exec.c: Convert subpage memory ops to _with_attrs
[qemu.git] / arch_init.c
blob4c8fceed9563d4660ccbadc8e4ca13b487543b7a
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "hw/acpi/acpi.h"
54 #include "qemu/host-utils.h"
55 #include "qemu/rcu_queue.h"
57 #ifdef DEBUG_ARCH_INIT
58 #define DPRINTF(fmt, ...) \
59 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
60 #else
61 #define DPRINTF(fmt, ...) \
62 do { } while (0)
63 #endif
65 #ifdef TARGET_SPARC
66 int graphic_width = 1024;
67 int graphic_height = 768;
68 int graphic_depth = 8;
69 #else
70 int graphic_width = 800;
71 int graphic_height = 600;
72 int graphic_depth = 32;
73 #endif
76 #if defined(TARGET_ALPHA)
77 #define QEMU_ARCH QEMU_ARCH_ALPHA
78 #elif defined(TARGET_ARM)
79 #define QEMU_ARCH QEMU_ARCH_ARM
80 #elif defined(TARGET_CRIS)
81 #define QEMU_ARCH QEMU_ARCH_CRIS
82 #elif defined(TARGET_I386)
83 #define QEMU_ARCH QEMU_ARCH_I386
84 #elif defined(TARGET_M68K)
85 #define QEMU_ARCH QEMU_ARCH_M68K
86 #elif defined(TARGET_LM32)
87 #define QEMU_ARCH QEMU_ARCH_LM32
88 #elif defined(TARGET_MICROBLAZE)
89 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
90 #elif defined(TARGET_MIPS)
91 #define QEMU_ARCH QEMU_ARCH_MIPS
92 #elif defined(TARGET_MOXIE)
93 #define QEMU_ARCH QEMU_ARCH_MOXIE
94 #elif defined(TARGET_OPENRISC)
95 #define QEMU_ARCH QEMU_ARCH_OPENRISC
96 #elif defined(TARGET_PPC)
97 #define QEMU_ARCH QEMU_ARCH_PPC
98 #elif defined(TARGET_S390X)
99 #define QEMU_ARCH QEMU_ARCH_S390X
100 #elif defined(TARGET_SH4)
101 #define QEMU_ARCH QEMU_ARCH_SH4
102 #elif defined(TARGET_SPARC)
103 #define QEMU_ARCH QEMU_ARCH_SPARC
104 #elif defined(TARGET_XTENSA)
105 #define QEMU_ARCH QEMU_ARCH_XTENSA
106 #elif defined(TARGET_UNICORE32)
107 #define QEMU_ARCH QEMU_ARCH_UNICORE32
108 #elif defined(TARGET_TRICORE)
109 #define QEMU_ARCH QEMU_ARCH_TRICORE
110 #endif
112 const uint32_t arch_type = QEMU_ARCH;
113 static bool mig_throttle_on;
114 static int dirty_rate_high_cnt;
115 static void check_guest_throttling(void);
117 static uint64_t bitmap_sync_count;
119 /***********************************************************/
120 /* ram save/restore */
122 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
123 #define RAM_SAVE_FLAG_COMPRESS 0x02
124 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
125 #define RAM_SAVE_FLAG_PAGE 0x08
126 #define RAM_SAVE_FLAG_EOS 0x10
127 #define RAM_SAVE_FLAG_CONTINUE 0x20
128 #define RAM_SAVE_FLAG_XBZRLE 0x40
129 /* 0x80 is reserved in migration.h start with 0x100 next */
131 static struct defconfig_file {
132 const char *filename;
133 /* Indicates it is an user config file (disabled by -no-user-config) */
134 bool userconfig;
135 } default_config_files[] = {
136 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
137 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
138 { NULL }, /* end of list */
141 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
143 int qemu_read_default_config_files(bool userconfig)
145 int ret;
146 struct defconfig_file *f;
148 for (f = default_config_files; f->filename; f++) {
149 if (!userconfig && f->userconfig) {
150 continue;
152 ret = qemu_read_config_file(f->filename);
153 if (ret < 0 && ret != -ENOENT) {
154 return ret;
158 return 0;
161 static inline bool is_zero_range(uint8_t *p, uint64_t size)
163 return buffer_find_nonzero_offset(p, size) == size;
166 /* struct contains XBZRLE cache and a static page
167 used by the compression */
168 static struct {
169 /* buffer used for XBZRLE encoding */
170 uint8_t *encoded_buf;
171 /* buffer for storing page content */
172 uint8_t *current_buf;
173 /* Cache for XBZRLE, Protected by lock. */
174 PageCache *cache;
175 QemuMutex lock;
176 } XBZRLE;
178 /* buffer used for XBZRLE decoding */
179 static uint8_t *xbzrle_decoded_buf;
181 static void XBZRLE_cache_lock(void)
183 if (migrate_use_xbzrle())
184 qemu_mutex_lock(&XBZRLE.lock);
187 static void XBZRLE_cache_unlock(void)
189 if (migrate_use_xbzrle())
190 qemu_mutex_unlock(&XBZRLE.lock);
194 * called from qmp_migrate_set_cache_size in main thread, possibly while
195 * a migration is in progress.
196 * A running migration maybe using the cache and might finish during this
197 * call, hence changes to the cache are protected by XBZRLE.lock().
199 int64_t xbzrle_cache_resize(int64_t new_size)
201 PageCache *new_cache;
202 int64_t ret;
204 if (new_size < TARGET_PAGE_SIZE) {
205 return -1;
208 XBZRLE_cache_lock();
210 if (XBZRLE.cache != NULL) {
211 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
212 goto out_new_size;
214 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
215 TARGET_PAGE_SIZE);
216 if (!new_cache) {
217 error_report("Error creating cache");
218 ret = -1;
219 goto out;
222 cache_fini(XBZRLE.cache);
223 XBZRLE.cache = new_cache;
226 out_new_size:
227 ret = pow2floor(new_size);
228 out:
229 XBZRLE_cache_unlock();
230 return ret;
233 /* accounting for migration statistics */
234 typedef struct AccountingInfo {
235 uint64_t dup_pages;
236 uint64_t skipped_pages;
237 uint64_t norm_pages;
238 uint64_t iterations;
239 uint64_t xbzrle_bytes;
240 uint64_t xbzrle_pages;
241 uint64_t xbzrle_cache_miss;
242 double xbzrle_cache_miss_rate;
243 uint64_t xbzrle_overflows;
244 } AccountingInfo;
246 static AccountingInfo acct_info;
248 static void acct_clear(void)
250 memset(&acct_info, 0, sizeof(acct_info));
253 uint64_t dup_mig_bytes_transferred(void)
255 return acct_info.dup_pages * TARGET_PAGE_SIZE;
258 uint64_t dup_mig_pages_transferred(void)
260 return acct_info.dup_pages;
263 uint64_t skipped_mig_bytes_transferred(void)
265 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
268 uint64_t skipped_mig_pages_transferred(void)
270 return acct_info.skipped_pages;
273 uint64_t norm_mig_bytes_transferred(void)
275 return acct_info.norm_pages * TARGET_PAGE_SIZE;
278 uint64_t norm_mig_pages_transferred(void)
280 return acct_info.norm_pages;
283 uint64_t xbzrle_mig_bytes_transferred(void)
285 return acct_info.xbzrle_bytes;
288 uint64_t xbzrle_mig_pages_transferred(void)
290 return acct_info.xbzrle_pages;
293 uint64_t xbzrle_mig_pages_cache_miss(void)
295 return acct_info.xbzrle_cache_miss;
298 double xbzrle_mig_cache_miss_rate(void)
300 return acct_info.xbzrle_cache_miss_rate;
303 uint64_t xbzrle_mig_pages_overflow(void)
305 return acct_info.xbzrle_overflows;
308 /* This is the last block that we have visited serching for dirty pages
310 static RAMBlock *last_seen_block;
311 /* This is the last block from where we have sent data */
312 static RAMBlock *last_sent_block;
313 static ram_addr_t last_offset;
314 static unsigned long *migration_bitmap;
315 static uint64_t migration_dirty_pages;
316 static uint32_t last_version;
317 static bool ram_bulk_stage;
320 * save_page_header: Write page header to wire
322 * If this is the 1st block, it also writes the block identification
324 * Returns: Number of bytes written
326 * @f: QEMUFile where to send the data
327 * @block: block that contains the page we want to send
328 * @offset: offset inside the block for the page
329 * in the lower bits, it contains flags
331 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
333 size_t size;
335 qemu_put_be64(f, offset);
336 size = 8;
338 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
339 qemu_put_byte(f, strlen(block->idstr));
340 qemu_put_buffer(f, (uint8_t *)block->idstr,
341 strlen(block->idstr));
342 size += 1 + strlen(block->idstr);
344 return size;
347 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
348 * The important thing is that a stale (not-yet-0'd) page be replaced
349 * by the new data.
350 * As a bonus, if the page wasn't in the cache it gets added so that
351 * when a small write is made into the 0'd page it gets XBZRLE sent
353 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
355 if (ram_bulk_stage || !migrate_use_xbzrle()) {
356 return;
359 /* We don't care if this fails to allocate a new cache page
360 * as long as it updated an old one */
361 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
362 bitmap_sync_count);
365 #define ENCODING_FLAG_XBZRLE 0x1
368 * save_xbzrle_page: compress and send current page
370 * Returns: 1 means that we wrote the page
371 * 0 means that page is identical to the one already sent
372 * -1 means that xbzrle would be longer than normal
374 * @f: QEMUFile where to send the data
375 * @current_data:
376 * @current_addr:
377 * @block: block that contains the page we want to send
378 * @offset: offset inside the block for the page
379 * @last_stage: if we are at the completion stage
380 * @bytes_transferred: increase it with the number of transferred bytes
382 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
383 ram_addr_t current_addr, RAMBlock *block,
384 ram_addr_t offset, bool last_stage,
385 uint64_t *bytes_transferred)
387 int encoded_len = 0, bytes_xbzrle;
388 uint8_t *prev_cached_page;
390 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
391 acct_info.xbzrle_cache_miss++;
392 if (!last_stage) {
393 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
394 bitmap_sync_count) == -1) {
395 return -1;
396 } else {
397 /* update *current_data when the page has been
398 inserted into cache */
399 *current_data = get_cached_data(XBZRLE.cache, current_addr);
402 return -1;
405 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
407 /* save current buffer into memory */
408 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
410 /* XBZRLE encoding (if there is no overflow) */
411 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
412 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
413 TARGET_PAGE_SIZE);
414 if (encoded_len == 0) {
415 DPRINTF("Skipping unmodified page\n");
416 return 0;
417 } else if (encoded_len == -1) {
418 DPRINTF("Overflow\n");
419 acct_info.xbzrle_overflows++;
420 /* update data in the cache */
421 if (!last_stage) {
422 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
423 *current_data = prev_cached_page;
425 return -1;
428 /* we need to update the data in the cache, in order to get the same data */
429 if (!last_stage) {
430 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
433 /* Send XBZRLE based compressed page */
434 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
435 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
436 qemu_put_be16(f, encoded_len);
437 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
438 bytes_xbzrle += encoded_len + 1 + 2;
439 acct_info.xbzrle_pages++;
440 acct_info.xbzrle_bytes += bytes_xbzrle;
441 *bytes_transferred += bytes_xbzrle;
443 return 1;
446 static inline
447 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
448 ram_addr_t start)
450 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
451 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
452 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
453 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
455 unsigned long next;
457 if (ram_bulk_stage && nr > base) {
458 next = nr + 1;
459 } else {
460 next = find_next_bit(migration_bitmap, size, nr);
463 if (next < size) {
464 clear_bit(next, migration_bitmap);
465 migration_dirty_pages--;
467 return (next - base) << TARGET_PAGE_BITS;
470 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
472 bool ret;
473 int nr = addr >> TARGET_PAGE_BITS;
475 ret = test_and_set_bit(nr, migration_bitmap);
477 if (!ret) {
478 migration_dirty_pages++;
480 return ret;
483 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
485 ram_addr_t addr;
486 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
488 /* start address is aligned at the start of a word? */
489 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
490 int k;
491 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
492 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
494 for (k = page; k < page + nr; k++) {
495 if (src[k]) {
496 unsigned long new_dirty;
497 new_dirty = ~migration_bitmap[k];
498 migration_bitmap[k] |= src[k];
499 new_dirty &= src[k];
500 migration_dirty_pages += ctpopl(new_dirty);
501 src[k] = 0;
504 } else {
505 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
506 if (cpu_physical_memory_get_dirty(start + addr,
507 TARGET_PAGE_SIZE,
508 DIRTY_MEMORY_MIGRATION)) {
509 cpu_physical_memory_reset_dirty(start + addr,
510 TARGET_PAGE_SIZE,
511 DIRTY_MEMORY_MIGRATION);
512 migration_bitmap_set_dirty(start + addr);
519 /* Fix me: there are too many global variables used in migration process. */
520 static int64_t start_time;
521 static int64_t bytes_xfer_prev;
522 static int64_t num_dirty_pages_period;
524 static void migration_bitmap_sync_init(void)
526 start_time = 0;
527 bytes_xfer_prev = 0;
528 num_dirty_pages_period = 0;
531 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */
532 static void migration_bitmap_sync(void)
534 RAMBlock *block;
535 uint64_t num_dirty_pages_init = migration_dirty_pages;
536 MigrationState *s = migrate_get_current();
537 int64_t end_time;
538 int64_t bytes_xfer_now;
539 static uint64_t xbzrle_cache_miss_prev;
540 static uint64_t iterations_prev;
542 bitmap_sync_count++;
544 if (!bytes_xfer_prev) {
545 bytes_xfer_prev = ram_bytes_transferred();
548 if (!start_time) {
549 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
552 trace_migration_bitmap_sync_start();
553 address_space_sync_dirty_bitmap(&address_space_memory);
555 rcu_read_lock();
556 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
557 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
559 rcu_read_unlock();
561 trace_migration_bitmap_sync_end(migration_dirty_pages
562 - num_dirty_pages_init);
563 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
564 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
566 /* more than 1 second = 1000 millisecons */
567 if (end_time > start_time + 1000) {
568 if (migrate_auto_converge()) {
569 /* The following detection logic can be refined later. For now:
570 Check to see if the dirtied bytes is 50% more than the approx.
571 amount of bytes that just got transferred since the last time we
572 were in this routine. If that happens >N times (for now N==4)
573 we turn on the throttle down logic */
574 bytes_xfer_now = ram_bytes_transferred();
575 if (s->dirty_pages_rate &&
576 (num_dirty_pages_period * TARGET_PAGE_SIZE >
577 (bytes_xfer_now - bytes_xfer_prev)/2) &&
578 (dirty_rate_high_cnt++ > 4)) {
579 trace_migration_throttle();
580 mig_throttle_on = true;
581 dirty_rate_high_cnt = 0;
583 bytes_xfer_prev = bytes_xfer_now;
584 } else {
585 mig_throttle_on = false;
587 if (migrate_use_xbzrle()) {
588 if (iterations_prev != 0) {
589 acct_info.xbzrle_cache_miss_rate =
590 (double)(acct_info.xbzrle_cache_miss -
591 xbzrle_cache_miss_prev) /
592 (acct_info.iterations - iterations_prev);
594 iterations_prev = acct_info.iterations;
595 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
597 s->dirty_pages_rate = num_dirty_pages_period * 1000
598 / (end_time - start_time);
599 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
600 start_time = end_time;
601 num_dirty_pages_period = 0;
602 s->dirty_sync_count = bitmap_sync_count;
607 * ram_save_page: Send the given page to the stream
609 * Returns: Number of pages written.
611 * @f: QEMUFile where to send the data
612 * @block: block that contains the page we want to send
613 * @offset: offset inside the block for the page
614 * @last_stage: if we are at the completion stage
615 * @bytes_transferred: increase it with the number of transferred bytes
617 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
618 bool last_stage, uint64_t *bytes_transferred)
620 int pages = -1;
621 uint64_t bytes_xmit;
622 ram_addr_t current_addr;
623 MemoryRegion *mr = block->mr;
624 uint8_t *p;
625 int ret;
626 bool send_async = true;
628 p = memory_region_get_ram_ptr(mr) + offset;
630 /* In doubt sent page as normal */
631 bytes_xmit = 0;
632 ret = ram_control_save_page(f, block->offset,
633 offset, TARGET_PAGE_SIZE, &bytes_xmit);
634 if (bytes_xmit) {
635 *bytes_transferred += bytes_xmit;
636 pages = 1;
639 XBZRLE_cache_lock();
641 current_addr = block->offset + offset;
643 if (block == last_sent_block) {
644 offset |= RAM_SAVE_FLAG_CONTINUE;
646 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
647 if (ret != RAM_SAVE_CONTROL_DELAYED) {
648 if (bytes_xmit > 0) {
649 acct_info.norm_pages++;
650 } else if (bytes_xmit == 0) {
651 acct_info.dup_pages++;
654 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
655 acct_info.dup_pages++;
656 *bytes_transferred += save_page_header(f, block,
657 offset | RAM_SAVE_FLAG_COMPRESS);
658 qemu_put_byte(f, 0);
659 *bytes_transferred += 1;
660 pages = 1;
661 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
662 * page would be stale
664 xbzrle_cache_zero_page(current_addr);
665 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
666 pages = save_xbzrle_page(f, &p, current_addr, block,
667 offset, last_stage, bytes_transferred);
668 if (!last_stage) {
669 /* Can't send this cached data async, since the cache page
670 * might get updated before it gets to the wire
672 send_async = false;
676 /* XBZRLE overflow or normal page */
677 if (pages == -1) {
678 *bytes_transferred += save_page_header(f, block,
679 offset | RAM_SAVE_FLAG_PAGE);
680 if (send_async) {
681 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
682 } else {
683 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
685 *bytes_transferred += TARGET_PAGE_SIZE;
686 pages = 1;
687 acct_info.norm_pages++;
690 XBZRLE_cache_unlock();
692 return pages;
696 * ram_find_and_save_block: Finds a dirty page and sends it to f
698 * Called within an RCU critical section.
700 * Returns: The number of pages written
701 * 0 means no dirty pages
703 * @f: QEMUFile where to send the data
704 * @last_stage: if we are at the completion stage
705 * @bytes_transferred: increase it with the number of transferred bytes
708 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
709 uint64_t *bytes_transferred)
711 RAMBlock *block = last_seen_block;
712 ram_addr_t offset = last_offset;
713 bool complete_round = false;
714 int pages = 0;
715 MemoryRegion *mr;
717 if (!block)
718 block = QLIST_FIRST_RCU(&ram_list.blocks);
720 while (true) {
721 mr = block->mr;
722 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
723 if (complete_round && block == last_seen_block &&
724 offset >= last_offset) {
725 break;
727 if (offset >= block->used_length) {
728 offset = 0;
729 block = QLIST_NEXT_RCU(block, next);
730 if (!block) {
731 block = QLIST_FIRST_RCU(&ram_list.blocks);
732 complete_round = true;
733 ram_bulk_stage = false;
735 } else {
736 pages = ram_save_page(f, block, offset, last_stage,
737 bytes_transferred);
739 /* if page is unmodified, continue to the next */
740 if (pages > 0) {
741 last_sent_block = block;
742 break;
747 last_seen_block = block;
748 last_offset = offset;
750 return pages;
753 static uint64_t bytes_transferred;
755 void acct_update_position(QEMUFile *f, size_t size, bool zero)
757 uint64_t pages = size / TARGET_PAGE_SIZE;
758 if (zero) {
759 acct_info.dup_pages += pages;
760 } else {
761 acct_info.norm_pages += pages;
762 bytes_transferred += size;
763 qemu_update_position(f, size);
767 static ram_addr_t ram_save_remaining(void)
769 return migration_dirty_pages;
772 uint64_t ram_bytes_remaining(void)
774 return ram_save_remaining() * TARGET_PAGE_SIZE;
777 uint64_t ram_bytes_transferred(void)
779 return bytes_transferred;
782 uint64_t ram_bytes_total(void)
784 RAMBlock *block;
785 uint64_t total = 0;
787 rcu_read_lock();
788 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
789 total += block->used_length;
790 rcu_read_unlock();
791 return total;
794 void free_xbzrle_decoded_buf(void)
796 g_free(xbzrle_decoded_buf);
797 xbzrle_decoded_buf = NULL;
800 static void migration_end(void)
802 if (migration_bitmap) {
803 memory_global_dirty_log_stop();
804 g_free(migration_bitmap);
805 migration_bitmap = NULL;
808 XBZRLE_cache_lock();
809 if (XBZRLE.cache) {
810 cache_fini(XBZRLE.cache);
811 g_free(XBZRLE.encoded_buf);
812 g_free(XBZRLE.current_buf);
813 XBZRLE.cache = NULL;
814 XBZRLE.encoded_buf = NULL;
815 XBZRLE.current_buf = NULL;
817 XBZRLE_cache_unlock();
820 static void ram_migration_cancel(void *opaque)
822 migration_end();
825 static void reset_ram_globals(void)
827 last_seen_block = NULL;
828 last_sent_block = NULL;
829 last_offset = 0;
830 last_version = ram_list.version;
831 ram_bulk_stage = true;
834 #define MAX_WAIT 50 /* ms, half buffered_file limit */
837 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
838 * long-running RCU critical section. When rcu-reclaims in the code
839 * start to become numerous it will be necessary to reduce the
840 * granularity of these critical sections.
843 static int ram_save_setup(QEMUFile *f, void *opaque)
845 RAMBlock *block;
846 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
848 mig_throttle_on = false;
849 dirty_rate_high_cnt = 0;
850 bitmap_sync_count = 0;
851 migration_bitmap_sync_init();
853 if (migrate_use_xbzrle()) {
854 XBZRLE_cache_lock();
855 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
856 TARGET_PAGE_SIZE,
857 TARGET_PAGE_SIZE);
858 if (!XBZRLE.cache) {
859 XBZRLE_cache_unlock();
860 error_report("Error creating cache");
861 return -1;
863 XBZRLE_cache_unlock();
865 /* We prefer not to abort if there is no memory */
866 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
867 if (!XBZRLE.encoded_buf) {
868 error_report("Error allocating encoded_buf");
869 return -1;
872 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
873 if (!XBZRLE.current_buf) {
874 error_report("Error allocating current_buf");
875 g_free(XBZRLE.encoded_buf);
876 XBZRLE.encoded_buf = NULL;
877 return -1;
880 acct_clear();
883 /* iothread lock needed for ram_list.dirty_memory[] */
884 qemu_mutex_lock_iothread();
885 qemu_mutex_lock_ramlist();
886 rcu_read_lock();
887 bytes_transferred = 0;
888 reset_ram_globals();
890 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
891 migration_bitmap = bitmap_new(ram_bitmap_pages);
892 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
895 * Count the total number of pages used by ram blocks not including any
896 * gaps due to alignment or unplugs.
898 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
900 memory_global_dirty_log_start();
901 migration_bitmap_sync();
902 qemu_mutex_unlock_ramlist();
903 qemu_mutex_unlock_iothread();
905 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
907 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
908 qemu_put_byte(f, strlen(block->idstr));
909 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
910 qemu_put_be64(f, block->used_length);
913 rcu_read_unlock();
915 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
916 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
918 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
920 return 0;
923 static int ram_save_iterate(QEMUFile *f, void *opaque)
925 int ret;
926 int i;
927 int64_t t0;
928 int pages_sent = 0;
930 rcu_read_lock();
931 if (ram_list.version != last_version) {
932 reset_ram_globals();
935 /* Read version before ram_list.blocks */
936 smp_rmb();
938 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
940 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
941 i = 0;
942 while ((ret = qemu_file_rate_limit(f)) == 0) {
943 int pages;
945 pages = ram_find_and_save_block(f, false, &bytes_transferred);
946 /* no more pages to sent */
947 if (pages == 0) {
948 break;
950 pages_sent += pages;
951 acct_info.iterations++;
952 check_guest_throttling();
953 /* we want to check in the 1st loop, just in case it was the 1st time
954 and we had to sync the dirty bitmap.
955 qemu_get_clock_ns() is a bit expensive, so we only check each some
956 iterations
958 if ((i & 63) == 0) {
959 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
960 if (t1 > MAX_WAIT) {
961 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
962 t1, i);
963 break;
966 i++;
968 rcu_read_unlock();
971 * Must occur before EOS (or any QEMUFile operation)
972 * because of RDMA protocol.
974 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
976 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
977 bytes_transferred += 8;
979 ret = qemu_file_get_error(f);
980 if (ret < 0) {
981 return ret;
984 return pages_sent;
987 /* Called with iothread lock */
988 static int ram_save_complete(QEMUFile *f, void *opaque)
990 rcu_read_lock();
992 migration_bitmap_sync();
994 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
996 /* try transferring iterative blocks of memory */
998 /* flush all remaining blocks regardless of rate limiting */
999 while (true) {
1000 int pages;
1002 pages = ram_find_and_save_block(f, true, &bytes_transferred);
1003 /* no more blocks to sent */
1004 if (pages == 0) {
1005 break;
1009 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
1010 migration_end();
1012 rcu_read_unlock();
1013 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1015 return 0;
1018 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
1020 uint64_t remaining_size;
1022 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1024 if (remaining_size < max_size) {
1025 qemu_mutex_lock_iothread();
1026 rcu_read_lock();
1027 migration_bitmap_sync();
1028 rcu_read_unlock();
1029 qemu_mutex_unlock_iothread();
1030 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1032 return remaining_size;
1035 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1037 unsigned int xh_len;
1038 int xh_flags;
1040 if (!xbzrle_decoded_buf) {
1041 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1044 /* extract RLE header */
1045 xh_flags = qemu_get_byte(f);
1046 xh_len = qemu_get_be16(f);
1048 if (xh_flags != ENCODING_FLAG_XBZRLE) {
1049 error_report("Failed to load XBZRLE page - wrong compression!");
1050 return -1;
1053 if (xh_len > TARGET_PAGE_SIZE) {
1054 error_report("Failed to load XBZRLE page - len overflow!");
1055 return -1;
1057 /* load data and decode */
1058 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1060 /* decode RLE */
1061 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1062 TARGET_PAGE_SIZE) == -1) {
1063 error_report("Failed to load XBZRLE page - decode error!");
1064 return -1;
1067 return 0;
1070 /* Must be called from within a rcu critical section.
1071 * Returns a pointer from within the RCU-protected ram_list.
1073 static inline void *host_from_stream_offset(QEMUFile *f,
1074 ram_addr_t offset,
1075 int flags)
1077 static RAMBlock *block = NULL;
1078 char id[256];
1079 uint8_t len;
1081 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1082 if (!block || block->max_length <= offset) {
1083 error_report("Ack, bad migration stream!");
1084 return NULL;
1087 return memory_region_get_ram_ptr(block->mr) + offset;
1090 len = qemu_get_byte(f);
1091 qemu_get_buffer(f, (uint8_t *)id, len);
1092 id[len] = 0;
1094 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1095 if (!strncmp(id, block->idstr, sizeof(id)) &&
1096 block->max_length > offset) {
1097 return memory_region_get_ram_ptr(block->mr) + offset;
1101 error_report("Can't find block %s!", id);
1102 return NULL;
1106 * If a page (or a whole RDMA chunk) has been
1107 * determined to be zero, then zap it.
1109 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1111 if (ch != 0 || !is_zero_range(host, size)) {
1112 memset(host, ch, size);
1116 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1118 int flags = 0, ret = 0;
1119 static uint64_t seq_iter;
1121 seq_iter++;
1123 if (version_id != 4) {
1124 ret = -EINVAL;
1127 /* This RCU critical section can be very long running.
1128 * When RCU reclaims in the code start to become numerous,
1129 * it will be necessary to reduce the granularity of this
1130 * critical section.
1132 rcu_read_lock();
1133 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1134 ram_addr_t addr, total_ram_bytes;
1135 void *host;
1136 uint8_t ch;
1138 addr = qemu_get_be64(f);
1139 flags = addr & ~TARGET_PAGE_MASK;
1140 addr &= TARGET_PAGE_MASK;
1142 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1143 case RAM_SAVE_FLAG_MEM_SIZE:
1144 /* Synchronize RAM block list */
1145 total_ram_bytes = addr;
1146 while (!ret && total_ram_bytes) {
1147 RAMBlock *block;
1148 uint8_t len;
1149 char id[256];
1150 ram_addr_t length;
1152 len = qemu_get_byte(f);
1153 qemu_get_buffer(f, (uint8_t *)id, len);
1154 id[len] = 0;
1155 length = qemu_get_be64(f);
1157 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1158 if (!strncmp(id, block->idstr, sizeof(id))) {
1159 if (length != block->used_length) {
1160 Error *local_err = NULL;
1162 ret = qemu_ram_resize(block->offset, length, &local_err);
1163 if (local_err) {
1164 error_report_err(local_err);
1167 break;
1171 if (!block) {
1172 error_report("Unknown ramblock \"%s\", cannot "
1173 "accept migration", id);
1174 ret = -EINVAL;
1177 total_ram_bytes -= length;
1179 break;
1180 case RAM_SAVE_FLAG_COMPRESS:
1181 host = host_from_stream_offset(f, addr, flags);
1182 if (!host) {
1183 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1184 ret = -EINVAL;
1185 break;
1187 ch = qemu_get_byte(f);
1188 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1189 break;
1190 case RAM_SAVE_FLAG_PAGE:
1191 host = host_from_stream_offset(f, addr, flags);
1192 if (!host) {
1193 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1194 ret = -EINVAL;
1195 break;
1197 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1198 break;
1199 case RAM_SAVE_FLAG_XBZRLE:
1200 host = host_from_stream_offset(f, addr, flags);
1201 if (!host) {
1202 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1203 ret = -EINVAL;
1204 break;
1206 if (load_xbzrle(f, addr, host) < 0) {
1207 error_report("Failed to decompress XBZRLE page at "
1208 RAM_ADDR_FMT, addr);
1209 ret = -EINVAL;
1210 break;
1212 break;
1213 case RAM_SAVE_FLAG_EOS:
1214 /* normal exit */
1215 break;
1216 default:
1217 if (flags & RAM_SAVE_FLAG_HOOK) {
1218 ram_control_load_hook(f, flags);
1219 } else {
1220 error_report("Unknown combination of migration flags: %#x",
1221 flags);
1222 ret = -EINVAL;
1225 if (!ret) {
1226 ret = qemu_file_get_error(f);
1230 rcu_read_unlock();
1231 DPRINTF("Completed load of VM with exit code %d seq iteration "
1232 "%" PRIu64 "\n", ret, seq_iter);
1233 return ret;
1236 static SaveVMHandlers savevm_ram_handlers = {
1237 .save_live_setup = ram_save_setup,
1238 .save_live_iterate = ram_save_iterate,
1239 .save_live_complete = ram_save_complete,
1240 .save_live_pending = ram_save_pending,
1241 .load_state = ram_load,
1242 .cancel = ram_migration_cancel,
1245 void ram_mig_init(void)
1247 qemu_mutex_init(&XBZRLE.lock);
1248 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1251 struct soundhw {
1252 const char *name;
1253 const char *descr;
1254 int enabled;
1255 int isa;
1256 union {
1257 int (*init_isa) (ISABus *bus);
1258 int (*init_pci) (PCIBus *bus);
1259 } init;
1262 static struct soundhw soundhw[9];
1263 static int soundhw_count;
1265 void isa_register_soundhw(const char *name, const char *descr,
1266 int (*init_isa)(ISABus *bus))
1268 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1269 soundhw[soundhw_count].name = name;
1270 soundhw[soundhw_count].descr = descr;
1271 soundhw[soundhw_count].isa = 1;
1272 soundhw[soundhw_count].init.init_isa = init_isa;
1273 soundhw_count++;
1276 void pci_register_soundhw(const char *name, const char *descr,
1277 int (*init_pci)(PCIBus *bus))
1279 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1280 soundhw[soundhw_count].name = name;
1281 soundhw[soundhw_count].descr = descr;
1282 soundhw[soundhw_count].isa = 0;
1283 soundhw[soundhw_count].init.init_pci = init_pci;
1284 soundhw_count++;
1287 void select_soundhw(const char *optarg)
1289 struct soundhw *c;
1291 if (is_help_option(optarg)) {
1292 show_valid_cards:
1294 if (soundhw_count) {
1295 printf("Valid sound card names (comma separated):\n");
1296 for (c = soundhw; c->name; ++c) {
1297 printf ("%-11s %s\n", c->name, c->descr);
1299 printf("\n-soundhw all will enable all of the above\n");
1300 } else {
1301 printf("Machine has no user-selectable audio hardware "
1302 "(it may or may not have always-present audio hardware).\n");
1304 exit(!is_help_option(optarg));
1306 else {
1307 size_t l;
1308 const char *p;
1309 char *e;
1310 int bad_card = 0;
1312 if (!strcmp(optarg, "all")) {
1313 for (c = soundhw; c->name; ++c) {
1314 c->enabled = 1;
1316 return;
1319 p = optarg;
1320 while (*p) {
1321 e = strchr(p, ',');
1322 l = !e ? strlen(p) : (size_t) (e - p);
1324 for (c = soundhw; c->name; ++c) {
1325 if (!strncmp(c->name, p, l) && !c->name[l]) {
1326 c->enabled = 1;
1327 break;
1331 if (!c->name) {
1332 if (l > 80) {
1333 error_report("Unknown sound card name (too big to show)");
1335 else {
1336 error_report("Unknown sound card name `%.*s'",
1337 (int) l, p);
1339 bad_card = 1;
1341 p += l + (e != NULL);
1344 if (bad_card) {
1345 goto show_valid_cards;
1350 void audio_init(void)
1352 struct soundhw *c;
1353 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1354 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1356 for (c = soundhw; c->name; ++c) {
1357 if (c->enabled) {
1358 if (c->isa) {
1359 if (!isa_bus) {
1360 error_report("ISA bus not available for %s", c->name);
1361 exit(1);
1363 c->init.init_isa(isa_bus);
1364 } else {
1365 if (!pci_bus) {
1366 error_report("PCI bus not available for %s", c->name);
1367 exit(1);
1369 c->init.init_pci(pci_bus);
1375 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1377 int ret;
1379 if (strlen(str) != 36) {
1380 return -1;
1383 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1384 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1385 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1386 &uuid[15]);
1388 if (ret != 16) {
1389 return -1;
1391 return 0;
1394 void do_acpitable_option(const QemuOpts *opts)
1396 #ifdef TARGET_I386
1397 Error *err = NULL;
1399 acpi_table_add(opts, &err);
1400 if (err) {
1401 error_report("Wrong acpi table provided: %s",
1402 error_get_pretty(err));
1403 error_free(err);
1404 exit(1);
1406 #endif
1409 void do_smbios_option(QemuOpts *opts)
1411 #ifdef TARGET_I386
1412 smbios_entry_add(opts);
1413 #endif
1416 void cpudef_init(void)
1418 #if defined(cpudef_setup)
1419 cpudef_setup(); /* parse cpu definitions in target config file */
1420 #endif
1423 int kvm_available(void)
1425 #ifdef CONFIG_KVM
1426 return 1;
1427 #else
1428 return 0;
1429 #endif
1432 int xen_available(void)
1434 #ifdef CONFIG_XEN
1435 return 1;
1436 #else
1437 return 0;
1438 #endif
1442 TargetInfo *qmp_query_target(Error **errp)
1444 TargetInfo *info = g_malloc0(sizeof(*info));
1446 info->arch = g_strdup(TARGET_NAME);
1448 return info;
1451 /* Stub function that's gets run on the vcpu when its brought out of the
1452 VM to run inside qemu via async_run_on_cpu()*/
1453 static void mig_sleep_cpu(void *opq)
1455 qemu_mutex_unlock_iothread();
1456 g_usleep(30*1000);
1457 qemu_mutex_lock_iothread();
1460 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1461 much time in the VM. The migration thread will try to catchup.
1462 Workload will experience a performance drop.
1464 static void mig_throttle_guest_down(void)
1466 CPUState *cpu;
1468 qemu_mutex_lock_iothread();
1469 CPU_FOREACH(cpu) {
1470 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1472 qemu_mutex_unlock_iothread();
1475 static void check_guest_throttling(void)
1477 static int64_t t0;
1478 int64_t t1;
1480 if (!mig_throttle_on) {
1481 return;
1484 if (!t0) {
1485 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1486 return;
1489 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1491 /* If it has been more than 40 ms since the last time the guest
1492 * was throttled then do it again.
1494 if (40 < (t1-t0)/1000000) {
1495 mig_throttle_guest_down();
1496 t0 = t1;