exec: remove ram_addr argument from qemu_ram_block_from_host
[qemu.git] / cputlb.c
blob1ff6354b04ec8efbb67c8894b640f0e60ed48811
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
25 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "exec/exec-all.h"
32 #include "tcg/tcg.h"
34 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
35 /* #define DEBUG_TLB */
36 /* #define DEBUG_TLB_LOG */
38 #ifdef DEBUG_TLB
39 # define DEBUG_TLB_GATE 1
40 # ifdef DEBUG_TLB_LOG
41 # define DEBUG_TLB_LOG_GATE 1
42 # else
43 # define DEBUG_TLB_LOG_GATE 0
44 # endif
45 #else
46 # define DEBUG_TLB_GATE 0
47 # define DEBUG_TLB_LOG_GATE 0
48 #endif
50 #define tlb_debug(fmt, ...) do { \
51 if (DEBUG_TLB_LOG_GATE) { \
52 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
53 ## __VA_ARGS__); \
54 } else if (DEBUG_TLB_GATE) { \
55 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
56 } \
57 } while (0)
59 /* statistics */
60 int tlb_flush_count;
62 /* NOTE:
63 * If flush_global is true (the usual case), flush all tlb entries.
64 * If flush_global is false, flush (at least) all tlb entries not
65 * marked global.
67 * Since QEMU doesn't currently implement a global/not-global flag
68 * for tlb entries, at the moment tlb_flush() will also flush all
69 * tlb entries in the flush_global == false case. This is OK because
70 * CPU architectures generally permit an implementation to drop
71 * entries from the TLB at any time, so flushing more entries than
72 * required is only an efficiency issue, not a correctness issue.
74 void tlb_flush(CPUState *cpu, int flush_global)
76 CPUArchState *env = cpu->env_ptr;
78 tlb_debug("(%d)\n", flush_global);
80 memset(env->tlb_table, -1, sizeof(env->tlb_table));
81 memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
82 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
84 env->vtlb_index = 0;
85 env->tlb_flush_addr = -1;
86 env->tlb_flush_mask = 0;
87 tlb_flush_count++;
90 static inline void v_tlb_flush_by_mmuidx(CPUState *cpu, va_list argp)
92 CPUArchState *env = cpu->env_ptr;
94 tlb_debug("start\n");
96 for (;;) {
97 int mmu_idx = va_arg(argp, int);
99 if (mmu_idx < 0) {
100 break;
103 tlb_debug("%d\n", mmu_idx);
105 memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
106 memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
109 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
112 void tlb_flush_by_mmuidx(CPUState *cpu, ...)
114 va_list argp;
115 va_start(argp, cpu);
116 v_tlb_flush_by_mmuidx(cpu, argp);
117 va_end(argp);
120 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
122 if (addr == (tlb_entry->addr_read &
123 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
124 addr == (tlb_entry->addr_write &
125 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
126 addr == (tlb_entry->addr_code &
127 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
128 memset(tlb_entry, -1, sizeof(*tlb_entry));
132 void tlb_flush_page(CPUState *cpu, target_ulong addr)
134 CPUArchState *env = cpu->env_ptr;
135 int i;
136 int mmu_idx;
138 tlb_debug("page :" TARGET_FMT_lx "\n", addr);
140 /* Check if we need to flush due to large pages. */
141 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
142 tlb_debug("forcing full flush ("
143 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
144 env->tlb_flush_addr, env->tlb_flush_mask);
146 tlb_flush(cpu, 1);
147 return;
150 addr &= TARGET_PAGE_MASK;
151 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
152 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
153 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
156 /* check whether there are entries that need to be flushed in the vtlb */
157 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
158 int k;
159 for (k = 0; k < CPU_VTLB_SIZE; k++) {
160 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
164 tb_flush_jmp_cache(cpu, addr);
167 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...)
169 CPUArchState *env = cpu->env_ptr;
170 int i, k;
171 va_list argp;
173 va_start(argp, addr);
175 tlb_debug("addr "TARGET_FMT_lx"\n", addr);
177 /* Check if we need to flush due to large pages. */
178 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
179 tlb_debug("forced full flush ("
180 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
181 env->tlb_flush_addr, env->tlb_flush_mask);
183 v_tlb_flush_by_mmuidx(cpu, argp);
184 va_end(argp);
185 return;
188 addr &= TARGET_PAGE_MASK;
189 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
191 for (;;) {
192 int mmu_idx = va_arg(argp, int);
194 if (mmu_idx < 0) {
195 break;
198 tlb_debug("idx %d\n", mmu_idx);
200 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
202 /* check whether there are vltb entries that need to be flushed */
203 for (k = 0; k < CPU_VTLB_SIZE; k++) {
204 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
207 va_end(argp);
209 tb_flush_jmp_cache(cpu, addr);
212 /* update the TLBs so that writes to code in the virtual page 'addr'
213 can be detected */
214 void tlb_protect_code(ram_addr_t ram_addr)
216 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
217 DIRTY_MEMORY_CODE);
220 /* update the TLB so that writes in physical page 'phys_addr' are no longer
221 tested for self modifying code */
222 void tlb_unprotect_code(ram_addr_t ram_addr)
224 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
227 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
229 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
232 void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
233 uintptr_t length)
235 uintptr_t addr;
237 if (tlb_is_dirty_ram(tlb_entry)) {
238 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
239 if ((addr - start) < length) {
240 tlb_entry->addr_write |= TLB_NOTDIRTY;
245 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
247 ram_addr_t ram_addr;
249 if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
250 fprintf(stderr, "Bad ram pointer %p\n", ptr);
251 abort();
253 return ram_addr;
256 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
258 CPUArchState *env;
260 int mmu_idx;
262 env = cpu->env_ptr;
263 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
264 unsigned int i;
266 for (i = 0; i < CPU_TLB_SIZE; i++) {
267 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
268 start1, length);
271 for (i = 0; i < CPU_VTLB_SIZE; i++) {
272 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
273 start1, length);
278 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
280 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
281 tlb_entry->addr_write = vaddr;
285 /* update the TLB corresponding to virtual page vaddr
286 so that it is no longer dirty */
287 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
289 CPUArchState *env = cpu->env_ptr;
290 int i;
291 int mmu_idx;
293 vaddr &= TARGET_PAGE_MASK;
294 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
295 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
296 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
299 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
300 int k;
301 for (k = 0; k < CPU_VTLB_SIZE; k++) {
302 tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
307 /* Our TLB does not support large pages, so remember the area covered by
308 large pages and trigger a full TLB flush if these are invalidated. */
309 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
310 target_ulong size)
312 target_ulong mask = ~(size - 1);
314 if (env->tlb_flush_addr == (target_ulong)-1) {
315 env->tlb_flush_addr = vaddr & mask;
316 env->tlb_flush_mask = mask;
317 return;
319 /* Extend the existing region to include the new page.
320 This is a compromise between unnecessary flushes and the cost
321 of maintaining a full variable size TLB. */
322 mask &= env->tlb_flush_mask;
323 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
324 mask <<= 1;
326 env->tlb_flush_addr &= mask;
327 env->tlb_flush_mask = mask;
330 /* Add a new TLB entry. At most one entry for a given virtual address
331 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
332 * supplied size is only used by tlb_flush_page.
334 * Called from TCG-generated code, which is under an RCU read-side
335 * critical section.
337 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
338 hwaddr paddr, MemTxAttrs attrs, int prot,
339 int mmu_idx, target_ulong size)
341 CPUArchState *env = cpu->env_ptr;
342 MemoryRegionSection *section;
343 unsigned int index;
344 target_ulong address;
345 target_ulong code_address;
346 uintptr_t addend;
347 CPUTLBEntry *te;
348 hwaddr iotlb, xlat, sz;
349 unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
350 int asidx = cpu_asidx_from_attrs(cpu, attrs);
352 assert(size >= TARGET_PAGE_SIZE);
353 if (size != TARGET_PAGE_SIZE) {
354 tlb_add_large_page(env, vaddr, size);
357 sz = size;
358 section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz);
359 assert(sz >= TARGET_PAGE_SIZE);
361 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
362 " prot=%x idx=%d\n",
363 vaddr, paddr, prot, mmu_idx);
365 address = vaddr;
366 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
367 /* IO memory case */
368 address |= TLB_MMIO;
369 addend = 0;
370 } else {
371 /* TLB_MMIO for rom/romd handled below */
372 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
375 code_address = address;
376 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
377 prot, &address);
379 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
380 te = &env->tlb_table[mmu_idx][index];
382 /* do not discard the translation in te, evict it into a victim tlb */
383 env->tlb_v_table[mmu_idx][vidx] = *te;
384 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
386 /* refill the tlb */
387 env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
388 env->iotlb[mmu_idx][index].attrs = attrs;
389 te->addend = addend - vaddr;
390 if (prot & PAGE_READ) {
391 te->addr_read = address;
392 } else {
393 te->addr_read = -1;
396 if (prot & PAGE_EXEC) {
397 te->addr_code = code_address;
398 } else {
399 te->addr_code = -1;
401 if (prot & PAGE_WRITE) {
402 if ((memory_region_is_ram(section->mr) && section->readonly)
403 || memory_region_is_romd(section->mr)) {
404 /* Write access calls the I/O callback. */
405 te->addr_write = address | TLB_MMIO;
406 } else if (memory_region_is_ram(section->mr)
407 && cpu_physical_memory_is_clean(
408 memory_region_get_ram_addr(section->mr) + xlat)) {
409 te->addr_write = address | TLB_NOTDIRTY;
410 } else {
411 te->addr_write = address;
413 } else {
414 te->addr_write = -1;
418 /* Add a new TLB entry, but without specifying the memory
419 * transaction attributes to be used.
421 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
422 hwaddr paddr, int prot,
423 int mmu_idx, target_ulong size)
425 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
426 prot, mmu_idx, size);
429 /* NOTE: this function can trigger an exception */
430 /* NOTE2: the returned address is not exactly the physical address: it
431 * is actually a ram_addr_t (in system mode; the user mode emulation
432 * version of this function returns a guest virtual address).
434 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
436 int mmu_idx, page_index, pd;
437 void *p;
438 MemoryRegion *mr;
439 CPUState *cpu = ENV_GET_CPU(env1);
440 CPUIOTLBEntry *iotlbentry;
442 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
443 mmu_idx = cpu_mmu_index(env1, true);
444 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
445 (addr & TARGET_PAGE_MASK))) {
446 cpu_ldub_code(env1, addr);
448 iotlbentry = &env1->iotlb[mmu_idx][page_index];
449 pd = iotlbentry->addr & ~TARGET_PAGE_MASK;
450 mr = iotlb_to_region(cpu, pd, iotlbentry->attrs);
451 if (memory_region_is_unassigned(mr)) {
452 CPUClass *cc = CPU_GET_CLASS(cpu);
454 if (cc->do_unassigned_access) {
455 cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
456 } else {
457 cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
458 TARGET_FMT_lx "\n", addr);
461 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
462 return qemu_ram_addr_from_host_nofail(p);
465 #define MMUSUFFIX _mmu
467 #define SHIFT 0
468 #include "softmmu_template.h"
470 #define SHIFT 1
471 #include "softmmu_template.h"
473 #define SHIFT 2
474 #include "softmmu_template.h"
476 #define SHIFT 3
477 #include "softmmu_template.h"
478 #undef MMUSUFFIX
480 #define MMUSUFFIX _cmmu
481 #undef GETPC_ADJ
482 #define GETPC_ADJ 0
483 #undef GETRA
484 #define GETRA() ((uintptr_t)0)
485 #define SOFTMMU_CODE_ACCESS
487 #define SHIFT 0
488 #include "softmmu_template.h"
490 #define SHIFT 1
491 #include "softmmu_template.h"
493 #define SHIFT 2
494 #include "softmmu_template.h"
496 #define SHIFT 3
497 #include "softmmu_template.h"