hw/arm/virt: formatting: memory map
[qemu.git] / hw / arm / virt.c
blobba9429855550647e84148ae0702ad4b32285d861
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/kvm.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "qemu/bitops.h"
42 #include "qemu/error-report.h"
44 #define NUM_VIRTIO_TRANSPORTS 32
46 /* Number of external interrupt lines to configure the GIC with */
47 #define NUM_IRQS 128
49 #define GIC_FDT_IRQ_TYPE_SPI 0
50 #define GIC_FDT_IRQ_TYPE_PPI 1
52 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
53 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
54 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
55 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
57 #define GIC_FDT_IRQ_PPI_CPU_START 8
58 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
60 enum {
61 VIRT_FLASH,
62 VIRT_MEM,
63 VIRT_CPUPERIPHS,
64 VIRT_GIC_DIST,
65 VIRT_GIC_CPU,
66 VIRT_UART,
67 VIRT_MMIO,
68 VIRT_RTC,
71 typedef struct MemMapEntry {
72 hwaddr base;
73 hwaddr size;
74 } MemMapEntry;
76 typedef struct VirtBoardInfo {
77 struct arm_boot_info bootinfo;
78 const char *cpu_model;
79 const MemMapEntry *memmap;
80 const int *irqmap;
81 int smp_cpus;
82 void *fdt;
83 int fdt_size;
84 uint32_t clock_phandle;
85 } VirtBoardInfo;
87 /* Addresses and sizes of our components.
88 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
89 * 128MB..256MB is used for miscellaneous device I/O.
90 * 256MB..1GB is reserved for possible future PCI support (ie where the
91 * PCI memory window will go if we add a PCI host controller).
92 * 1GB and up is RAM (which may happily spill over into the
93 * high memory region beyond 4GB).
94 * This represents a compromise between how much RAM can be given to
95 * a 32 bit VM and leaving space for expansion and in particular for PCI.
96 * Note that devices should generally be placed at multiples of 0x10000,
97 * to accommodate guests using 64K pages.
99 static const MemMapEntry a15memmap[] = {
100 /* Space up to 0x8000000 is reserved for a boot ROM */
101 [VIRT_FLASH] = { 0, 0x08000000 },
102 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
103 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
104 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
105 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
106 [VIRT_UART] = { 0x09000000, 0x00001000 },
107 [VIRT_RTC] = { 0x09010000, 0x00001000 },
108 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
109 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
110 /* 0x10000000 .. 0x40000000 reserved for PCI */
111 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
114 static const int a15irqmap[] = {
115 [VIRT_UART] = 1,
116 [VIRT_RTC] = 2,
117 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
120 static VirtBoardInfo machines[] = {
122 .cpu_model = "cortex-a15",
123 .memmap = a15memmap,
124 .irqmap = a15irqmap,
127 .cpu_model = "cortex-a57",
128 .memmap = a15memmap,
129 .irqmap = a15irqmap,
132 .cpu_model = "host",
133 .memmap = a15memmap,
134 .irqmap = a15irqmap,
138 static VirtBoardInfo *find_machine_info(const char *cpu)
140 int i;
142 for (i = 0; i < ARRAY_SIZE(machines); i++) {
143 if (strcmp(cpu, machines[i].cpu_model) == 0) {
144 return &machines[i];
147 return NULL;
150 static void create_fdt(VirtBoardInfo *vbi)
152 void *fdt = create_device_tree(&vbi->fdt_size);
154 if (!fdt) {
155 error_report("create_device_tree() failed");
156 exit(1);
159 vbi->fdt = fdt;
161 /* Header */
162 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
163 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
164 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
167 * /chosen and /memory nodes must exist for load_dtb
168 * to fill in necessary properties later
170 qemu_fdt_add_subnode(fdt, "/chosen");
171 qemu_fdt_add_subnode(fdt, "/memory");
172 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
174 /* Clock node, for the benefit of the UART. The kernel device tree
175 * binding documentation claims the PL011 node clock properties are
176 * optional but in practice if you omit them the kernel refuses to
177 * probe for the device.
179 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
180 qemu_fdt_add_subnode(fdt, "/apb-pclk");
181 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
182 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
183 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
184 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
185 "clk24mhz");
186 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
190 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
192 void *fdt = vbi->fdt;
193 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
195 /* No PSCI for TCG yet */
196 if (kvm_enabled()) {
197 qemu_fdt_add_subnode(fdt, "/psci");
198 if (armcpu->psci_version == 2) {
199 const char comp[] = "arm,psci-0.2\0arm,psci";
200 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
201 } else {
202 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
205 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
206 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend",
207 PSCI_FN_CPU_SUSPEND);
208 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF);
209 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON);
210 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE);
214 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
216 /* Note that on A15 h/w these interrupts are level-triggered,
217 * but for the GIC implementation provided by both QEMU and KVM
218 * they are edge-triggered.
220 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
222 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
223 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
225 qemu_fdt_add_subnode(vbi->fdt, "/timer");
226 qemu_fdt_setprop_string(vbi->fdt, "/timer",
227 "compatible", "arm,armv7-timer");
228 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
229 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
230 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
231 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
232 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
235 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
237 int cpu;
239 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
240 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
241 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
243 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
244 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
245 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
247 qemu_fdt_add_subnode(vbi->fdt, nodename);
248 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
249 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
250 armcpu->dtb_compatible);
252 if (vbi->smp_cpus > 1) {
253 qemu_fdt_setprop_string(vbi->fdt, nodename,
254 "enable-method", "psci");
257 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
258 g_free(nodename);
262 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
264 uint32_t gic_phandle;
266 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
267 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
269 qemu_fdt_add_subnode(vbi->fdt, "/intc");
270 /* 'cortex-a15-gic' means 'GIC v2' */
271 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
272 "arm,cortex-a15-gic");
273 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
274 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
275 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
276 2, vbi->memmap[VIRT_GIC_DIST].base,
277 2, vbi->memmap[VIRT_GIC_DIST].size,
278 2, vbi->memmap[VIRT_GIC_CPU].base,
279 2, vbi->memmap[VIRT_GIC_CPU].size);
280 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
283 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
285 /* We create a standalone GIC v2 */
286 DeviceState *gicdev;
287 SysBusDevice *gicbusdev;
288 const char *gictype = "arm_gic";
289 int i;
291 if (kvm_irqchip_in_kernel()) {
292 gictype = "kvm-arm-gic";
295 gicdev = qdev_create(NULL, gictype);
296 qdev_prop_set_uint32(gicdev, "revision", 2);
297 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
298 /* Note that the num-irq property counts both internal and external
299 * interrupts; there are always 32 of the former (mandated by GIC spec).
301 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
302 qdev_init_nofail(gicdev);
303 gicbusdev = SYS_BUS_DEVICE(gicdev);
304 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
305 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
307 /* Wire the outputs from each CPU's generic timer to the
308 * appropriate GIC PPI inputs, and the GIC's IRQ output to
309 * the CPU's IRQ input.
311 for (i = 0; i < smp_cpus; i++) {
312 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
313 int ppibase = NUM_IRQS + i * 32;
314 /* physical timer; we wire it up to the non-secure timer's ID,
315 * since a real A15 always has TrustZone but QEMU doesn't.
317 qdev_connect_gpio_out(cpudev, 0,
318 qdev_get_gpio_in(gicdev, ppibase + 30));
319 /* virtual timer */
320 qdev_connect_gpio_out(cpudev, 1,
321 qdev_get_gpio_in(gicdev, ppibase + 27));
323 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
326 for (i = 0; i < NUM_IRQS; i++) {
327 pic[i] = qdev_get_gpio_in(gicdev, i);
330 fdt_add_gic_node(vbi);
333 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
335 char *nodename;
336 hwaddr base = vbi->memmap[VIRT_UART].base;
337 hwaddr size = vbi->memmap[VIRT_UART].size;
338 int irq = vbi->irqmap[VIRT_UART];
339 const char compat[] = "arm,pl011\0arm,primecell";
340 const char clocknames[] = "uartclk\0apb_pclk";
342 sysbus_create_simple("pl011", base, pic[irq]);
344 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
345 qemu_fdt_add_subnode(vbi->fdt, nodename);
346 /* Note that we can't use setprop_string because of the embedded NUL */
347 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
348 compat, sizeof(compat));
349 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
350 2, base, 2, size);
351 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
352 GIC_FDT_IRQ_TYPE_SPI, irq,
353 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
354 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
355 vbi->clock_phandle, vbi->clock_phandle);
356 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
357 clocknames, sizeof(clocknames));
358 g_free(nodename);
361 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
363 char *nodename;
364 hwaddr base = vbi->memmap[VIRT_RTC].base;
365 hwaddr size = vbi->memmap[VIRT_RTC].size;
366 int irq = vbi->irqmap[VIRT_RTC];
367 const char compat[] = "arm,pl031\0arm,primecell";
369 sysbus_create_simple("pl031", base, pic[irq]);
371 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
372 qemu_fdt_add_subnode(vbi->fdt, nodename);
373 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
374 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
375 2, base, 2, size);
376 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
377 GIC_FDT_IRQ_TYPE_SPI, irq,
378 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
379 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
380 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
381 g_free(nodename);
384 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
386 int i;
387 hwaddr size = vbi->memmap[VIRT_MMIO].size;
389 /* Note that we have to create the transports in forwards order
390 * so that command line devices are inserted lowest address first,
391 * and then add dtb nodes in reverse order so that they appear in
392 * the finished device tree lowest address first.
394 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
395 int irq = vbi->irqmap[VIRT_MMIO] + i;
396 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
398 sysbus_create_simple("virtio-mmio", base, pic[irq]);
401 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
402 char *nodename;
403 int irq = vbi->irqmap[VIRT_MMIO] + i;
404 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
406 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
407 qemu_fdt_add_subnode(vbi->fdt, nodename);
408 qemu_fdt_setprop_string(vbi->fdt, nodename,
409 "compatible", "virtio,mmio");
410 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
411 2, base, 2, size);
412 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
413 GIC_FDT_IRQ_TYPE_SPI, irq,
414 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
415 g_free(nodename);
419 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
421 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
423 *fdt_size = board->fdt_size;
424 return board->fdt;
427 static void machvirt_init(MachineState *machine)
429 qemu_irq pic[NUM_IRQS];
430 MemoryRegion *sysmem = get_system_memory();
431 int n;
432 MemoryRegion *ram = g_new(MemoryRegion, 1);
433 const char *cpu_model = machine->cpu_model;
434 VirtBoardInfo *vbi;
436 if (!cpu_model) {
437 cpu_model = "cortex-a15";
440 vbi = find_machine_info(cpu_model);
442 if (!vbi) {
443 error_report("mach-virt: CPU %s not supported", cpu_model);
444 exit(1);
447 vbi->smp_cpus = smp_cpus;
450 * Only supported method of starting secondary CPUs is PSCI and
451 * PSCI is not yet supported with TCG, so limit smp_cpus to 1
452 * if we're not using KVM.
454 if (!kvm_enabled() && smp_cpus > 1) {
455 error_report("mach-virt: must enable KVM to use multiple CPUs");
456 exit(1);
459 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
460 error_report("mach-virt: cannot model more than 30GB RAM");
461 exit(1);
464 create_fdt(vbi);
465 fdt_add_timer_nodes(vbi);
467 for (n = 0; n < smp_cpus; n++) {
468 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
469 Object *cpuobj;
471 if (!oc) {
472 fprintf(stderr, "Unable to find CPU definition\n");
473 exit(1);
475 cpuobj = object_new(object_class_get_name(oc));
477 /* Secondary CPUs start in PSCI powered-down state */
478 if (n > 0) {
479 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
482 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
483 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
484 "reset-cbar", &error_abort);
487 object_property_set_bool(cpuobj, true, "realized", NULL);
489 fdt_add_cpu_nodes(vbi);
490 fdt_add_psci_node(vbi);
492 memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size);
493 vmstate_register_ram_global(ram);
494 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
496 create_gic(vbi, pic);
498 create_uart(vbi, pic);
500 create_rtc(vbi, pic);
502 /* Create mmio transports, so the user can create virtio backends
503 * (which will be automatically plugged in to the transports). If
504 * no backend is created the transport will just sit harmlessly idle.
506 create_virtio_devices(vbi, pic);
508 vbi->bootinfo.ram_size = machine->ram_size;
509 vbi->bootinfo.kernel_filename = machine->kernel_filename;
510 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
511 vbi->bootinfo.initrd_filename = machine->initrd_filename;
512 vbi->bootinfo.nb_cpus = smp_cpus;
513 vbi->bootinfo.board_id = -1;
514 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
515 vbi->bootinfo.get_dtb = machvirt_dtb;
516 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
519 static QEMUMachine machvirt_a15_machine = {
520 .name = "virt",
521 .desc = "ARM Virtual Machine",
522 .init = machvirt_init,
523 .max_cpus = 4,
526 static void machvirt_machine_init(void)
528 qemu_register_machine(&machvirt_a15_machine);
531 machine_init(machvirt_machine_init);