Merge remote-tracking branch 'qemu-kvm-tmp/memory/core' into staging
[qemu.git] / target-sparc / op_helper.c
blob48e1db8227f753467b8d13b64b458db887012ccf
1 #include "cpu.h"
2 #include "dyngen-exec.h"
3 #include "host-utils.h"
4 #include "helper.h"
5 #include "sysemu.h"
7 #if !defined(CONFIG_USER_ONLY)
8 #include "softmmu_exec.h"
9 #endif
11 //#define DEBUG_MMU
12 //#define DEBUG_MXCC
13 //#define DEBUG_UNALIGNED
14 //#define DEBUG_UNASSIGNED
15 //#define DEBUG_ASI
16 //#define DEBUG_PCALL
17 //#define DEBUG_PSTATE
18 //#define DEBUG_CACHE_CONTROL
20 #ifdef DEBUG_MMU
21 #define DPRINTF_MMU(fmt, ...) \
22 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
23 #else
24 #define DPRINTF_MMU(fmt, ...) do {} while (0)
25 #endif
27 #ifdef DEBUG_MXCC
28 #define DPRINTF_MXCC(fmt, ...) \
29 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
30 #else
31 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
32 #endif
34 #ifdef DEBUG_ASI
35 #define DPRINTF_ASI(fmt, ...) \
36 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
37 #endif
39 #ifdef DEBUG_PSTATE
40 #define DPRINTF_PSTATE(fmt, ...) \
41 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
44 #endif
46 #ifdef DEBUG_CACHE_CONTROL
47 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
48 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
49 #else
50 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
51 #endif
53 #ifdef TARGET_SPARC64
54 #ifndef TARGET_ABI32
55 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
56 #else
57 #define AM_CHECK(env1) (1)
58 #endif
59 #endif
61 #define DT0 (env->dt0)
62 #define DT1 (env->dt1)
63 #define QT0 (env->qt0)
64 #define QT1 (env->qt1)
66 /* Leon3 cache control */
68 /* Cache control: emulate the behavior of cache control registers but without
69 any effect on the emulated */
71 #define CACHE_STATE_MASK 0x3
72 #define CACHE_DISABLED 0x0
73 #define CACHE_FROZEN 0x1
74 #define CACHE_ENABLED 0x3
76 /* Cache Control register fields */
78 #define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */
79 #define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */
80 #define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */
81 #define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */
82 #define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */
83 #define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */
84 #define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */
85 #define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */
87 #if !defined(CONFIG_USER_ONLY)
88 static void do_unassigned_access(target_phys_addr_t addr, int is_write,
89 int is_exec, int is_asi, int size);
90 #else
91 #ifdef TARGET_SPARC64
92 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
93 int is_asi, int size);
94 #endif
95 #endif
97 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
98 // Calculates TSB pointer value for fault page size 8k or 64k
99 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
100 uint64_t tag_access_register,
101 int page_size)
103 uint64_t tsb_base = tsb_register & ~0x1fffULL;
104 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
105 int tsb_size = tsb_register & 0xf;
107 // discard lower 13 bits which hold tag access context
108 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
110 // now reorder bits
111 uint64_t tsb_base_mask = ~0x1fffULL;
112 uint64_t va = tag_access_va;
114 // move va bits to correct position
115 if (page_size == 8*1024) {
116 va >>= 9;
117 } else if (page_size == 64*1024) {
118 va >>= 12;
121 if (tsb_size) {
122 tsb_base_mask <<= tsb_size;
125 // calculate tsb_base mask and adjust va if split is in use
126 if (tsb_split) {
127 if (page_size == 8*1024) {
128 va &= ~(1ULL << (13 + tsb_size));
129 } else if (page_size == 64*1024) {
130 va |= (1ULL << (13 + tsb_size));
132 tsb_base_mask <<= 1;
135 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
138 // Calculates tag target register value by reordering bits
139 // in tag access register
140 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
142 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
145 static void replace_tlb_entry(SparcTLBEntry *tlb,
146 uint64_t tlb_tag, uint64_t tlb_tte,
147 CPUState *env1)
149 target_ulong mask, size, va, offset;
151 // flush page range if translation is valid
152 if (TTE_IS_VALID(tlb->tte)) {
154 mask = 0xffffffffffffe000ULL;
155 mask <<= 3 * ((tlb->tte >> 61) & 3);
156 size = ~mask + 1;
158 va = tlb->tag & mask;
160 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
161 tlb_flush_page(env1, va + offset);
165 tlb->tag = tlb_tag;
166 tlb->tte = tlb_tte;
169 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
170 const char* strmmu, CPUState *env1)
172 unsigned int i;
173 target_ulong mask;
174 uint64_t context;
176 int is_demap_context = (demap_addr >> 6) & 1;
178 // demap context
179 switch ((demap_addr >> 4) & 3) {
180 case 0: // primary
181 context = env1->dmmu.mmu_primary_context;
182 break;
183 case 1: // secondary
184 context = env1->dmmu.mmu_secondary_context;
185 break;
186 case 2: // nucleus
187 context = 0;
188 break;
189 case 3: // reserved
190 default:
191 return;
194 for (i = 0; i < 64; i++) {
195 if (TTE_IS_VALID(tlb[i].tte)) {
197 if (is_demap_context) {
198 // will remove non-global entries matching context value
199 if (TTE_IS_GLOBAL(tlb[i].tte) ||
200 !tlb_compare_context(&tlb[i], context)) {
201 continue;
203 } else {
204 // demap page
205 // will remove any entry matching VA
206 mask = 0xffffffffffffe000ULL;
207 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
209 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
210 continue;
213 // entry should be global or matching context value
214 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
215 !tlb_compare_context(&tlb[i], context)) {
216 continue;
220 replace_tlb_entry(&tlb[i], 0, 0, env1);
221 #ifdef DEBUG_MMU
222 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
223 dump_mmu(stdout, fprintf, env1);
224 #endif
229 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
230 uint64_t tlb_tag, uint64_t tlb_tte,
231 const char* strmmu, CPUState *env1)
233 unsigned int i, replace_used;
235 // Try replacing invalid entry
236 for (i = 0; i < 64; i++) {
237 if (!TTE_IS_VALID(tlb[i].tte)) {
238 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
239 #ifdef DEBUG_MMU
240 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
241 dump_mmu(stdout, fprintf, env1);
242 #endif
243 return;
247 // All entries are valid, try replacing unlocked entry
249 for (replace_used = 0; replace_used < 2; ++replace_used) {
251 // Used entries are not replaced on first pass
253 for (i = 0; i < 64; i++) {
254 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
256 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
257 #ifdef DEBUG_MMU
258 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
259 strmmu, (replace_used?"used":"unused"), i);
260 dump_mmu(stdout, fprintf, env1);
261 #endif
262 return;
266 // Now reset used bit and search for unused entries again
268 for (i = 0; i < 64; i++) {
269 TTE_SET_UNUSED(tlb[i].tte);
273 #ifdef DEBUG_MMU
274 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
275 #endif
276 // error state?
279 #endif
281 static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
283 #ifdef TARGET_SPARC64
284 if (AM_CHECK(env1))
285 addr &= 0xffffffffULL;
286 #endif
287 return addr;
290 /* returns true if access using this ASI is to have address translated by MMU
291 otherwise access is to raw physical address */
292 static inline int is_translating_asi(int asi)
294 #ifdef TARGET_SPARC64
295 /* Ultrasparc IIi translating asi
296 - note this list is defined by cpu implementation
298 switch (asi) {
299 case 0x04 ... 0x11:
300 case 0x16 ... 0x19:
301 case 0x1E ... 0x1F:
302 case 0x24 ... 0x2C:
303 case 0x70 ... 0x73:
304 case 0x78 ... 0x79:
305 case 0x80 ... 0xFF:
306 return 1;
308 default:
309 return 0;
311 #else
312 /* TODO: check sparc32 bits */
313 return 0;
314 #endif
317 static inline target_ulong asi_address_mask(CPUState *env1,
318 int asi, target_ulong addr)
320 if (is_translating_asi(asi)) {
321 return address_mask(env, addr);
322 } else {
323 return addr;
327 static void raise_exception(int tt)
329 env->exception_index = tt;
330 cpu_loop_exit(env);
333 void HELPER(raise_exception)(int tt)
335 raise_exception(tt);
338 void helper_shutdown(void)
340 #if !defined(CONFIG_USER_ONLY)
341 qemu_system_shutdown_request();
342 #endif
345 void helper_check_align(target_ulong addr, uint32_t align)
347 if (addr & align) {
348 #ifdef DEBUG_UNALIGNED
349 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
350 "\n", addr, env->pc);
351 #endif
352 raise_exception(TT_UNALIGNED);
356 #define F_HELPER(name, p) void helper_f##name##p(void)
358 #define F_BINOP(name) \
359 float32 helper_f ## name ## s (float32 src1, float32 src2) \
361 return float32_ ## name (src1, src2, &env->fp_status); \
363 F_HELPER(name, d) \
365 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
367 F_HELPER(name, q) \
369 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
372 F_BINOP(add);
373 F_BINOP(sub);
374 F_BINOP(mul);
375 F_BINOP(div);
376 #undef F_BINOP
378 void helper_fsmuld(float32 src1, float32 src2)
380 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
381 float32_to_float64(src2, &env->fp_status),
382 &env->fp_status);
385 void helper_fdmulq(void)
387 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
388 float64_to_float128(DT1, &env->fp_status),
389 &env->fp_status);
392 float32 helper_fnegs(float32 src)
394 return float32_chs(src);
397 #ifdef TARGET_SPARC64
398 F_HELPER(neg, d)
400 DT0 = float64_chs(DT1);
403 F_HELPER(neg, q)
405 QT0 = float128_chs(QT1);
407 #endif
409 /* Integer to float conversion. */
410 float32 helper_fitos(int32_t src)
412 return int32_to_float32(src, &env->fp_status);
415 void helper_fitod(int32_t src)
417 DT0 = int32_to_float64(src, &env->fp_status);
420 void helper_fitoq(int32_t src)
422 QT0 = int32_to_float128(src, &env->fp_status);
425 #ifdef TARGET_SPARC64
426 float32 helper_fxtos(void)
428 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
431 F_HELPER(xto, d)
433 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
436 F_HELPER(xto, q)
438 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
440 #endif
441 #undef F_HELPER
443 /* floating point conversion */
444 float32 helper_fdtos(void)
446 return float64_to_float32(DT1, &env->fp_status);
449 void helper_fstod(float32 src)
451 DT0 = float32_to_float64(src, &env->fp_status);
454 float32 helper_fqtos(void)
456 return float128_to_float32(QT1, &env->fp_status);
459 void helper_fstoq(float32 src)
461 QT0 = float32_to_float128(src, &env->fp_status);
464 void helper_fqtod(void)
466 DT0 = float128_to_float64(QT1, &env->fp_status);
469 void helper_fdtoq(void)
471 QT0 = float64_to_float128(DT1, &env->fp_status);
474 /* Float to integer conversion. */
475 int32_t helper_fstoi(float32 src)
477 return float32_to_int32_round_to_zero(src, &env->fp_status);
480 int32_t helper_fdtoi(void)
482 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
485 int32_t helper_fqtoi(void)
487 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
490 #ifdef TARGET_SPARC64
491 void helper_fstox(float32 src)
493 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
496 void helper_fdtox(void)
498 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
501 void helper_fqtox(void)
503 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
506 void helper_faligndata(void)
508 uint64_t tmp;
510 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
511 /* on many architectures a shift of 64 does nothing */
512 if ((env->gsr & 7) != 0) {
513 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
515 *((uint64_t *)&DT0) = tmp;
518 #ifdef HOST_WORDS_BIGENDIAN
519 #define VIS_B64(n) b[7 - (n)]
520 #define VIS_W64(n) w[3 - (n)]
521 #define VIS_SW64(n) sw[3 - (n)]
522 #define VIS_L64(n) l[1 - (n)]
523 #define VIS_B32(n) b[3 - (n)]
524 #define VIS_W32(n) w[1 - (n)]
525 #else
526 #define VIS_B64(n) b[n]
527 #define VIS_W64(n) w[n]
528 #define VIS_SW64(n) sw[n]
529 #define VIS_L64(n) l[n]
530 #define VIS_B32(n) b[n]
531 #define VIS_W32(n) w[n]
532 #endif
534 typedef union {
535 uint8_t b[8];
536 uint16_t w[4];
537 int16_t sw[4];
538 uint32_t l[2];
539 uint64_t ll;
540 float64 d;
541 } vis64;
543 typedef union {
544 uint8_t b[4];
545 uint16_t w[2];
546 uint32_t l;
547 float32 f;
548 } vis32;
550 void helper_fpmerge(void)
552 vis64 s, d;
554 s.d = DT0;
555 d.d = DT1;
557 // Reverse calculation order to handle overlap
558 d.VIS_B64(7) = s.VIS_B64(3);
559 d.VIS_B64(6) = d.VIS_B64(3);
560 d.VIS_B64(5) = s.VIS_B64(2);
561 d.VIS_B64(4) = d.VIS_B64(2);
562 d.VIS_B64(3) = s.VIS_B64(1);
563 d.VIS_B64(2) = d.VIS_B64(1);
564 d.VIS_B64(1) = s.VIS_B64(0);
565 //d.VIS_B64(0) = d.VIS_B64(0);
567 DT0 = d.d;
570 void helper_fmul8x16(void)
572 vis64 s, d;
573 uint32_t tmp;
575 s.d = DT0;
576 d.d = DT1;
578 #define PMUL(r) \
579 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
580 if ((tmp & 0xff) > 0x7f) \
581 tmp += 0x100; \
582 d.VIS_W64(r) = tmp >> 8;
584 PMUL(0);
585 PMUL(1);
586 PMUL(2);
587 PMUL(3);
588 #undef PMUL
590 DT0 = d.d;
593 void helper_fmul8x16al(void)
595 vis64 s, d;
596 uint32_t tmp;
598 s.d = DT0;
599 d.d = DT1;
601 #define PMUL(r) \
602 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
603 if ((tmp & 0xff) > 0x7f) \
604 tmp += 0x100; \
605 d.VIS_W64(r) = tmp >> 8;
607 PMUL(0);
608 PMUL(1);
609 PMUL(2);
610 PMUL(3);
611 #undef PMUL
613 DT0 = d.d;
616 void helper_fmul8x16au(void)
618 vis64 s, d;
619 uint32_t tmp;
621 s.d = DT0;
622 d.d = DT1;
624 #define PMUL(r) \
625 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
626 if ((tmp & 0xff) > 0x7f) \
627 tmp += 0x100; \
628 d.VIS_W64(r) = tmp >> 8;
630 PMUL(0);
631 PMUL(1);
632 PMUL(2);
633 PMUL(3);
634 #undef PMUL
636 DT0 = d.d;
639 void helper_fmul8sux16(void)
641 vis64 s, d;
642 uint32_t tmp;
644 s.d = DT0;
645 d.d = DT1;
647 #define PMUL(r) \
648 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
649 if ((tmp & 0xff) > 0x7f) \
650 tmp += 0x100; \
651 d.VIS_W64(r) = tmp >> 8;
653 PMUL(0);
654 PMUL(1);
655 PMUL(2);
656 PMUL(3);
657 #undef PMUL
659 DT0 = d.d;
662 void helper_fmul8ulx16(void)
664 vis64 s, d;
665 uint32_t tmp;
667 s.d = DT0;
668 d.d = DT1;
670 #define PMUL(r) \
671 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
672 if ((tmp & 0xff) > 0x7f) \
673 tmp += 0x100; \
674 d.VIS_W64(r) = tmp >> 8;
676 PMUL(0);
677 PMUL(1);
678 PMUL(2);
679 PMUL(3);
680 #undef PMUL
682 DT0 = d.d;
685 void helper_fmuld8sux16(void)
687 vis64 s, d;
688 uint32_t tmp;
690 s.d = DT0;
691 d.d = DT1;
693 #define PMUL(r) \
694 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
695 if ((tmp & 0xff) > 0x7f) \
696 tmp += 0x100; \
697 d.VIS_L64(r) = tmp;
699 // Reverse calculation order to handle overlap
700 PMUL(1);
701 PMUL(0);
702 #undef PMUL
704 DT0 = d.d;
707 void helper_fmuld8ulx16(void)
709 vis64 s, d;
710 uint32_t tmp;
712 s.d = DT0;
713 d.d = DT1;
715 #define PMUL(r) \
716 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
717 if ((tmp & 0xff) > 0x7f) \
718 tmp += 0x100; \
719 d.VIS_L64(r) = tmp;
721 // Reverse calculation order to handle overlap
722 PMUL(1);
723 PMUL(0);
724 #undef PMUL
726 DT0 = d.d;
729 void helper_fexpand(void)
731 vis32 s;
732 vis64 d;
734 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
735 d.d = DT1;
736 d.VIS_W64(0) = s.VIS_B32(0) << 4;
737 d.VIS_W64(1) = s.VIS_B32(1) << 4;
738 d.VIS_W64(2) = s.VIS_B32(2) << 4;
739 d.VIS_W64(3) = s.VIS_B32(3) << 4;
741 DT0 = d.d;
744 #define VIS_HELPER(name, F) \
745 void name##16(void) \
747 vis64 s, d; \
749 s.d = DT0; \
750 d.d = DT1; \
752 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
753 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
754 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
755 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
757 DT0 = d.d; \
760 uint32_t name##16s(uint32_t src1, uint32_t src2) \
762 vis32 s, d; \
764 s.l = src1; \
765 d.l = src2; \
767 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
768 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
770 return d.l; \
773 void name##32(void) \
775 vis64 s, d; \
777 s.d = DT0; \
778 d.d = DT1; \
780 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
781 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
783 DT0 = d.d; \
786 uint32_t name##32s(uint32_t src1, uint32_t src2) \
788 vis32 s, d; \
790 s.l = src1; \
791 d.l = src2; \
793 d.l = F(d.l, s.l); \
795 return d.l; \
798 #define FADD(a, b) ((a) + (b))
799 #define FSUB(a, b) ((a) - (b))
800 VIS_HELPER(helper_fpadd, FADD)
801 VIS_HELPER(helper_fpsub, FSUB)
803 #define VIS_CMPHELPER(name, F) \
804 uint64_t name##16(void) \
806 vis64 s, d; \
808 s.d = DT0; \
809 d.d = DT1; \
811 d.VIS_W64(0) = F(s.VIS_W64(0), d.VIS_W64(0)) ? 1 : 0; \
812 d.VIS_W64(0) |= F(s.VIS_W64(1), d.VIS_W64(1)) ? 2 : 0; \
813 d.VIS_W64(0) |= F(s.VIS_W64(2), d.VIS_W64(2)) ? 4 : 0; \
814 d.VIS_W64(0) |= F(s.VIS_W64(3), d.VIS_W64(3)) ? 8 : 0; \
815 d.VIS_W64(1) = d.VIS_W64(2) = d.VIS_W64(3) = 0; \
817 return d.ll; \
820 uint64_t name##32(void) \
822 vis64 s, d; \
824 s.d = DT0; \
825 d.d = DT1; \
827 d.VIS_L64(0) = F(s.VIS_L64(0), d.VIS_L64(0)) ? 1 : 0; \
828 d.VIS_L64(0) |= F(s.VIS_L64(1), d.VIS_L64(1)) ? 2 : 0; \
829 d.VIS_L64(1) = 0; \
831 return d.ll; \
834 #define FCMPGT(a, b) ((a) > (b))
835 #define FCMPEQ(a, b) ((a) == (b))
836 #define FCMPLE(a, b) ((a) <= (b))
837 #define FCMPNE(a, b) ((a) != (b))
839 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
840 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
841 VIS_CMPHELPER(helper_fcmple, FCMPLE)
842 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
843 #endif
845 void helper_check_ieee_exceptions(void)
847 target_ulong status;
849 status = get_float_exception_flags(&env->fp_status);
850 if (status) {
851 /* Copy IEEE 754 flags into FSR */
852 if (status & float_flag_invalid)
853 env->fsr |= FSR_NVC;
854 if (status & float_flag_overflow)
855 env->fsr |= FSR_OFC;
856 if (status & float_flag_underflow)
857 env->fsr |= FSR_UFC;
858 if (status & float_flag_divbyzero)
859 env->fsr |= FSR_DZC;
860 if (status & float_flag_inexact)
861 env->fsr |= FSR_NXC;
863 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
864 /* Unmasked exception, generate a trap */
865 env->fsr |= FSR_FTT_IEEE_EXCP;
866 raise_exception(TT_FP_EXCP);
867 } else {
868 /* Accumulate exceptions */
869 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
874 void helper_clear_float_exceptions(void)
876 set_float_exception_flags(0, &env->fp_status);
879 float32 helper_fabss(float32 src)
881 return float32_abs(src);
884 #ifdef TARGET_SPARC64
885 void helper_fabsd(void)
887 DT0 = float64_abs(DT1);
890 void helper_fabsq(void)
892 QT0 = float128_abs(QT1);
894 #endif
896 float32 helper_fsqrts(float32 src)
898 return float32_sqrt(src, &env->fp_status);
901 void helper_fsqrtd(void)
903 DT0 = float64_sqrt(DT1, &env->fp_status);
906 void helper_fsqrtq(void)
908 QT0 = float128_sqrt(QT1, &env->fp_status);
911 #define GEN_FCMP(name, size, reg1, reg2, FS, E) \
912 void glue(helper_, name) (void) \
914 env->fsr &= FSR_FTT_NMASK; \
915 if (E && (glue(size, _is_any_nan)(reg1) || \
916 glue(size, _is_any_nan)(reg2)) && \
917 (env->fsr & FSR_NVM)) { \
918 env->fsr |= FSR_NVC; \
919 env->fsr |= FSR_FTT_IEEE_EXCP; \
920 raise_exception(TT_FP_EXCP); \
922 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
923 case float_relation_unordered: \
924 if ((env->fsr & FSR_NVM)) { \
925 env->fsr |= FSR_NVC; \
926 env->fsr |= FSR_FTT_IEEE_EXCP; \
927 raise_exception(TT_FP_EXCP); \
928 } else { \
929 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
930 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
931 env->fsr |= FSR_NVA; \
933 break; \
934 case float_relation_less: \
935 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
936 env->fsr |= FSR_FCC0 << FS; \
937 break; \
938 case float_relation_greater: \
939 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
940 env->fsr |= FSR_FCC1 << FS; \
941 break; \
942 default: \
943 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
944 break; \
947 #define GEN_FCMPS(name, size, FS, E) \
948 void glue(helper_, name)(float32 src1, float32 src2) \
950 env->fsr &= FSR_FTT_NMASK; \
951 if (E && (glue(size, _is_any_nan)(src1) || \
952 glue(size, _is_any_nan)(src2)) && \
953 (env->fsr & FSR_NVM)) { \
954 env->fsr |= FSR_NVC; \
955 env->fsr |= FSR_FTT_IEEE_EXCP; \
956 raise_exception(TT_FP_EXCP); \
958 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
959 case float_relation_unordered: \
960 if ((env->fsr & FSR_NVM)) { \
961 env->fsr |= FSR_NVC; \
962 env->fsr |= FSR_FTT_IEEE_EXCP; \
963 raise_exception(TT_FP_EXCP); \
964 } else { \
965 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
966 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
967 env->fsr |= FSR_NVA; \
969 break; \
970 case float_relation_less: \
971 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
972 env->fsr |= FSR_FCC0 << FS; \
973 break; \
974 case float_relation_greater: \
975 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
976 env->fsr |= FSR_FCC1 << FS; \
977 break; \
978 default: \
979 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
980 break; \
984 GEN_FCMPS(fcmps, float32, 0, 0);
985 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
987 GEN_FCMPS(fcmpes, float32, 0, 1);
988 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
990 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
991 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
993 static uint32_t compute_all_flags(void)
995 return env->psr & PSR_ICC;
998 static uint32_t compute_C_flags(void)
1000 return env->psr & PSR_CARRY;
1003 static inline uint32_t get_NZ_icc(int32_t dst)
1005 uint32_t ret = 0;
1007 if (dst == 0) {
1008 ret = PSR_ZERO;
1009 } else if (dst < 0) {
1010 ret = PSR_NEG;
1012 return ret;
1015 #ifdef TARGET_SPARC64
1016 static uint32_t compute_all_flags_xcc(void)
1018 return env->xcc & PSR_ICC;
1021 static uint32_t compute_C_flags_xcc(void)
1023 return env->xcc & PSR_CARRY;
1026 static inline uint32_t get_NZ_xcc(target_long dst)
1028 uint32_t ret = 0;
1030 if (!dst) {
1031 ret = PSR_ZERO;
1032 } else if (dst < 0) {
1033 ret = PSR_NEG;
1035 return ret;
1037 #endif
1039 static inline uint32_t get_V_div_icc(target_ulong src2)
1041 uint32_t ret = 0;
1043 if (src2 != 0) {
1044 ret = PSR_OVF;
1046 return ret;
1049 static uint32_t compute_all_div(void)
1051 uint32_t ret;
1053 ret = get_NZ_icc(CC_DST);
1054 ret |= get_V_div_icc(CC_SRC2);
1055 return ret;
1058 static uint32_t compute_C_div(void)
1060 return 0;
1063 static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
1065 uint32_t ret = 0;
1067 if (dst < src1) {
1068 ret = PSR_CARRY;
1070 return ret;
1073 static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
1074 uint32_t src2)
1076 uint32_t ret = 0;
1078 if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
1079 ret = PSR_CARRY;
1081 return ret;
1084 static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
1085 uint32_t src2)
1087 uint32_t ret = 0;
1089 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
1090 ret = PSR_OVF;
1092 return ret;
1095 #ifdef TARGET_SPARC64
1096 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
1098 uint32_t ret = 0;
1100 if (dst < src1) {
1101 ret = PSR_CARRY;
1103 return ret;
1106 static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
1107 target_ulong src2)
1109 uint32_t ret = 0;
1111 if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
1112 ret = PSR_CARRY;
1114 return ret;
1117 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
1118 target_ulong src2)
1120 uint32_t ret = 0;
1122 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
1123 ret = PSR_OVF;
1125 return ret;
1128 static uint32_t compute_all_add_xcc(void)
1130 uint32_t ret;
1132 ret = get_NZ_xcc(CC_DST);
1133 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1134 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1135 return ret;
1138 static uint32_t compute_C_add_xcc(void)
1140 return get_C_add_xcc(CC_DST, CC_SRC);
1142 #endif
1144 static uint32_t compute_all_add(void)
1146 uint32_t ret;
1148 ret = get_NZ_icc(CC_DST);
1149 ret |= get_C_add_icc(CC_DST, CC_SRC);
1150 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1151 return ret;
1154 static uint32_t compute_C_add(void)
1156 return get_C_add_icc(CC_DST, CC_SRC);
1159 #ifdef TARGET_SPARC64
1160 static uint32_t compute_all_addx_xcc(void)
1162 uint32_t ret;
1164 ret = get_NZ_xcc(CC_DST);
1165 ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1166 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1167 return ret;
1170 static uint32_t compute_C_addx_xcc(void)
1172 uint32_t ret;
1174 ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1175 return ret;
1177 #endif
1179 static uint32_t compute_all_addx(void)
1181 uint32_t ret;
1183 ret = get_NZ_icc(CC_DST);
1184 ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1185 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1186 return ret;
1189 static uint32_t compute_C_addx(void)
1191 uint32_t ret;
1193 ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1194 return ret;
1197 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1199 uint32_t ret = 0;
1201 if ((src1 | src2) & 0x3) {
1202 ret = PSR_OVF;
1204 return ret;
1207 static uint32_t compute_all_tadd(void)
1209 uint32_t ret;
1211 ret = get_NZ_icc(CC_DST);
1212 ret |= get_C_add_icc(CC_DST, CC_SRC);
1213 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1214 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1215 return ret;
1218 static uint32_t compute_all_taddtv(void)
1220 uint32_t ret;
1222 ret = get_NZ_icc(CC_DST);
1223 ret |= get_C_add_icc(CC_DST, CC_SRC);
1224 return ret;
1227 static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
1229 uint32_t ret = 0;
1231 if (src1 < src2) {
1232 ret = PSR_CARRY;
1234 return ret;
1237 static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
1238 uint32_t src2)
1240 uint32_t ret = 0;
1242 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
1243 ret = PSR_CARRY;
1245 return ret;
1248 static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
1249 uint32_t src2)
1251 uint32_t ret = 0;
1253 if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
1254 ret = PSR_OVF;
1256 return ret;
1260 #ifdef TARGET_SPARC64
1261 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1263 uint32_t ret = 0;
1265 if (src1 < src2) {
1266 ret = PSR_CARRY;
1268 return ret;
1271 static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
1272 target_ulong src2)
1274 uint32_t ret = 0;
1276 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
1277 ret = PSR_CARRY;
1279 return ret;
1282 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1283 target_ulong src2)
1285 uint32_t ret = 0;
1287 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
1288 ret = PSR_OVF;
1290 return ret;
1293 static uint32_t compute_all_sub_xcc(void)
1295 uint32_t ret;
1297 ret = get_NZ_xcc(CC_DST);
1298 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1299 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1300 return ret;
1303 static uint32_t compute_C_sub_xcc(void)
1305 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1307 #endif
1309 static uint32_t compute_all_sub(void)
1311 uint32_t ret;
1313 ret = get_NZ_icc(CC_DST);
1314 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1315 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1316 return ret;
1319 static uint32_t compute_C_sub(void)
1321 return get_C_sub_icc(CC_SRC, CC_SRC2);
1324 #ifdef TARGET_SPARC64
1325 static uint32_t compute_all_subx_xcc(void)
1327 uint32_t ret;
1329 ret = get_NZ_xcc(CC_DST);
1330 ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1331 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1332 return ret;
1335 static uint32_t compute_C_subx_xcc(void)
1337 uint32_t ret;
1339 ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1340 return ret;
1342 #endif
1344 static uint32_t compute_all_subx(void)
1346 uint32_t ret;
1348 ret = get_NZ_icc(CC_DST);
1349 ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1350 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1351 return ret;
1354 static uint32_t compute_C_subx(void)
1356 uint32_t ret;
1358 ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1359 return ret;
1362 static uint32_t compute_all_tsub(void)
1364 uint32_t ret;
1366 ret = get_NZ_icc(CC_DST);
1367 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1368 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1369 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1370 return ret;
1373 static uint32_t compute_all_tsubtv(void)
1375 uint32_t ret;
1377 ret = get_NZ_icc(CC_DST);
1378 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1379 return ret;
1382 static uint32_t compute_all_logic(void)
1384 return get_NZ_icc(CC_DST);
1387 static uint32_t compute_C_logic(void)
1389 return 0;
1392 #ifdef TARGET_SPARC64
1393 static uint32_t compute_all_logic_xcc(void)
1395 return get_NZ_xcc(CC_DST);
1397 #endif
1399 typedef struct CCTable {
1400 uint32_t (*compute_all)(void); /* return all the flags */
1401 uint32_t (*compute_c)(void); /* return the C flag */
1402 } CCTable;
1404 static const CCTable icc_table[CC_OP_NB] = {
1405 /* CC_OP_DYNAMIC should never happen */
1406 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1407 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1408 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1409 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1410 [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
1411 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
1412 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1413 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1414 [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
1415 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
1416 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1419 #ifdef TARGET_SPARC64
1420 static const CCTable xcc_table[CC_OP_NB] = {
1421 /* CC_OP_DYNAMIC should never happen */
1422 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1423 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1424 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1425 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1426 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1427 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1428 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1429 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1430 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1431 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1432 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1434 #endif
1436 void helper_compute_psr(void)
1438 uint32_t new_psr;
1440 new_psr = icc_table[CC_OP].compute_all();
1441 env->psr = new_psr;
1442 #ifdef TARGET_SPARC64
1443 new_psr = xcc_table[CC_OP].compute_all();
1444 env->xcc = new_psr;
1445 #endif
1446 CC_OP = CC_OP_FLAGS;
1449 uint32_t helper_compute_C_icc(void)
1451 uint32_t ret;
1453 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1454 return ret;
1457 static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1459 dst[0] = src[0];
1460 dst[1] = src[1];
1461 dst[2] = src[2];
1462 dst[3] = src[3];
1463 dst[4] = src[4];
1464 dst[5] = src[5];
1465 dst[6] = src[6];
1466 dst[7] = src[7];
1469 static void set_cwp(int new_cwp)
1471 /* put the modified wrap registers at their proper location */
1472 if (env->cwp == env->nwindows - 1) {
1473 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1475 env->cwp = new_cwp;
1477 /* put the wrap registers at their temporary location */
1478 if (new_cwp == env->nwindows - 1) {
1479 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1481 env->regwptr = env->regbase + (new_cwp * 16);
1484 void cpu_set_cwp(CPUState *env1, int new_cwp)
1486 CPUState *saved_env;
1488 saved_env = env;
1489 env = env1;
1490 set_cwp(new_cwp);
1491 env = saved_env;
1494 static target_ulong get_psr(void)
1496 helper_compute_psr();
1498 #if !defined (TARGET_SPARC64)
1499 return env->version | (env->psr & PSR_ICC) |
1500 (env->psref? PSR_EF : 0) |
1501 (env->psrpil << 8) |
1502 (env->psrs? PSR_S : 0) |
1503 (env->psrps? PSR_PS : 0) |
1504 (env->psret? PSR_ET : 0) | env->cwp;
1505 #else
1506 return env->psr & PSR_ICC;
1507 #endif
1510 target_ulong cpu_get_psr(CPUState *env1)
1512 CPUState *saved_env;
1513 target_ulong ret;
1515 saved_env = env;
1516 env = env1;
1517 ret = get_psr();
1518 env = saved_env;
1519 return ret;
1522 static void put_psr(target_ulong val)
1524 env->psr = val & PSR_ICC;
1525 #if !defined (TARGET_SPARC64)
1526 env->psref = (val & PSR_EF)? 1 : 0;
1527 env->psrpil = (val & PSR_PIL) >> 8;
1528 #endif
1529 #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1530 cpu_check_irqs(env);
1531 #endif
1532 #if !defined (TARGET_SPARC64)
1533 env->psrs = (val & PSR_S)? 1 : 0;
1534 env->psrps = (val & PSR_PS)? 1 : 0;
1535 env->psret = (val & PSR_ET)? 1 : 0;
1536 set_cwp(val & PSR_CWP);
1537 #endif
1538 env->cc_op = CC_OP_FLAGS;
1541 void cpu_put_psr(CPUState *env1, target_ulong val)
1543 CPUState *saved_env;
1545 saved_env = env;
1546 env = env1;
1547 put_psr(val);
1548 env = saved_env;
1551 static int cwp_inc(int cwp)
1553 if (unlikely(cwp >= env->nwindows)) {
1554 cwp -= env->nwindows;
1556 return cwp;
1559 int cpu_cwp_inc(CPUState *env1, int cwp)
1561 CPUState *saved_env;
1562 target_ulong ret;
1564 saved_env = env;
1565 env = env1;
1566 ret = cwp_inc(cwp);
1567 env = saved_env;
1568 return ret;
1571 static int cwp_dec(int cwp)
1573 if (unlikely(cwp < 0)) {
1574 cwp += env->nwindows;
1576 return cwp;
1579 int cpu_cwp_dec(CPUState *env1, int cwp)
1581 CPUState *saved_env;
1582 target_ulong ret;
1584 saved_env = env;
1585 env = env1;
1586 ret = cwp_dec(cwp);
1587 env = saved_env;
1588 return ret;
1591 #ifdef TARGET_SPARC64
1592 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1593 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1594 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1596 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1597 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1598 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1600 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1601 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1602 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1604 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1605 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1606 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1608 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1609 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1610 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1612 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1613 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1614 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1615 #endif
1616 #undef GEN_FCMPS
1618 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1619 defined(DEBUG_MXCC)
1620 static void dump_mxcc(CPUState *env)
1622 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1623 "\n",
1624 env->mxccdata[0], env->mxccdata[1],
1625 env->mxccdata[2], env->mxccdata[3]);
1626 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1627 "\n"
1628 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1629 "\n",
1630 env->mxccregs[0], env->mxccregs[1],
1631 env->mxccregs[2], env->mxccregs[3],
1632 env->mxccregs[4], env->mxccregs[5],
1633 env->mxccregs[6], env->mxccregs[7]);
1635 #endif
1637 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1638 && defined(DEBUG_ASI)
1639 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1640 uint64_t r1)
1642 switch (size)
1644 case 1:
1645 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1646 addr, asi, r1 & 0xff);
1647 break;
1648 case 2:
1649 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1650 addr, asi, r1 & 0xffff);
1651 break;
1652 case 4:
1653 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1654 addr, asi, r1 & 0xffffffff);
1655 break;
1656 case 8:
1657 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1658 addr, asi, r1);
1659 break;
1662 #endif
1664 #ifndef TARGET_SPARC64
1665 #ifndef CONFIG_USER_ONLY
1668 /* Leon3 cache control */
1670 static void leon3_cache_control_int(void)
1672 uint32_t state = 0;
1674 if (env->cache_control & CACHE_CTRL_IF) {
1675 /* Instruction cache state */
1676 state = env->cache_control & CACHE_STATE_MASK;
1677 if (state == CACHE_ENABLED) {
1678 state = CACHE_FROZEN;
1679 DPRINTF_CACHE_CONTROL("Instruction cache: freeze\n");
1682 env->cache_control &= ~CACHE_STATE_MASK;
1683 env->cache_control |= state;
1686 if (env->cache_control & CACHE_CTRL_DF) {
1687 /* Data cache state */
1688 state = (env->cache_control >> 2) & CACHE_STATE_MASK;
1689 if (state == CACHE_ENABLED) {
1690 state = CACHE_FROZEN;
1691 DPRINTF_CACHE_CONTROL("Data cache: freeze\n");
1694 env->cache_control &= ~(CACHE_STATE_MASK << 2);
1695 env->cache_control |= (state << 2);
1699 static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size)
1701 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
1702 addr, val, size);
1704 if (size != 4) {
1705 DPRINTF_CACHE_CONTROL("32bits only\n");
1706 return;
1709 switch (addr) {
1710 case 0x00: /* Cache control */
1712 /* These values must always be read as zeros */
1713 val &= ~CACHE_CTRL_FD;
1714 val &= ~CACHE_CTRL_FI;
1715 val &= ~CACHE_CTRL_IB;
1716 val &= ~CACHE_CTRL_IP;
1717 val &= ~CACHE_CTRL_DP;
1719 env->cache_control = val;
1720 break;
1721 case 0x04: /* Instruction cache configuration */
1722 case 0x08: /* Data cache configuration */
1723 /* Read Only */
1724 break;
1725 default:
1726 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
1727 break;
1731 static uint64_t leon3_cache_control_ld(target_ulong addr, int size)
1733 uint64_t ret = 0;
1735 if (size != 4) {
1736 DPRINTF_CACHE_CONTROL("32bits only\n");
1737 return 0;
1740 switch (addr) {
1741 case 0x00: /* Cache control */
1742 ret = env->cache_control;
1743 break;
1745 /* Configuration registers are read and only always keep those
1746 predefined values */
1748 case 0x04: /* Instruction cache configuration */
1749 ret = 0x10220000;
1750 break;
1751 case 0x08: /* Data cache configuration */
1752 ret = 0x18220000;
1753 break;
1754 default:
1755 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
1756 break;
1758 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
1759 addr, ret, size);
1760 return ret;
1763 void leon3_irq_manager(void *irq_manager, int intno)
1765 leon3_irq_ack(irq_manager, intno);
1766 leon3_cache_control_int();
1769 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1771 uint64_t ret = 0;
1772 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1773 uint32_t last_addr = addr;
1774 #endif
1776 helper_check_align(addr, size - 1);
1777 switch (asi) {
1778 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
1779 switch (addr) {
1780 case 0x00: /* Leon3 Cache Control */
1781 case 0x08: /* Leon3 Instruction Cache config */
1782 case 0x0C: /* Leon3 Date Cache config */
1783 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
1784 ret = leon3_cache_control_ld(addr, size);
1786 break;
1787 case 0x01c00a00: /* MXCC control register */
1788 if (size == 8)
1789 ret = env->mxccregs[3];
1790 else
1791 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1792 size);
1793 break;
1794 case 0x01c00a04: /* MXCC control register */
1795 if (size == 4)
1796 ret = env->mxccregs[3];
1797 else
1798 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1799 size);
1800 break;
1801 case 0x01c00c00: /* Module reset register */
1802 if (size == 8) {
1803 ret = env->mxccregs[5];
1804 // should we do something here?
1805 } else
1806 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1807 size);
1808 break;
1809 case 0x01c00f00: /* MBus port address register */
1810 if (size == 8)
1811 ret = env->mxccregs[7];
1812 else
1813 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1814 size);
1815 break;
1816 default:
1817 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1818 size);
1819 break;
1821 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1822 "addr = %08x -> ret = %" PRIx64 ","
1823 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1824 #ifdef DEBUG_MXCC
1825 dump_mxcc(env);
1826 #endif
1827 break;
1828 case 3: /* MMU probe */
1830 int mmulev;
1832 mmulev = (addr >> 8) & 15;
1833 if (mmulev > 4)
1834 ret = 0;
1835 else
1836 ret = mmu_probe(env, addr, mmulev);
1837 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1838 addr, mmulev, ret);
1840 break;
1841 case 4: /* read MMU regs */
1843 int reg = (addr >> 8) & 0x1f;
1845 ret = env->mmuregs[reg];
1846 if (reg == 3) /* Fault status cleared on read */
1847 env->mmuregs[3] = 0;
1848 else if (reg == 0x13) /* Fault status read */
1849 ret = env->mmuregs[3];
1850 else if (reg == 0x14) /* Fault address read */
1851 ret = env->mmuregs[4];
1852 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1854 break;
1855 case 5: // Turbosparc ITLB Diagnostic
1856 case 6: // Turbosparc DTLB Diagnostic
1857 case 7: // Turbosparc IOTLB Diagnostic
1858 break;
1859 case 9: /* Supervisor code access */
1860 switch(size) {
1861 case 1:
1862 ret = ldub_code(addr);
1863 break;
1864 case 2:
1865 ret = lduw_code(addr);
1866 break;
1867 default:
1868 case 4:
1869 ret = ldl_code(addr);
1870 break;
1871 case 8:
1872 ret = ldq_code(addr);
1873 break;
1875 break;
1876 case 0xa: /* User data access */
1877 switch(size) {
1878 case 1:
1879 ret = ldub_user(addr);
1880 break;
1881 case 2:
1882 ret = lduw_user(addr);
1883 break;
1884 default:
1885 case 4:
1886 ret = ldl_user(addr);
1887 break;
1888 case 8:
1889 ret = ldq_user(addr);
1890 break;
1892 break;
1893 case 0xb: /* Supervisor data access */
1894 switch(size) {
1895 case 1:
1896 ret = ldub_kernel(addr);
1897 break;
1898 case 2:
1899 ret = lduw_kernel(addr);
1900 break;
1901 default:
1902 case 4:
1903 ret = ldl_kernel(addr);
1904 break;
1905 case 8:
1906 ret = ldq_kernel(addr);
1907 break;
1909 break;
1910 case 0xc: /* I-cache tag */
1911 case 0xd: /* I-cache data */
1912 case 0xe: /* D-cache tag */
1913 case 0xf: /* D-cache data */
1914 break;
1915 case 0x20: /* MMU passthrough */
1916 switch(size) {
1917 case 1:
1918 ret = ldub_phys(addr);
1919 break;
1920 case 2:
1921 ret = lduw_phys(addr);
1922 break;
1923 default:
1924 case 4:
1925 ret = ldl_phys(addr);
1926 break;
1927 case 8:
1928 ret = ldq_phys(addr);
1929 break;
1931 break;
1932 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1933 switch(size) {
1934 case 1:
1935 ret = ldub_phys((target_phys_addr_t)addr
1936 | ((target_phys_addr_t)(asi & 0xf) << 32));
1937 break;
1938 case 2:
1939 ret = lduw_phys((target_phys_addr_t)addr
1940 | ((target_phys_addr_t)(asi & 0xf) << 32));
1941 break;
1942 default:
1943 case 4:
1944 ret = ldl_phys((target_phys_addr_t)addr
1945 | ((target_phys_addr_t)(asi & 0xf) << 32));
1946 break;
1947 case 8:
1948 ret = ldq_phys((target_phys_addr_t)addr
1949 | ((target_phys_addr_t)(asi & 0xf) << 32));
1950 break;
1952 break;
1953 case 0x30: // Turbosparc secondary cache diagnostic
1954 case 0x31: // Turbosparc RAM snoop
1955 case 0x32: // Turbosparc page table descriptor diagnostic
1956 case 0x39: /* data cache diagnostic register */
1957 ret = 0;
1958 break;
1959 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1961 int reg = (addr >> 8) & 3;
1963 switch(reg) {
1964 case 0: /* Breakpoint Value (Addr) */
1965 ret = env->mmubpregs[reg];
1966 break;
1967 case 1: /* Breakpoint Mask */
1968 ret = env->mmubpregs[reg];
1969 break;
1970 case 2: /* Breakpoint Control */
1971 ret = env->mmubpregs[reg];
1972 break;
1973 case 3: /* Breakpoint Status */
1974 ret = env->mmubpregs[reg];
1975 env->mmubpregs[reg] = 0ULL;
1976 break;
1978 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1979 ret);
1981 break;
1982 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1983 ret = env->mmubpctrv;
1984 break;
1985 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1986 ret = env->mmubpctrc;
1987 break;
1988 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1989 ret = env->mmubpctrs;
1990 break;
1991 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1992 ret = env->mmubpaction;
1993 break;
1994 case 8: /* User code access, XXX */
1995 default:
1996 do_unassigned_access(addr, 0, 0, asi, size);
1997 ret = 0;
1998 break;
2000 if (sign) {
2001 switch(size) {
2002 case 1:
2003 ret = (int8_t) ret;
2004 break;
2005 case 2:
2006 ret = (int16_t) ret;
2007 break;
2008 case 4:
2009 ret = (int32_t) ret;
2010 break;
2011 default:
2012 break;
2015 #ifdef DEBUG_ASI
2016 dump_asi("read ", last_addr, asi, size, ret);
2017 #endif
2018 return ret;
2021 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
2023 helper_check_align(addr, size - 1);
2024 switch(asi) {
2025 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
2026 switch (addr) {
2027 case 0x00: /* Leon3 Cache Control */
2028 case 0x08: /* Leon3 Instruction Cache config */
2029 case 0x0C: /* Leon3 Date Cache config */
2030 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
2031 leon3_cache_control_st(addr, val, size);
2033 break;
2035 case 0x01c00000: /* MXCC stream data register 0 */
2036 if (size == 8)
2037 env->mxccdata[0] = val;
2038 else
2039 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2040 size);
2041 break;
2042 case 0x01c00008: /* MXCC stream data register 1 */
2043 if (size == 8)
2044 env->mxccdata[1] = val;
2045 else
2046 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2047 size);
2048 break;
2049 case 0x01c00010: /* MXCC stream data register 2 */
2050 if (size == 8)
2051 env->mxccdata[2] = val;
2052 else
2053 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2054 size);
2055 break;
2056 case 0x01c00018: /* MXCC stream data register 3 */
2057 if (size == 8)
2058 env->mxccdata[3] = val;
2059 else
2060 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2061 size);
2062 break;
2063 case 0x01c00100: /* MXCC stream source */
2064 if (size == 8)
2065 env->mxccregs[0] = val;
2066 else
2067 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2068 size);
2069 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2071 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2073 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2074 16);
2075 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2076 24);
2077 break;
2078 case 0x01c00200: /* MXCC stream destination */
2079 if (size == 8)
2080 env->mxccregs[1] = val;
2081 else
2082 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2083 size);
2084 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
2085 env->mxccdata[0]);
2086 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
2087 env->mxccdata[1]);
2088 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
2089 env->mxccdata[2]);
2090 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
2091 env->mxccdata[3]);
2092 break;
2093 case 0x01c00a00: /* MXCC control register */
2094 if (size == 8)
2095 env->mxccregs[3] = val;
2096 else
2097 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2098 size);
2099 break;
2100 case 0x01c00a04: /* MXCC control register */
2101 if (size == 4)
2102 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
2103 | val;
2104 else
2105 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2106 size);
2107 break;
2108 case 0x01c00e00: /* MXCC error register */
2109 // writing a 1 bit clears the error
2110 if (size == 8)
2111 env->mxccregs[6] &= ~val;
2112 else
2113 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2114 size);
2115 break;
2116 case 0x01c00f00: /* MBus port address register */
2117 if (size == 8)
2118 env->mxccregs[7] = val;
2119 else
2120 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2121 size);
2122 break;
2123 default:
2124 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
2125 size);
2126 break;
2128 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
2129 asi, size, addr, val);
2130 #ifdef DEBUG_MXCC
2131 dump_mxcc(env);
2132 #endif
2133 break;
2134 case 3: /* MMU flush */
2136 int mmulev;
2138 mmulev = (addr >> 8) & 15;
2139 DPRINTF_MMU("mmu flush level %d\n", mmulev);
2140 switch (mmulev) {
2141 case 0: // flush page
2142 tlb_flush_page(env, addr & 0xfffff000);
2143 break;
2144 case 1: // flush segment (256k)
2145 case 2: // flush region (16M)
2146 case 3: // flush context (4G)
2147 case 4: // flush entire
2148 tlb_flush(env, 1);
2149 break;
2150 default:
2151 break;
2153 #ifdef DEBUG_MMU
2154 dump_mmu(stdout, fprintf, env);
2155 #endif
2157 break;
2158 case 4: /* write MMU regs */
2160 int reg = (addr >> 8) & 0x1f;
2161 uint32_t oldreg;
2163 oldreg = env->mmuregs[reg];
2164 switch(reg) {
2165 case 0: // Control Register
2166 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
2167 (val & 0x00ffffff);
2168 // Mappings generated during no-fault mode or MMU
2169 // disabled mode are invalid in normal mode
2170 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
2171 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
2172 tlb_flush(env, 1);
2173 break;
2174 case 1: // Context Table Pointer Register
2175 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
2176 break;
2177 case 2: // Context Register
2178 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
2179 if (oldreg != env->mmuregs[reg]) {
2180 /* we flush when the MMU context changes because
2181 QEMU has no MMU context support */
2182 tlb_flush(env, 1);
2184 break;
2185 case 3: // Synchronous Fault Status Register with Clear
2186 case 4: // Synchronous Fault Address Register
2187 break;
2188 case 0x10: // TLB Replacement Control Register
2189 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
2190 break;
2191 case 0x13: // Synchronous Fault Status Register with Read and Clear
2192 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
2193 break;
2194 case 0x14: // Synchronous Fault Address Register
2195 env->mmuregs[4] = val;
2196 break;
2197 default:
2198 env->mmuregs[reg] = val;
2199 break;
2201 if (oldreg != env->mmuregs[reg]) {
2202 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
2203 reg, oldreg, env->mmuregs[reg]);
2205 #ifdef DEBUG_MMU
2206 dump_mmu(stdout, fprintf, env);
2207 #endif
2209 break;
2210 case 5: // Turbosparc ITLB Diagnostic
2211 case 6: // Turbosparc DTLB Diagnostic
2212 case 7: // Turbosparc IOTLB Diagnostic
2213 break;
2214 case 0xa: /* User data access */
2215 switch(size) {
2216 case 1:
2217 stb_user(addr, val);
2218 break;
2219 case 2:
2220 stw_user(addr, val);
2221 break;
2222 default:
2223 case 4:
2224 stl_user(addr, val);
2225 break;
2226 case 8:
2227 stq_user(addr, val);
2228 break;
2230 break;
2231 case 0xb: /* Supervisor data access */
2232 switch(size) {
2233 case 1:
2234 stb_kernel(addr, val);
2235 break;
2236 case 2:
2237 stw_kernel(addr, val);
2238 break;
2239 default:
2240 case 4:
2241 stl_kernel(addr, val);
2242 break;
2243 case 8:
2244 stq_kernel(addr, val);
2245 break;
2247 break;
2248 case 0xc: /* I-cache tag */
2249 case 0xd: /* I-cache data */
2250 case 0xe: /* D-cache tag */
2251 case 0xf: /* D-cache data */
2252 case 0x10: /* I/D-cache flush page */
2253 case 0x11: /* I/D-cache flush segment */
2254 case 0x12: /* I/D-cache flush region */
2255 case 0x13: /* I/D-cache flush context */
2256 case 0x14: /* I/D-cache flush user */
2257 break;
2258 case 0x17: /* Block copy, sta access */
2260 // val = src
2261 // addr = dst
2262 // copy 32 bytes
2263 unsigned int i;
2264 uint32_t src = val & ~3, dst = addr & ~3, temp;
2266 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
2267 temp = ldl_kernel(src);
2268 stl_kernel(dst, temp);
2271 break;
2272 case 0x1f: /* Block fill, stda access */
2274 // addr = dst
2275 // fill 32 bytes with val
2276 unsigned int i;
2277 uint32_t dst = addr & 7;
2279 for (i = 0; i < 32; i += 8, dst += 8)
2280 stq_kernel(dst, val);
2282 break;
2283 case 0x20: /* MMU passthrough */
2285 switch(size) {
2286 case 1:
2287 stb_phys(addr, val);
2288 break;
2289 case 2:
2290 stw_phys(addr, val);
2291 break;
2292 case 4:
2293 default:
2294 stl_phys(addr, val);
2295 break;
2296 case 8:
2297 stq_phys(addr, val);
2298 break;
2301 break;
2302 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2304 switch(size) {
2305 case 1:
2306 stb_phys((target_phys_addr_t)addr
2307 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2308 break;
2309 case 2:
2310 stw_phys((target_phys_addr_t)addr
2311 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2312 break;
2313 case 4:
2314 default:
2315 stl_phys((target_phys_addr_t)addr
2316 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2317 break;
2318 case 8:
2319 stq_phys((target_phys_addr_t)addr
2320 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2321 break;
2324 break;
2325 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2326 case 0x31: // store buffer data, Ross RT620 I-cache flush or
2327 // Turbosparc snoop RAM
2328 case 0x32: // store buffer control or Turbosparc page table
2329 // descriptor diagnostic
2330 case 0x36: /* I-cache flash clear */
2331 case 0x37: /* D-cache flash clear */
2332 break;
2333 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2335 int reg = (addr >> 8) & 3;
2337 switch(reg) {
2338 case 0: /* Breakpoint Value (Addr) */
2339 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2340 break;
2341 case 1: /* Breakpoint Mask */
2342 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2343 break;
2344 case 2: /* Breakpoint Control */
2345 env->mmubpregs[reg] = (val & 0x7fULL);
2346 break;
2347 case 3: /* Breakpoint Status */
2348 env->mmubpregs[reg] = (val & 0xfULL);
2349 break;
2351 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2352 env->mmuregs[reg]);
2354 break;
2355 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
2356 env->mmubpctrv = val & 0xffffffff;
2357 break;
2358 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
2359 env->mmubpctrc = val & 0x3;
2360 break;
2361 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
2362 env->mmubpctrs = val & 0x3;
2363 break;
2364 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
2365 env->mmubpaction = val & 0x1fff;
2366 break;
2367 case 8: /* User code access, XXX */
2368 case 9: /* Supervisor code access, XXX */
2369 default:
2370 do_unassigned_access(addr, 1, 0, asi, size);
2371 break;
2373 #ifdef DEBUG_ASI
2374 dump_asi("write", addr, asi, size, val);
2375 #endif
2378 #endif /* CONFIG_USER_ONLY */
2379 #else /* TARGET_SPARC64 */
2381 #ifdef CONFIG_USER_ONLY
2382 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2384 uint64_t ret = 0;
2385 #if defined(DEBUG_ASI)
2386 target_ulong last_addr = addr;
2387 #endif
2389 if (asi < 0x80)
2390 raise_exception(TT_PRIV_ACT);
2392 helper_check_align(addr, size - 1);
2393 addr = asi_address_mask(env, asi, addr);
2395 switch (asi) {
2396 case 0x82: // Primary no-fault
2397 case 0x8a: // Primary no-fault LE
2398 if (page_check_range(addr, size, PAGE_READ) == -1) {
2399 #ifdef DEBUG_ASI
2400 dump_asi("read ", last_addr, asi, size, ret);
2401 #endif
2402 return 0;
2404 // Fall through
2405 case 0x80: // Primary
2406 case 0x88: // Primary LE
2408 switch(size) {
2409 case 1:
2410 ret = ldub_raw(addr);
2411 break;
2412 case 2:
2413 ret = lduw_raw(addr);
2414 break;
2415 case 4:
2416 ret = ldl_raw(addr);
2417 break;
2418 default:
2419 case 8:
2420 ret = ldq_raw(addr);
2421 break;
2424 break;
2425 case 0x83: // Secondary no-fault
2426 case 0x8b: // Secondary no-fault LE
2427 if (page_check_range(addr, size, PAGE_READ) == -1) {
2428 #ifdef DEBUG_ASI
2429 dump_asi("read ", last_addr, asi, size, ret);
2430 #endif
2431 return 0;
2433 // Fall through
2434 case 0x81: // Secondary
2435 case 0x89: // Secondary LE
2436 // XXX
2437 break;
2438 default:
2439 break;
2442 /* Convert from little endian */
2443 switch (asi) {
2444 case 0x88: // Primary LE
2445 case 0x89: // Secondary LE
2446 case 0x8a: // Primary no-fault LE
2447 case 0x8b: // Secondary no-fault LE
2448 switch(size) {
2449 case 2:
2450 ret = bswap16(ret);
2451 break;
2452 case 4:
2453 ret = bswap32(ret);
2454 break;
2455 case 8:
2456 ret = bswap64(ret);
2457 break;
2458 default:
2459 break;
2461 default:
2462 break;
2465 /* Convert to signed number */
2466 if (sign) {
2467 switch(size) {
2468 case 1:
2469 ret = (int8_t) ret;
2470 break;
2471 case 2:
2472 ret = (int16_t) ret;
2473 break;
2474 case 4:
2475 ret = (int32_t) ret;
2476 break;
2477 default:
2478 break;
2481 #ifdef DEBUG_ASI
2482 dump_asi("read ", last_addr, asi, size, ret);
2483 #endif
2484 return ret;
2487 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2489 #ifdef DEBUG_ASI
2490 dump_asi("write", addr, asi, size, val);
2491 #endif
2492 if (asi < 0x80)
2493 raise_exception(TT_PRIV_ACT);
2495 helper_check_align(addr, size - 1);
2496 addr = asi_address_mask(env, asi, addr);
2498 /* Convert to little endian */
2499 switch (asi) {
2500 case 0x88: // Primary LE
2501 case 0x89: // Secondary LE
2502 switch(size) {
2503 case 2:
2504 val = bswap16(val);
2505 break;
2506 case 4:
2507 val = bswap32(val);
2508 break;
2509 case 8:
2510 val = bswap64(val);
2511 break;
2512 default:
2513 break;
2515 default:
2516 break;
2519 switch(asi) {
2520 case 0x80: // Primary
2521 case 0x88: // Primary LE
2523 switch(size) {
2524 case 1:
2525 stb_raw(addr, val);
2526 break;
2527 case 2:
2528 stw_raw(addr, val);
2529 break;
2530 case 4:
2531 stl_raw(addr, val);
2532 break;
2533 case 8:
2534 default:
2535 stq_raw(addr, val);
2536 break;
2539 break;
2540 case 0x81: // Secondary
2541 case 0x89: // Secondary LE
2542 // XXX
2543 return;
2545 case 0x82: // Primary no-fault, RO
2546 case 0x83: // Secondary no-fault, RO
2547 case 0x8a: // Primary no-fault LE, RO
2548 case 0x8b: // Secondary no-fault LE, RO
2549 default:
2550 do_unassigned_access(addr, 1, 0, 1, size);
2551 return;
2555 #else /* CONFIG_USER_ONLY */
2557 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2559 uint64_t ret = 0;
2560 #if defined(DEBUG_ASI)
2561 target_ulong last_addr = addr;
2562 #endif
2564 asi &= 0xff;
2566 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2567 || (cpu_has_hypervisor(env)
2568 && asi >= 0x30 && asi < 0x80
2569 && !(env->hpstate & HS_PRIV)))
2570 raise_exception(TT_PRIV_ACT);
2572 helper_check_align(addr, size - 1);
2573 addr = asi_address_mask(env, asi, addr);
2575 /* process nonfaulting loads first */
2576 if ((asi & 0xf6) == 0x82) {
2577 int mmu_idx;
2579 /* secondary space access has lowest asi bit equal to 1 */
2580 if (env->pstate & PS_PRIV) {
2581 mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
2582 } else {
2583 mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
2586 if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
2587 #ifdef DEBUG_ASI
2588 dump_asi("read ", last_addr, asi, size, ret);
2589 #endif
2590 /* env->exception_index is set in get_physical_address_data(). */
2591 raise_exception(env->exception_index);
2594 /* convert nonfaulting load ASIs to normal load ASIs */
2595 asi &= ~0x02;
2598 switch (asi) {
2599 case 0x10: // As if user primary
2600 case 0x11: // As if user secondary
2601 case 0x18: // As if user primary LE
2602 case 0x19: // As if user secondary LE
2603 case 0x80: // Primary
2604 case 0x81: // Secondary
2605 case 0x88: // Primary LE
2606 case 0x89: // Secondary LE
2607 case 0xe2: // UA2007 Primary block init
2608 case 0xe3: // UA2007 Secondary block init
2609 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2610 if (cpu_hypervisor_mode(env)) {
2611 switch(size) {
2612 case 1:
2613 ret = ldub_hypv(addr);
2614 break;
2615 case 2:
2616 ret = lduw_hypv(addr);
2617 break;
2618 case 4:
2619 ret = ldl_hypv(addr);
2620 break;
2621 default:
2622 case 8:
2623 ret = ldq_hypv(addr);
2624 break;
2626 } else {
2627 /* secondary space access has lowest asi bit equal to 1 */
2628 if (asi & 1) {
2629 switch(size) {
2630 case 1:
2631 ret = ldub_kernel_secondary(addr);
2632 break;
2633 case 2:
2634 ret = lduw_kernel_secondary(addr);
2635 break;
2636 case 4:
2637 ret = ldl_kernel_secondary(addr);
2638 break;
2639 default:
2640 case 8:
2641 ret = ldq_kernel_secondary(addr);
2642 break;
2644 } else {
2645 switch(size) {
2646 case 1:
2647 ret = ldub_kernel(addr);
2648 break;
2649 case 2:
2650 ret = lduw_kernel(addr);
2651 break;
2652 case 4:
2653 ret = ldl_kernel(addr);
2654 break;
2655 default:
2656 case 8:
2657 ret = ldq_kernel(addr);
2658 break;
2662 } else {
2663 /* secondary space access has lowest asi bit equal to 1 */
2664 if (asi & 1) {
2665 switch(size) {
2666 case 1:
2667 ret = ldub_user_secondary(addr);
2668 break;
2669 case 2:
2670 ret = lduw_user_secondary(addr);
2671 break;
2672 case 4:
2673 ret = ldl_user_secondary(addr);
2674 break;
2675 default:
2676 case 8:
2677 ret = ldq_user_secondary(addr);
2678 break;
2680 } else {
2681 switch(size) {
2682 case 1:
2683 ret = ldub_user(addr);
2684 break;
2685 case 2:
2686 ret = lduw_user(addr);
2687 break;
2688 case 4:
2689 ret = ldl_user(addr);
2690 break;
2691 default:
2692 case 8:
2693 ret = ldq_user(addr);
2694 break;
2698 break;
2699 case 0x14: // Bypass
2700 case 0x15: // Bypass, non-cacheable
2701 case 0x1c: // Bypass LE
2702 case 0x1d: // Bypass, non-cacheable LE
2704 switch(size) {
2705 case 1:
2706 ret = ldub_phys(addr);
2707 break;
2708 case 2:
2709 ret = lduw_phys(addr);
2710 break;
2711 case 4:
2712 ret = ldl_phys(addr);
2713 break;
2714 default:
2715 case 8:
2716 ret = ldq_phys(addr);
2717 break;
2719 break;
2721 case 0x24: // Nucleus quad LDD 128 bit atomic
2722 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2723 // Only ldda allowed
2724 raise_exception(TT_ILL_INSN);
2725 return 0;
2726 case 0x04: // Nucleus
2727 case 0x0c: // Nucleus Little Endian (LE)
2729 switch(size) {
2730 case 1:
2731 ret = ldub_nucleus(addr);
2732 break;
2733 case 2:
2734 ret = lduw_nucleus(addr);
2735 break;
2736 case 4:
2737 ret = ldl_nucleus(addr);
2738 break;
2739 default:
2740 case 8:
2741 ret = ldq_nucleus(addr);
2742 break;
2744 break;
2746 case 0x4a: // UPA config
2747 // XXX
2748 break;
2749 case 0x45: // LSU
2750 ret = env->lsu;
2751 break;
2752 case 0x50: // I-MMU regs
2754 int reg = (addr >> 3) & 0xf;
2756 if (reg == 0) {
2757 // I-TSB Tag Target register
2758 ret = ultrasparc_tag_target(env->immu.tag_access);
2759 } else {
2760 ret = env->immuregs[reg];
2763 break;
2765 case 0x51: // I-MMU 8k TSB pointer
2767 // env->immuregs[5] holds I-MMU TSB register value
2768 // env->immuregs[6] holds I-MMU Tag Access register value
2769 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2770 8*1024);
2771 break;
2773 case 0x52: // I-MMU 64k TSB pointer
2775 // env->immuregs[5] holds I-MMU TSB register value
2776 // env->immuregs[6] holds I-MMU Tag Access register value
2777 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2778 64*1024);
2779 break;
2781 case 0x55: // I-MMU data access
2783 int reg = (addr >> 3) & 0x3f;
2785 ret = env->itlb[reg].tte;
2786 break;
2788 case 0x56: // I-MMU tag read
2790 int reg = (addr >> 3) & 0x3f;
2792 ret = env->itlb[reg].tag;
2793 break;
2795 case 0x58: // D-MMU regs
2797 int reg = (addr >> 3) & 0xf;
2799 if (reg == 0) {
2800 // D-TSB Tag Target register
2801 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2802 } else {
2803 ret = env->dmmuregs[reg];
2805 break;
2807 case 0x59: // D-MMU 8k TSB pointer
2809 // env->dmmuregs[5] holds D-MMU TSB register value
2810 // env->dmmuregs[6] holds D-MMU Tag Access register value
2811 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2812 8*1024);
2813 break;
2815 case 0x5a: // D-MMU 64k TSB pointer
2817 // env->dmmuregs[5] holds D-MMU TSB register value
2818 // env->dmmuregs[6] holds D-MMU Tag Access register value
2819 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2820 64*1024);
2821 break;
2823 case 0x5d: // D-MMU data access
2825 int reg = (addr >> 3) & 0x3f;
2827 ret = env->dtlb[reg].tte;
2828 break;
2830 case 0x5e: // D-MMU tag read
2832 int reg = (addr >> 3) & 0x3f;
2834 ret = env->dtlb[reg].tag;
2835 break;
2837 case 0x46: // D-cache data
2838 case 0x47: // D-cache tag access
2839 case 0x4b: // E-cache error enable
2840 case 0x4c: // E-cache asynchronous fault status
2841 case 0x4d: // E-cache asynchronous fault address
2842 case 0x4e: // E-cache tag data
2843 case 0x66: // I-cache instruction access
2844 case 0x67: // I-cache tag access
2845 case 0x6e: // I-cache predecode
2846 case 0x6f: // I-cache LRU etc.
2847 case 0x76: // E-cache tag
2848 case 0x7e: // E-cache tag
2849 break;
2850 case 0x5b: // D-MMU data pointer
2851 case 0x48: // Interrupt dispatch, RO
2852 case 0x49: // Interrupt data receive
2853 case 0x7f: // Incoming interrupt vector, RO
2854 // XXX
2855 break;
2856 case 0x54: // I-MMU data in, WO
2857 case 0x57: // I-MMU demap, WO
2858 case 0x5c: // D-MMU data in, WO
2859 case 0x5f: // D-MMU demap, WO
2860 case 0x77: // Interrupt vector, WO
2861 default:
2862 do_unassigned_access(addr, 0, 0, 1, size);
2863 ret = 0;
2864 break;
2867 /* Convert from little endian */
2868 switch (asi) {
2869 case 0x0c: // Nucleus Little Endian (LE)
2870 case 0x18: // As if user primary LE
2871 case 0x19: // As if user secondary LE
2872 case 0x1c: // Bypass LE
2873 case 0x1d: // Bypass, non-cacheable LE
2874 case 0x88: // Primary LE
2875 case 0x89: // Secondary LE
2876 switch(size) {
2877 case 2:
2878 ret = bswap16(ret);
2879 break;
2880 case 4:
2881 ret = bswap32(ret);
2882 break;
2883 case 8:
2884 ret = bswap64(ret);
2885 break;
2886 default:
2887 break;
2889 default:
2890 break;
2893 /* Convert to signed number */
2894 if (sign) {
2895 switch(size) {
2896 case 1:
2897 ret = (int8_t) ret;
2898 break;
2899 case 2:
2900 ret = (int16_t) ret;
2901 break;
2902 case 4:
2903 ret = (int32_t) ret;
2904 break;
2905 default:
2906 break;
2909 #ifdef DEBUG_ASI
2910 dump_asi("read ", last_addr, asi, size, ret);
2911 #endif
2912 return ret;
2915 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2917 #ifdef DEBUG_ASI
2918 dump_asi("write", addr, asi, size, val);
2919 #endif
2921 asi &= 0xff;
2923 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2924 || (cpu_has_hypervisor(env)
2925 && asi >= 0x30 && asi < 0x80
2926 && !(env->hpstate & HS_PRIV)))
2927 raise_exception(TT_PRIV_ACT);
2929 helper_check_align(addr, size - 1);
2930 addr = asi_address_mask(env, asi, addr);
2932 /* Convert to little endian */
2933 switch (asi) {
2934 case 0x0c: // Nucleus Little Endian (LE)
2935 case 0x18: // As if user primary LE
2936 case 0x19: // As if user secondary LE
2937 case 0x1c: // Bypass LE
2938 case 0x1d: // Bypass, non-cacheable LE
2939 case 0x88: // Primary LE
2940 case 0x89: // Secondary LE
2941 switch(size) {
2942 case 2:
2943 val = bswap16(val);
2944 break;
2945 case 4:
2946 val = bswap32(val);
2947 break;
2948 case 8:
2949 val = bswap64(val);
2950 break;
2951 default:
2952 break;
2954 default:
2955 break;
2958 switch(asi) {
2959 case 0x10: // As if user primary
2960 case 0x11: // As if user secondary
2961 case 0x18: // As if user primary LE
2962 case 0x19: // As if user secondary LE
2963 case 0x80: // Primary
2964 case 0x81: // Secondary
2965 case 0x88: // Primary LE
2966 case 0x89: // Secondary LE
2967 case 0xe2: // UA2007 Primary block init
2968 case 0xe3: // UA2007 Secondary block init
2969 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2970 if (cpu_hypervisor_mode(env)) {
2971 switch(size) {
2972 case 1:
2973 stb_hypv(addr, val);
2974 break;
2975 case 2:
2976 stw_hypv(addr, val);
2977 break;
2978 case 4:
2979 stl_hypv(addr, val);
2980 break;
2981 case 8:
2982 default:
2983 stq_hypv(addr, val);
2984 break;
2986 } else {
2987 /* secondary space access has lowest asi bit equal to 1 */
2988 if (asi & 1) {
2989 switch(size) {
2990 case 1:
2991 stb_kernel_secondary(addr, val);
2992 break;
2993 case 2:
2994 stw_kernel_secondary(addr, val);
2995 break;
2996 case 4:
2997 stl_kernel_secondary(addr, val);
2998 break;
2999 case 8:
3000 default:
3001 stq_kernel_secondary(addr, val);
3002 break;
3004 } else {
3005 switch(size) {
3006 case 1:
3007 stb_kernel(addr, val);
3008 break;
3009 case 2:
3010 stw_kernel(addr, val);
3011 break;
3012 case 4:
3013 stl_kernel(addr, val);
3014 break;
3015 case 8:
3016 default:
3017 stq_kernel(addr, val);
3018 break;
3022 } else {
3023 /* secondary space access has lowest asi bit equal to 1 */
3024 if (asi & 1) {
3025 switch(size) {
3026 case 1:
3027 stb_user_secondary(addr, val);
3028 break;
3029 case 2:
3030 stw_user_secondary(addr, val);
3031 break;
3032 case 4:
3033 stl_user_secondary(addr, val);
3034 break;
3035 case 8:
3036 default:
3037 stq_user_secondary(addr, val);
3038 break;
3040 } else {
3041 switch(size) {
3042 case 1:
3043 stb_user(addr, val);
3044 break;
3045 case 2:
3046 stw_user(addr, val);
3047 break;
3048 case 4:
3049 stl_user(addr, val);
3050 break;
3051 case 8:
3052 default:
3053 stq_user(addr, val);
3054 break;
3058 break;
3059 case 0x14: // Bypass
3060 case 0x15: // Bypass, non-cacheable
3061 case 0x1c: // Bypass LE
3062 case 0x1d: // Bypass, non-cacheable LE
3064 switch(size) {
3065 case 1:
3066 stb_phys(addr, val);
3067 break;
3068 case 2:
3069 stw_phys(addr, val);
3070 break;
3071 case 4:
3072 stl_phys(addr, val);
3073 break;
3074 case 8:
3075 default:
3076 stq_phys(addr, val);
3077 break;
3080 return;
3081 case 0x24: // Nucleus quad LDD 128 bit atomic
3082 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3083 // Only ldda allowed
3084 raise_exception(TT_ILL_INSN);
3085 return;
3086 case 0x04: // Nucleus
3087 case 0x0c: // Nucleus Little Endian (LE)
3089 switch(size) {
3090 case 1:
3091 stb_nucleus(addr, val);
3092 break;
3093 case 2:
3094 stw_nucleus(addr, val);
3095 break;
3096 case 4:
3097 stl_nucleus(addr, val);
3098 break;
3099 default:
3100 case 8:
3101 stq_nucleus(addr, val);
3102 break;
3104 break;
3107 case 0x4a: // UPA config
3108 // XXX
3109 return;
3110 case 0x45: // LSU
3112 uint64_t oldreg;
3114 oldreg = env->lsu;
3115 env->lsu = val & (DMMU_E | IMMU_E);
3116 // Mappings generated during D/I MMU disabled mode are
3117 // invalid in normal mode
3118 if (oldreg != env->lsu) {
3119 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
3120 oldreg, env->lsu);
3121 #ifdef DEBUG_MMU
3122 dump_mmu(stdout, fprintf, env1);
3123 #endif
3124 tlb_flush(env, 1);
3126 return;
3128 case 0x50: // I-MMU regs
3130 int reg = (addr >> 3) & 0xf;
3131 uint64_t oldreg;
3133 oldreg = env->immuregs[reg];
3134 switch(reg) {
3135 case 0: // RO
3136 return;
3137 case 1: // Not in I-MMU
3138 case 2:
3139 return;
3140 case 3: // SFSR
3141 if ((val & 1) == 0)
3142 val = 0; // Clear SFSR
3143 env->immu.sfsr = val;
3144 break;
3145 case 4: // RO
3146 return;
3147 case 5: // TSB access
3148 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
3149 PRIx64 "\n", env->immu.tsb, val);
3150 env->immu.tsb = val;
3151 break;
3152 case 6: // Tag access
3153 env->immu.tag_access = val;
3154 break;
3155 case 7:
3156 case 8:
3157 return;
3158 default:
3159 break;
3162 if (oldreg != env->immuregs[reg]) {
3163 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3164 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3166 #ifdef DEBUG_MMU
3167 dump_mmu(stdout, fprintf, env);
3168 #endif
3169 return;
3171 case 0x54: // I-MMU data in
3172 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
3173 return;
3174 case 0x55: // I-MMU data access
3176 // TODO: auto demap
3178 unsigned int i = (addr >> 3) & 0x3f;
3180 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
3182 #ifdef DEBUG_MMU
3183 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
3184 dump_mmu(stdout, fprintf, env);
3185 #endif
3186 return;
3188 case 0x57: // I-MMU demap
3189 demap_tlb(env->itlb, addr, "immu", env);
3190 return;
3191 case 0x58: // D-MMU regs
3193 int reg = (addr >> 3) & 0xf;
3194 uint64_t oldreg;
3196 oldreg = env->dmmuregs[reg];
3197 switch(reg) {
3198 case 0: // RO
3199 case 4:
3200 return;
3201 case 3: // SFSR
3202 if ((val & 1) == 0) {
3203 val = 0; // Clear SFSR, Fault address
3204 env->dmmu.sfar = 0;
3206 env->dmmu.sfsr = val;
3207 break;
3208 case 1: // Primary context
3209 env->dmmu.mmu_primary_context = val;
3210 /* can be optimized to only flush MMU_USER_IDX
3211 and MMU_KERNEL_IDX entries */
3212 tlb_flush(env, 1);
3213 break;
3214 case 2: // Secondary context
3215 env->dmmu.mmu_secondary_context = val;
3216 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
3217 and MMU_KERNEL_SECONDARY_IDX entries */
3218 tlb_flush(env, 1);
3219 break;
3220 case 5: // TSB access
3221 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
3222 PRIx64 "\n", env->dmmu.tsb, val);
3223 env->dmmu.tsb = val;
3224 break;
3225 case 6: // Tag access
3226 env->dmmu.tag_access = val;
3227 break;
3228 case 7: // Virtual Watchpoint
3229 case 8: // Physical Watchpoint
3230 default:
3231 env->dmmuregs[reg] = val;
3232 break;
3235 if (oldreg != env->dmmuregs[reg]) {
3236 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3237 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3239 #ifdef DEBUG_MMU
3240 dump_mmu(stdout, fprintf, env);
3241 #endif
3242 return;
3244 case 0x5c: // D-MMU data in
3245 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
3246 return;
3247 case 0x5d: // D-MMU data access
3249 unsigned int i = (addr >> 3) & 0x3f;
3251 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
3253 #ifdef DEBUG_MMU
3254 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
3255 dump_mmu(stdout, fprintf, env);
3256 #endif
3257 return;
3259 case 0x5f: // D-MMU demap
3260 demap_tlb(env->dtlb, addr, "dmmu", env);
3261 return;
3262 case 0x49: // Interrupt data receive
3263 // XXX
3264 return;
3265 case 0x46: // D-cache data
3266 case 0x47: // D-cache tag access
3267 case 0x4b: // E-cache error enable
3268 case 0x4c: // E-cache asynchronous fault status
3269 case 0x4d: // E-cache asynchronous fault address
3270 case 0x4e: // E-cache tag data
3271 case 0x66: // I-cache instruction access
3272 case 0x67: // I-cache tag access
3273 case 0x6e: // I-cache predecode
3274 case 0x6f: // I-cache LRU etc.
3275 case 0x76: // E-cache tag
3276 case 0x7e: // E-cache tag
3277 return;
3278 case 0x51: // I-MMU 8k TSB pointer, RO
3279 case 0x52: // I-MMU 64k TSB pointer, RO
3280 case 0x56: // I-MMU tag read, RO
3281 case 0x59: // D-MMU 8k TSB pointer, RO
3282 case 0x5a: // D-MMU 64k TSB pointer, RO
3283 case 0x5b: // D-MMU data pointer, RO
3284 case 0x5e: // D-MMU tag read, RO
3285 case 0x48: // Interrupt dispatch, RO
3286 case 0x7f: // Incoming interrupt vector, RO
3287 case 0x82: // Primary no-fault, RO
3288 case 0x83: // Secondary no-fault, RO
3289 case 0x8a: // Primary no-fault LE, RO
3290 case 0x8b: // Secondary no-fault LE, RO
3291 default:
3292 do_unassigned_access(addr, 1, 0, 1, size);
3293 return;
3296 #endif /* CONFIG_USER_ONLY */
3298 void helper_ldda_asi(target_ulong addr, int asi, int rd)
3300 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
3301 || (cpu_has_hypervisor(env)
3302 && asi >= 0x30 && asi < 0x80
3303 && !(env->hpstate & HS_PRIV)))
3304 raise_exception(TT_PRIV_ACT);
3306 addr = asi_address_mask(env, asi, addr);
3308 switch (asi) {
3309 #if !defined(CONFIG_USER_ONLY)
3310 case 0x24: // Nucleus quad LDD 128 bit atomic
3311 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3312 helper_check_align(addr, 0xf);
3313 if (rd == 0) {
3314 env->gregs[1] = ldq_nucleus(addr + 8);
3315 if (asi == 0x2c)
3316 bswap64s(&env->gregs[1]);
3317 } else if (rd < 8) {
3318 env->gregs[rd] = ldq_nucleus(addr);
3319 env->gregs[rd + 1] = ldq_nucleus(addr + 8);
3320 if (asi == 0x2c) {
3321 bswap64s(&env->gregs[rd]);
3322 bswap64s(&env->gregs[rd + 1]);
3324 } else {
3325 env->regwptr[rd] = ldq_nucleus(addr);
3326 env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
3327 if (asi == 0x2c) {
3328 bswap64s(&env->regwptr[rd]);
3329 bswap64s(&env->regwptr[rd + 1]);
3332 break;
3333 #endif
3334 default:
3335 helper_check_align(addr, 0x3);
3336 if (rd == 0)
3337 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3338 else if (rd < 8) {
3339 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3340 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3341 } else {
3342 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3343 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3345 break;
3349 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3351 unsigned int i;
3352 CPU_DoubleU u;
3354 helper_check_align(addr, 3);
3355 addr = asi_address_mask(env, asi, addr);
3357 switch (asi) {
3358 case 0xf0: /* UA2007/JPS1 Block load primary */
3359 case 0xf1: /* UA2007/JPS1 Block load secondary */
3360 case 0xf8: /* UA2007/JPS1 Block load primary LE */
3361 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
3362 if (rd & 7) {
3363 raise_exception(TT_ILL_INSN);
3364 return;
3366 helper_check_align(addr, 0x3f);
3367 for (i = 0; i < 16; i++) {
3368 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3370 addr += 4;
3373 return;
3374 case 0x16: /* UA2007 Block load primary, user privilege */
3375 case 0x17: /* UA2007 Block load secondary, user privilege */
3376 case 0x1e: /* UA2007 Block load primary LE, user privilege */
3377 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
3378 case 0x70: /* JPS1 Block load primary, user privilege */
3379 case 0x71: /* JPS1 Block load secondary, user privilege */
3380 case 0x78: /* JPS1 Block load primary LE, user privilege */
3381 case 0x79: /* JPS1 Block load secondary LE, user privilege */
3382 if (rd & 7) {
3383 raise_exception(TT_ILL_INSN);
3384 return;
3386 helper_check_align(addr, 0x3f);
3387 for (i = 0; i < 16; i++) {
3388 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x19, 4,
3390 addr += 4;
3393 return;
3394 default:
3395 break;
3398 switch(size) {
3399 default:
3400 case 4:
3401 *((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
3402 break;
3403 case 8:
3404 u.ll = helper_ld_asi(addr, asi, size, 0);
3405 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3406 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3407 break;
3408 case 16:
3409 u.ll = helper_ld_asi(addr, asi, 8, 0);
3410 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3411 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3412 u.ll = helper_ld_asi(addr + 8, asi, 8, 0);
3413 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3414 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3415 break;
3419 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3421 unsigned int i;
3422 target_ulong val = 0;
3423 CPU_DoubleU u;
3425 helper_check_align(addr, 3);
3426 addr = asi_address_mask(env, asi, addr);
3428 switch (asi) {
3429 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
3430 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
3431 case 0xf0: /* UA2007/JPS1 Block store primary */
3432 case 0xf1: /* UA2007/JPS1 Block store secondary */
3433 case 0xf8: /* UA2007/JPS1 Block store primary LE */
3434 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
3435 if (rd & 7) {
3436 raise_exception(TT_ILL_INSN);
3437 return;
3439 helper_check_align(addr, 0x3f);
3440 for (i = 0; i < 16; i++) {
3441 val = *(uint32_t *)&env->fpr[rd++];
3442 helper_st_asi(addr, val, asi & 0x8f, 4);
3443 addr += 4;
3446 return;
3447 case 0x16: /* UA2007 Block load primary, user privilege */
3448 case 0x17: /* UA2007 Block load secondary, user privilege */
3449 case 0x1e: /* UA2007 Block load primary LE, user privilege */
3450 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
3451 case 0x70: /* JPS1 Block store primary, user privilege */
3452 case 0x71: /* JPS1 Block store secondary, user privilege */
3453 case 0x78: /* JPS1 Block load primary LE, user privilege */
3454 case 0x79: /* JPS1 Block load secondary LE, user privilege */
3455 if (rd & 7) {
3456 raise_exception(TT_ILL_INSN);
3457 return;
3459 helper_check_align(addr, 0x3f);
3460 for (i = 0; i < 16; i++) {
3461 val = *(uint32_t *)&env->fpr[rd++];
3462 helper_st_asi(addr, val, asi & 0x19, 4);
3463 addr += 4;
3466 return;
3467 default:
3468 break;
3471 switch(size) {
3472 default:
3473 case 4:
3474 helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
3475 break;
3476 case 8:
3477 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3478 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3479 helper_st_asi(addr, u.ll, asi, size);
3480 break;
3481 case 16:
3482 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3483 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3484 helper_st_asi(addr, u.ll, asi, 8);
3485 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3486 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3487 helper_st_asi(addr + 8, u.ll, asi, 8);
3488 break;
3492 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3493 target_ulong val2, uint32_t asi)
3495 target_ulong ret;
3497 val2 &= 0xffffffffUL;
3498 ret = helper_ld_asi(addr, asi, 4, 0);
3499 ret &= 0xffffffffUL;
3500 if (val2 == ret)
3501 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3502 return ret;
3505 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3506 target_ulong val2, uint32_t asi)
3508 target_ulong ret;
3510 ret = helper_ld_asi(addr, asi, 8, 0);
3511 if (val2 == ret)
3512 helper_st_asi(addr, val1, asi, 8);
3513 return ret;
3515 #endif /* TARGET_SPARC64 */
3517 #ifndef TARGET_SPARC64
3518 void helper_rett(void)
3520 unsigned int cwp;
3522 if (env->psret == 1)
3523 raise_exception(TT_ILL_INSN);
3525 env->psret = 1;
3526 cwp = cwp_inc(env->cwp + 1) ;
3527 if (env->wim & (1 << cwp)) {
3528 raise_exception(TT_WIN_UNF);
3530 set_cwp(cwp);
3531 env->psrs = env->psrps;
3533 #endif
3535 static target_ulong helper_udiv_common(target_ulong a, target_ulong b, int cc)
3537 int overflow = 0;
3538 uint64_t x0;
3539 uint32_t x1;
3541 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3542 x1 = (b & 0xffffffff);
3544 if (x1 == 0) {
3545 raise_exception(TT_DIV_ZERO);
3548 x0 = x0 / x1;
3549 if (x0 > 0xffffffff) {
3550 x0 = 0xffffffff;
3551 overflow = 1;
3554 if (cc) {
3555 env->cc_dst = x0;
3556 env->cc_src2 = overflow;
3557 env->cc_op = CC_OP_DIV;
3559 return x0;
3562 target_ulong helper_udiv(target_ulong a, target_ulong b)
3564 return helper_udiv_common(a, b, 0);
3567 target_ulong helper_udiv_cc(target_ulong a, target_ulong b)
3569 return helper_udiv_common(a, b, 1);
3572 static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc)
3574 int overflow = 0;
3575 int64_t x0;
3576 int32_t x1;
3578 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3579 x1 = (b & 0xffffffff);
3581 if (x1 == 0) {
3582 raise_exception(TT_DIV_ZERO);
3585 x0 = x0 / x1;
3586 if ((int32_t) x0 != x0) {
3587 x0 = x0 < 0 ? 0x80000000: 0x7fffffff;
3588 overflow = 1;
3591 if (cc) {
3592 env->cc_dst = x0;
3593 env->cc_src2 = overflow;
3594 env->cc_op = CC_OP_DIV;
3596 return x0;
3599 target_ulong helper_sdiv(target_ulong a, target_ulong b)
3601 return helper_sdiv_common(a, b, 0);
3604 target_ulong helper_sdiv_cc(target_ulong a, target_ulong b)
3606 return helper_sdiv_common(a, b, 1);
3609 void helper_stdf(target_ulong addr, int mem_idx)
3611 helper_check_align(addr, 7);
3612 #if !defined(CONFIG_USER_ONLY)
3613 switch (mem_idx) {
3614 case MMU_USER_IDX:
3615 stfq_user(addr, DT0);
3616 break;
3617 case MMU_KERNEL_IDX:
3618 stfq_kernel(addr, DT0);
3619 break;
3620 #ifdef TARGET_SPARC64
3621 case MMU_HYPV_IDX:
3622 stfq_hypv(addr, DT0);
3623 break;
3624 #endif
3625 default:
3626 DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
3627 break;
3629 #else
3630 stfq_raw(address_mask(env, addr), DT0);
3631 #endif
3634 void helper_lddf(target_ulong addr, int mem_idx)
3636 helper_check_align(addr, 7);
3637 #if !defined(CONFIG_USER_ONLY)
3638 switch (mem_idx) {
3639 case MMU_USER_IDX:
3640 DT0 = ldfq_user(addr);
3641 break;
3642 case MMU_KERNEL_IDX:
3643 DT0 = ldfq_kernel(addr);
3644 break;
3645 #ifdef TARGET_SPARC64
3646 case MMU_HYPV_IDX:
3647 DT0 = ldfq_hypv(addr);
3648 break;
3649 #endif
3650 default:
3651 DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
3652 break;
3654 #else
3655 DT0 = ldfq_raw(address_mask(env, addr));
3656 #endif
3659 void helper_ldqf(target_ulong addr, int mem_idx)
3661 // XXX add 128 bit load
3662 CPU_QuadU u;
3664 helper_check_align(addr, 7);
3665 #if !defined(CONFIG_USER_ONLY)
3666 switch (mem_idx) {
3667 case MMU_USER_IDX:
3668 u.ll.upper = ldq_user(addr);
3669 u.ll.lower = ldq_user(addr + 8);
3670 QT0 = u.q;
3671 break;
3672 case MMU_KERNEL_IDX:
3673 u.ll.upper = ldq_kernel(addr);
3674 u.ll.lower = ldq_kernel(addr + 8);
3675 QT0 = u.q;
3676 break;
3677 #ifdef TARGET_SPARC64
3678 case MMU_HYPV_IDX:
3679 u.ll.upper = ldq_hypv(addr);
3680 u.ll.lower = ldq_hypv(addr + 8);
3681 QT0 = u.q;
3682 break;
3683 #endif
3684 default:
3685 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
3686 break;
3688 #else
3689 u.ll.upper = ldq_raw(address_mask(env, addr));
3690 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3691 QT0 = u.q;
3692 #endif
3695 void helper_stqf(target_ulong addr, int mem_idx)
3697 // XXX add 128 bit store
3698 CPU_QuadU u;
3700 helper_check_align(addr, 7);
3701 #if !defined(CONFIG_USER_ONLY)
3702 switch (mem_idx) {
3703 case MMU_USER_IDX:
3704 u.q = QT0;
3705 stq_user(addr, u.ll.upper);
3706 stq_user(addr + 8, u.ll.lower);
3707 break;
3708 case MMU_KERNEL_IDX:
3709 u.q = QT0;
3710 stq_kernel(addr, u.ll.upper);
3711 stq_kernel(addr + 8, u.ll.lower);
3712 break;
3713 #ifdef TARGET_SPARC64
3714 case MMU_HYPV_IDX:
3715 u.q = QT0;
3716 stq_hypv(addr, u.ll.upper);
3717 stq_hypv(addr + 8, u.ll.lower);
3718 break;
3719 #endif
3720 default:
3721 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
3722 break;
3724 #else
3725 u.q = QT0;
3726 stq_raw(address_mask(env, addr), u.ll.upper);
3727 stq_raw(address_mask(env, addr + 8), u.ll.lower);
3728 #endif
3731 static inline void set_fsr(void)
3733 int rnd_mode;
3735 switch (env->fsr & FSR_RD_MASK) {
3736 case FSR_RD_NEAREST:
3737 rnd_mode = float_round_nearest_even;
3738 break;
3739 default:
3740 case FSR_RD_ZERO:
3741 rnd_mode = float_round_to_zero;
3742 break;
3743 case FSR_RD_POS:
3744 rnd_mode = float_round_up;
3745 break;
3746 case FSR_RD_NEG:
3747 rnd_mode = float_round_down;
3748 break;
3750 set_float_rounding_mode(rnd_mode, &env->fp_status);
3753 void helper_ldfsr(uint32_t new_fsr)
3755 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3756 set_fsr();
3759 #ifdef TARGET_SPARC64
3760 void helper_ldxfsr(uint64_t new_fsr)
3762 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3763 set_fsr();
3765 #endif
3767 void helper_debug(void)
3769 env->exception_index = EXCP_DEBUG;
3770 cpu_loop_exit(env);
3773 #ifndef TARGET_SPARC64
3774 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3775 handling ? */
3776 void helper_save(void)
3778 uint32_t cwp;
3780 cwp = cwp_dec(env->cwp - 1);
3781 if (env->wim & (1 << cwp)) {
3782 raise_exception(TT_WIN_OVF);
3784 set_cwp(cwp);
3787 void helper_restore(void)
3789 uint32_t cwp;
3791 cwp = cwp_inc(env->cwp + 1);
3792 if (env->wim & (1 << cwp)) {
3793 raise_exception(TT_WIN_UNF);
3795 set_cwp(cwp);
3798 void helper_wrpsr(target_ulong new_psr)
3800 if ((new_psr & PSR_CWP) >= env->nwindows) {
3801 raise_exception(TT_ILL_INSN);
3802 } else {
3803 cpu_put_psr(env, new_psr);
3807 target_ulong helper_rdpsr(void)
3809 return get_psr();
3812 #else
3813 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3814 handling ? */
3815 void helper_save(void)
3817 uint32_t cwp;
3819 cwp = cwp_dec(env->cwp - 1);
3820 if (env->cansave == 0) {
3821 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3822 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3823 ((env->wstate & 0x7) << 2)));
3824 } else {
3825 if (env->cleanwin - env->canrestore == 0) {
3826 // XXX Clean windows without trap
3827 raise_exception(TT_CLRWIN);
3828 } else {
3829 env->cansave--;
3830 env->canrestore++;
3831 set_cwp(cwp);
3836 void helper_restore(void)
3838 uint32_t cwp;
3840 cwp = cwp_inc(env->cwp + 1);
3841 if (env->canrestore == 0) {
3842 raise_exception(TT_FILL | (env->otherwin != 0 ?
3843 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3844 ((env->wstate & 0x7) << 2)));
3845 } else {
3846 env->cansave++;
3847 env->canrestore--;
3848 set_cwp(cwp);
3852 void helper_flushw(void)
3854 if (env->cansave != env->nwindows - 2) {
3855 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3856 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3857 ((env->wstate & 0x7) << 2)));
3861 void helper_saved(void)
3863 env->cansave++;
3864 if (env->otherwin == 0)
3865 env->canrestore--;
3866 else
3867 env->otherwin--;
3870 void helper_restored(void)
3872 env->canrestore++;
3873 if (env->cleanwin < env->nwindows - 1)
3874 env->cleanwin++;
3875 if (env->otherwin == 0)
3876 env->cansave--;
3877 else
3878 env->otherwin--;
3881 static target_ulong get_ccr(void)
3883 target_ulong psr;
3885 psr = get_psr();
3887 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3890 target_ulong cpu_get_ccr(CPUState *env1)
3892 CPUState *saved_env;
3893 target_ulong ret;
3895 saved_env = env;
3896 env = env1;
3897 ret = get_ccr();
3898 env = saved_env;
3899 return ret;
3902 static void put_ccr(target_ulong val)
3904 env->xcc = (val >> 4) << 20;
3905 env->psr = (val & 0xf) << 20;
3906 CC_OP = CC_OP_FLAGS;
3909 void cpu_put_ccr(CPUState *env1, target_ulong val)
3911 CPUState *saved_env;
3913 saved_env = env;
3914 env = env1;
3915 put_ccr(val);
3916 env = saved_env;
3919 static target_ulong get_cwp64(void)
3921 return env->nwindows - 1 - env->cwp;
3924 target_ulong cpu_get_cwp64(CPUState *env1)
3926 CPUState *saved_env;
3927 target_ulong ret;
3929 saved_env = env;
3930 env = env1;
3931 ret = get_cwp64();
3932 env = saved_env;
3933 return ret;
3936 static void put_cwp64(int cwp)
3938 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3939 cwp %= env->nwindows;
3941 set_cwp(env->nwindows - 1 - cwp);
3944 void cpu_put_cwp64(CPUState *env1, int cwp)
3946 CPUState *saved_env;
3948 saved_env = env;
3949 env = env1;
3950 put_cwp64(cwp);
3951 env = saved_env;
3954 target_ulong helper_rdccr(void)
3956 return get_ccr();
3959 void helper_wrccr(target_ulong new_ccr)
3961 put_ccr(new_ccr);
3964 // CWP handling is reversed in V9, but we still use the V8 register
3965 // order.
3966 target_ulong helper_rdcwp(void)
3968 return get_cwp64();
3971 void helper_wrcwp(target_ulong new_cwp)
3973 put_cwp64(new_cwp);
3976 // This function uses non-native bit order
3977 #define GET_FIELD(X, FROM, TO) \
3978 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3980 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3981 #define GET_FIELD_SP(X, FROM, TO) \
3982 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3984 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3986 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3987 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3988 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3989 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3990 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3991 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3992 (((pixel_addr >> 55) & 1) << 4) |
3993 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3994 GET_FIELD_SP(pixel_addr, 11, 12);
3997 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3999 uint64_t tmp;
4001 tmp = addr + offset;
4002 env->gsr &= ~7ULL;
4003 env->gsr |= tmp & 7ULL;
4004 return tmp & ~7ULL;
4007 target_ulong helper_popc(target_ulong val)
4009 return ctpop64(val);
4012 static inline uint64_t *get_gregset(uint32_t pstate)
4014 switch (pstate) {
4015 default:
4016 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
4017 pstate,
4018 (pstate & PS_IG) ? " IG" : "",
4019 (pstate & PS_MG) ? " MG" : "",
4020 (pstate & PS_AG) ? " AG" : "");
4021 /* pass through to normal set of global registers */
4022 case 0:
4023 return env->bgregs;
4024 case PS_AG:
4025 return env->agregs;
4026 case PS_MG:
4027 return env->mgregs;
4028 case PS_IG:
4029 return env->igregs;
4033 static inline void change_pstate(uint32_t new_pstate)
4035 uint32_t pstate_regs, new_pstate_regs;
4036 uint64_t *src, *dst;
4038 if (env->def->features & CPU_FEATURE_GL) {
4039 // PS_AG is not implemented in this case
4040 new_pstate &= ~PS_AG;
4043 pstate_regs = env->pstate & 0xc01;
4044 new_pstate_regs = new_pstate & 0xc01;
4046 if (new_pstate_regs != pstate_regs) {
4047 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
4048 pstate_regs, new_pstate_regs);
4049 // Switch global register bank
4050 src = get_gregset(new_pstate_regs);
4051 dst = get_gregset(pstate_regs);
4052 memcpy32(dst, env->gregs);
4053 memcpy32(env->gregs, src);
4055 else {
4056 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
4057 new_pstate_regs);
4059 env->pstate = new_pstate;
4062 void helper_wrpstate(target_ulong new_state)
4064 change_pstate(new_state & 0xf3f);
4066 #if !defined(CONFIG_USER_ONLY)
4067 if (cpu_interrupts_enabled(env)) {
4068 cpu_check_irqs(env);
4070 #endif
4073 void cpu_change_pstate(CPUState *env1, uint32_t new_pstate)
4075 CPUState *saved_env;
4077 saved_env = env;
4078 env = env1;
4079 change_pstate(new_pstate);
4080 env = saved_env;
4083 void helper_wrpil(target_ulong new_pil)
4085 #if !defined(CONFIG_USER_ONLY)
4086 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
4087 env->psrpil, (uint32_t)new_pil);
4089 env->psrpil = new_pil;
4091 if (cpu_interrupts_enabled(env)) {
4092 cpu_check_irqs(env);
4094 #endif
4097 void helper_done(void)
4099 trap_state* tsptr = cpu_tsptr(env);
4101 env->pc = tsptr->tnpc;
4102 env->npc = tsptr->tnpc + 4;
4103 put_ccr(tsptr->tstate >> 32);
4104 env->asi = (tsptr->tstate >> 24) & 0xff;
4105 change_pstate((tsptr->tstate >> 8) & 0xf3f);
4106 put_cwp64(tsptr->tstate & 0xff);
4107 env->tl--;
4109 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
4111 #if !defined(CONFIG_USER_ONLY)
4112 if (cpu_interrupts_enabled(env)) {
4113 cpu_check_irqs(env);
4115 #endif
4118 void helper_retry(void)
4120 trap_state* tsptr = cpu_tsptr(env);
4122 env->pc = tsptr->tpc;
4123 env->npc = tsptr->tnpc;
4124 put_ccr(tsptr->tstate >> 32);
4125 env->asi = (tsptr->tstate >> 24) & 0xff;
4126 change_pstate((tsptr->tstate >> 8) & 0xf3f);
4127 put_cwp64(tsptr->tstate & 0xff);
4128 env->tl--;
4130 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
4132 #if !defined(CONFIG_USER_ONLY)
4133 if (cpu_interrupts_enabled(env)) {
4134 cpu_check_irqs(env);
4136 #endif
4139 static void do_modify_softint(const char* operation, uint32_t value)
4141 if (env->softint != value) {
4142 env->softint = value;
4143 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
4144 #if !defined(CONFIG_USER_ONLY)
4145 if (cpu_interrupts_enabled(env)) {
4146 cpu_check_irqs(env);
4148 #endif
4152 void helper_set_softint(uint64_t value)
4154 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
4157 void helper_clear_softint(uint64_t value)
4159 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
4162 void helper_write_softint(uint64_t value)
4164 do_modify_softint("helper_write_softint", (uint32_t)value);
4166 #endif
4168 #ifdef TARGET_SPARC64
4169 trap_state* cpu_tsptr(CPUState* env)
4171 return &env->ts[env->tl & MAXTL_MASK];
4173 #endif
4175 #if !defined(CONFIG_USER_ONLY)
4177 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4178 void *retaddr);
4180 #define MMUSUFFIX _mmu
4181 #define ALIGNED_ONLY
4183 #define SHIFT 0
4184 #include "softmmu_template.h"
4186 #define SHIFT 1
4187 #include "softmmu_template.h"
4189 #define SHIFT 2
4190 #include "softmmu_template.h"
4192 #define SHIFT 3
4193 #include "softmmu_template.h"
4195 /* XXX: make it generic ? */
4196 static void cpu_restore_state2(void *retaddr)
4198 TranslationBlock *tb;
4199 unsigned long pc;
4201 if (retaddr) {
4202 /* now we have a real cpu fault */
4203 pc = (unsigned long)retaddr;
4204 tb = tb_find_pc(pc);
4205 if (tb) {
4206 /* the PC is inside the translated code. It means that we have
4207 a virtual CPU fault */
4208 cpu_restore_state(tb, env, pc);
4213 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4214 void *retaddr)
4216 #ifdef DEBUG_UNALIGNED
4217 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4218 "\n", addr, env->pc);
4219 #endif
4220 cpu_restore_state2(retaddr);
4221 raise_exception(TT_UNALIGNED);
4224 /* try to fill the TLB and return an exception if error. If retaddr is
4225 NULL, it means that the function was called in C code (i.e. not
4226 from generated code or from helper.c) */
4227 /* XXX: fix it to restore all registers */
4228 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4230 int ret;
4231 CPUState *saved_env;
4233 /* XXX: hack to restore env in all cases, even if not called from
4234 generated code */
4235 saved_env = env;
4236 env = cpu_single_env;
4238 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx);
4239 if (ret) {
4240 cpu_restore_state2(retaddr);
4241 cpu_loop_exit(env);
4243 env = saved_env;
4246 #endif /* !CONFIG_USER_ONLY */
4248 #ifndef TARGET_SPARC64
4249 #if !defined(CONFIG_USER_ONLY)
4250 static void do_unassigned_access(target_phys_addr_t addr, int is_write,
4251 int is_exec, int is_asi, int size)
4253 int fault_type;
4255 #ifdef DEBUG_UNASSIGNED
4256 if (is_asi)
4257 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4258 " asi 0x%02x from " TARGET_FMT_lx "\n",
4259 is_exec ? "exec" : is_write ? "write" : "read", size,
4260 size == 1 ? "" : "s", addr, is_asi, env->pc);
4261 else
4262 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4263 " from " TARGET_FMT_lx "\n",
4264 is_exec ? "exec" : is_write ? "write" : "read", size,
4265 size == 1 ? "" : "s", addr, env->pc);
4266 #endif
4267 /* Don't overwrite translation and access faults */
4268 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4269 if ((fault_type > 4) || (fault_type == 0)) {
4270 env->mmuregs[3] = 0; /* Fault status register */
4271 if (is_asi)
4272 env->mmuregs[3] |= 1 << 16;
4273 if (env->psrs)
4274 env->mmuregs[3] |= 1 << 5;
4275 if (is_exec)
4276 env->mmuregs[3] |= 1 << 6;
4277 if (is_write)
4278 env->mmuregs[3] |= 1 << 7;
4279 env->mmuregs[3] |= (5 << 2) | 2;
4280 /* SuperSPARC will never place instruction fault addresses in the FAR */
4281 if (!is_exec) {
4282 env->mmuregs[4] = addr; /* Fault address register */
4285 /* overflow (same type fault was not read before another fault) */
4286 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4287 env->mmuregs[3] |= 1;
4290 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
4291 if (is_exec)
4292 raise_exception(TT_CODE_ACCESS);
4293 else
4294 raise_exception(TT_DATA_ACCESS);
4297 /* flush neverland mappings created during no-fault mode,
4298 so the sequential MMU faults report proper fault types */
4299 if (env->mmuregs[0] & MMU_NF) {
4300 tlb_flush(env, 1);
4303 #endif
4304 #else
4305 #if defined(CONFIG_USER_ONLY)
4306 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4307 int is_asi, int size)
4308 #else
4309 static void do_unassigned_access(target_phys_addr_t addr, int is_write,
4310 int is_exec, int is_asi, int size)
4311 #endif
4313 #ifdef DEBUG_UNASSIGNED
4314 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4315 "\n", addr, env->pc);
4316 #endif
4318 if (is_exec)
4319 raise_exception(TT_CODE_ACCESS);
4320 else
4321 raise_exception(TT_DATA_ACCESS);
4323 #endif
4326 #ifdef TARGET_SPARC64
4327 void helper_tick_set_count(void *opaque, uint64_t count)
4329 #if !defined(CONFIG_USER_ONLY)
4330 cpu_tick_set_count(opaque, count);
4331 #endif
4334 uint64_t helper_tick_get_count(void *opaque)
4336 #if !defined(CONFIG_USER_ONLY)
4337 return cpu_tick_get_count(opaque);
4338 #else
4339 return 0;
4340 #endif
4343 void helper_tick_set_limit(void *opaque, uint64_t limit)
4345 #if !defined(CONFIG_USER_ONLY)
4346 cpu_tick_set_limit(opaque, limit);
4347 #endif
4349 #endif
4351 #if !defined(CONFIG_USER_ONLY)
4352 void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
4353 int is_write, int is_exec, int is_asi, int size)
4355 CPUState *saved_env;
4357 saved_env = env;
4358 env = env1;
4359 /* Ignore unassigned accesses outside of CPU context */
4360 if (env1) {
4361 do_unassigned_access(addr, is_write, is_exec, is_asi, size);
4363 env = saved_env;
4365 #endif