apic: Fix accidental use of SoftFloat uint32 type
[qemu.git] / linux-user / qemu.h
blobe66a02bce33b5c99486e26b443bcf94572d4cb63
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include <signal.h>
5 #include <string.h>
7 #include "cpu.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
14 #include "qemu-types.h"
16 #include "thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "target_signal.h"
20 #include "gdbstub.h"
21 #include "qemu-queue.h"
23 #if defined(CONFIG_USE_NPTL)
24 #define THREAD __thread
25 #else
26 #define THREAD
27 #endif
29 /* This struct is used to hold certain information about the image.
30 * Basically, it replicates in user space what would be certain
31 * task_struct fields in the kernel
33 struct image_info {
34 abi_ulong load_bias;
35 abi_ulong load_addr;
36 abi_ulong start_code;
37 abi_ulong end_code;
38 abi_ulong start_data;
39 abi_ulong end_data;
40 abi_ulong start_brk;
41 abi_ulong brk;
42 abi_ulong start_mmap;
43 abi_ulong mmap;
44 abi_ulong rss;
45 abi_ulong start_stack;
46 abi_ulong stack_limit;
47 abi_ulong entry;
48 abi_ulong code_offset;
49 abi_ulong data_offset;
50 abi_ulong saved_auxv;
51 abi_ulong arg_start;
52 abi_ulong arg_end;
53 char **host_argv;
54 int personality;
57 #ifdef TARGET_I386
58 /* Information about the current linux thread */
59 struct vm86_saved_state {
60 uint32_t eax; /* return code */
61 uint32_t ebx;
62 uint32_t ecx;
63 uint32_t edx;
64 uint32_t esi;
65 uint32_t edi;
66 uint32_t ebp;
67 uint32_t esp;
68 uint32_t eflags;
69 uint32_t eip;
70 uint16_t cs, ss, ds, es, fs, gs;
72 #endif
74 #ifdef TARGET_ARM
75 /* FPU emulator */
76 #include "nwfpe/fpa11.h"
77 #endif
79 #define MAX_SIGQUEUE_SIZE 1024
81 struct sigqueue {
82 struct sigqueue *next;
83 target_siginfo_t info;
86 struct emulated_sigtable {
87 int pending; /* true if signal is pending */
88 struct sigqueue *first;
89 struct sigqueue info; /* in order to always have memory for the
90 first signal, we put it here */
93 /* NOTE: we force a big alignment so that the stack stored after is
94 aligned too */
95 typedef struct TaskState {
96 pid_t ts_tid; /* tid (or pid) of this task */
97 #ifdef TARGET_ARM
98 /* FPA state */
99 FPA11 fpa;
100 int swi_errno;
101 #endif
102 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
103 abi_ulong target_v86;
104 struct vm86_saved_state vm86_saved_regs;
105 struct target_vm86plus_struct vm86plus;
106 uint32_t v86flags;
107 uint32_t v86mask;
108 #endif
109 #ifdef CONFIG_USE_NPTL
110 abi_ulong child_tidptr;
111 #endif
112 #ifdef TARGET_M68K
113 int sim_syscalls;
114 #endif
115 #if defined(TARGET_ARM) || defined(TARGET_M68K)
116 /* Extra fields for semihosted binaries. */
117 uint32_t stack_base;
118 uint32_t heap_base;
119 uint32_t heap_limit;
120 #endif
121 int used; /* non zero if used */
122 struct image_info *info;
123 struct linux_binprm *bprm;
125 struct emulated_sigtable sigtab[TARGET_NSIG];
126 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
127 struct sigqueue *first_free; /* first free siginfo queue entry */
128 int signal_pending; /* non zero if a signal may be pending */
129 } __attribute__((aligned(16))) TaskState;
131 extern char *exec_path;
132 void init_task_state(TaskState *ts);
133 void task_settid(TaskState *);
134 void stop_all_tasks(void);
135 extern const char *qemu_uname_release;
136 extern unsigned long mmap_min_addr;
138 /* ??? See if we can avoid exposing so much of the loader internals. */
140 * MAX_ARG_PAGES defines the number of pages allocated for arguments
141 * and envelope for the new program. 32 should suffice, this gives
142 * a maximum env+arg of 128kB w/4KB pages!
144 #define MAX_ARG_PAGES 33
146 /* Read a good amount of data initially, to hopefully get all the
147 program headers loaded. */
148 #define BPRM_BUF_SIZE 1024
151 * This structure is used to hold the arguments that are
152 * used when loading binaries.
154 struct linux_binprm {
155 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
156 void *page[MAX_ARG_PAGES];
157 abi_ulong p;
158 int fd;
159 int e_uid, e_gid;
160 int argc, envc;
161 char **argv;
162 char **envp;
163 char * filename; /* Name of binary */
164 int (*core_dump)(int, const CPUState *); /* coredump routine */
167 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
168 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
169 abi_ulong stringp, int push_ptr);
170 int loader_exec(const char * filename, char ** argv, char ** envp,
171 struct target_pt_regs * regs, struct image_info *infop,
172 struct linux_binprm *);
174 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
175 struct image_info * info);
176 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
177 struct image_info * info);
179 abi_long memcpy_to_target(abi_ulong dest, const void *src,
180 unsigned long len);
181 void target_set_brk(abi_ulong new_brk);
182 abi_long do_brk(abi_ulong new_brk);
183 void syscall_init(void);
184 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
185 abi_long arg2, abi_long arg3, abi_long arg4,
186 abi_long arg5, abi_long arg6);
187 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
188 extern THREAD CPUState *thread_env;
189 void cpu_loop(CPUState *env);
190 char *target_strerror(int err);
191 int get_osversion(void);
192 void fork_start(void);
193 void fork_end(int child);
195 #include "qemu-log.h"
197 /* strace.c */
198 void print_syscall(int num,
199 abi_long arg1, abi_long arg2, abi_long arg3,
200 abi_long arg4, abi_long arg5, abi_long arg6);
201 void print_syscall_ret(int num, abi_long arg1);
202 extern int do_strace;
204 /* signal.c */
205 void process_pending_signals(CPUState *cpu_env);
206 void signal_init(void);
207 int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
208 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
209 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
210 int target_to_host_signal(int sig);
211 int host_to_target_signal(int sig);
212 long do_sigreturn(CPUState *env);
213 long do_rt_sigreturn(CPUState *env);
214 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
216 #ifdef TARGET_I386
217 /* vm86.c */
218 void save_v86_state(CPUX86State *env);
219 void handle_vm86_trap(CPUX86State *env, int trapno);
220 void handle_vm86_fault(CPUX86State *env);
221 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
222 #elif defined(TARGET_SPARC64)
223 void sparc64_set_context(CPUSPARCState *env);
224 void sparc64_get_context(CPUSPARCState *env);
225 #endif
227 /* mmap.c */
228 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
229 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
230 int flags, int fd, abi_ulong offset);
231 int target_munmap(abi_ulong start, abi_ulong len);
232 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
233 abi_ulong new_size, unsigned long flags,
234 abi_ulong new_addr);
235 int target_msync(abi_ulong start, abi_ulong len, int flags);
236 extern unsigned long last_brk;
237 void mmap_lock(void);
238 void mmap_unlock(void);
239 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
240 void cpu_list_lock(void);
241 void cpu_list_unlock(void);
242 #if defined(CONFIG_USE_NPTL)
243 void mmap_fork_start(void);
244 void mmap_fork_end(int child);
245 #endif
247 /* main.c */
248 extern unsigned long guest_stack_size;
250 /* user access */
252 #define VERIFY_READ 0
253 #define VERIFY_WRITE 1 /* implies read access */
255 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
257 return page_check_range((target_ulong)addr, size,
258 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
261 /* NOTE __get_user and __put_user use host pointers and don't check access. */
262 /* These are usually used to access struct data members once the
263 * struct has been locked - usually with lock_user_struct().
265 #define __put_user(x, hptr)\
267 switch(sizeof(*hptr)) {\
268 case 1:\
269 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
270 break;\
271 case 2:\
272 *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\
273 break;\
274 case 4:\
275 *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\
276 break;\
277 case 8:\
278 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
279 break;\
280 default:\
281 abort();\
286 #define __get_user(x, hptr) \
288 switch(sizeof(*hptr)) {\
289 case 1:\
290 x = (typeof(*hptr))*(uint8_t *)(hptr);\
291 break;\
292 case 2:\
293 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
294 break;\
295 case 4:\
296 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
297 break;\
298 case 8:\
299 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
300 break;\
301 default:\
302 /* avoid warning */\
303 x = 0;\
304 abort();\
309 /* put_user()/get_user() take a guest address and check access */
310 /* These are usually used to access an atomic data type, such as an int,
311 * that has been passed by address. These internally perform locking
312 * and unlocking on the data type.
314 #define put_user(x, gaddr, target_type) \
315 ({ \
316 abi_ulong __gaddr = (gaddr); \
317 target_type *__hptr; \
318 abi_long __ret; \
319 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
320 __ret = __put_user((x), __hptr); \
321 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
322 } else \
323 __ret = -TARGET_EFAULT; \
324 __ret; \
327 #define get_user(x, gaddr, target_type) \
328 ({ \
329 abi_ulong __gaddr = (gaddr); \
330 target_type *__hptr; \
331 abi_long __ret; \
332 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
333 __ret = __get_user((x), __hptr); \
334 unlock_user(__hptr, __gaddr, 0); \
335 } else { \
336 /* avoid warning */ \
337 (x) = 0; \
338 __ret = -TARGET_EFAULT; \
340 __ret; \
343 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
344 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
345 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
346 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
347 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
348 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
349 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
350 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
351 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
352 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
354 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
355 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
356 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
357 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
358 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
359 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
360 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
361 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
362 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
363 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
365 /* copy_from_user() and copy_to_user() are usually used to copy data
366 * buffers between the target and host. These internally perform
367 * locking/unlocking of the memory.
369 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
370 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
372 /* Functions for accessing guest memory. The tget and tput functions
373 read/write single values, byteswapping as neccessary. The lock_user
374 gets a pointer to a contiguous area of guest memory, but does not perform
375 and byteswapping. lock_user may return either a pointer to the guest
376 memory, or a temporary buffer. */
378 /* Lock an area of guest memory into the host. If copy is true then the
379 host area will have the same contents as the guest. */
380 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
382 if (!access_ok(type, guest_addr, len))
383 return NULL;
384 #ifdef DEBUG_REMAP
386 void *addr;
387 addr = malloc(len);
388 if (copy)
389 memcpy(addr, g2h(guest_addr), len);
390 else
391 memset(addr, 0, len);
392 return addr;
394 #else
395 return g2h(guest_addr);
396 #endif
399 /* Unlock an area of guest memory. The first LEN bytes must be
400 flushed back to guest memory. host_ptr = NULL is explicitly
401 allowed and does nothing. */
402 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
403 long len)
406 #ifdef DEBUG_REMAP
407 if (!host_ptr)
408 return;
409 if (host_ptr == g2h(guest_addr))
410 return;
411 if (len > 0)
412 memcpy(g2h(guest_addr), host_ptr, len);
413 free(host_ptr);
414 #endif
417 /* Return the length of a string in target memory or -TARGET_EFAULT if
418 access error. */
419 abi_long target_strlen(abi_ulong gaddr);
421 /* Like lock_user but for null terminated strings. */
422 static inline void *lock_user_string(abi_ulong guest_addr)
424 abi_long len;
425 len = target_strlen(guest_addr);
426 if (len < 0)
427 return NULL;
428 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
431 /* Helper macros for locking/ulocking a target struct. */
432 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
433 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
434 #define unlock_user_struct(host_ptr, guest_addr, copy) \
435 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
437 #if defined(CONFIG_USE_NPTL)
438 #include <pthread.h>
439 #endif
441 #endif /* QEMU_H */