;
1102 CPUState *env;
1104 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1105 CpuInfoList *info;
1107 cpu_synchronize_state(env);
1109 info = g_malloc0(sizeof(*info));
1110 info->value = g_malloc0(sizeof(*info->value));
1111 info->value->CPU = env->cpu_index;
1112 info->value->current = (env == first_cpu);
1113 info->value->halted = env->halted;
1114 info->value->thread_id = env->thread_id;
1115 #if defined(TARGET_I386)
1116 info->value->has_pc = true;
1117 info->value->pc = env->eip + env->segs[R_CS].base;
1118 #elif defined(TARGET_PPC)
1119 info->value->has_nip = true;
1120 info->value->nip = env->nip;
1121 #elif defined(TARGET_SPARC)
1122 info->value->has_pc = true;
1123 info->value->pc = env->pc;
1124 info->value->has_npc = true;
1125 info->value->npc = env->npc;
1126 #elif defined(TARGET_MIPS)
1127 info->value->has_PC = true;
1128 info->value->PC = env->active_tc.PC;
1129 #endif
1131 /* XXX: waiting for the qapi to support GSList */
1132 if (!cur_item) {
1133 head = cur_item = info;
1134 } else {
1135 cur_item->next = info;
1136 cur_item = info;
1140 return head;