Merge remote-tracking branch 'qmp/queue/qmp' into staging
[qemu.git] / memory.c
blobf46e6268c25e45839184ba3001dbc1a7e07f0cea
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #include "memory.h"
15 #include "exec-memory.h"
16 #include "ioport.h"
17 #include "bitops.h"
18 #include "kvm.h"
19 #include <assert.h>
21 unsigned memory_region_transaction_depth = 0;
23 typedef struct AddrRange AddrRange;
26 * Note using signed integers limits us to physical addresses at most
27 * 63 bits wide. They are needed for negative offsetting in aliases
28 * (large MemoryRegion::alias_offset).
30 struct AddrRange {
31 int64_t start;
32 int64_t size;
35 static AddrRange addrrange_make(int64_t start, int64_t size)
37 return (AddrRange) { start, size };
40 static bool addrrange_equal(AddrRange r1, AddrRange r2)
42 return r1.start == r2.start && r1.size == r2.size;
45 static int64_t addrrange_end(AddrRange r)
47 return r.start + r.size;
50 static AddrRange addrrange_shift(AddrRange range, int64_t delta)
52 range.start += delta;
53 return range;
56 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
58 return (r1.start >= r2.start && (r1.start - r2.start) < r2.size)
59 || (r2.start >= r1.start && (r2.start - r1.start) < r1.size);
62 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
64 int64_t start = MAX(r1.start, r2.start);
65 /* off-by-one arithmetic to prevent overflow */
66 int64_t end = MIN(addrrange_end(r1) - 1, addrrange_end(r2) - 1);
67 return addrrange_make(start, end - start + 1);
70 struct CoalescedMemoryRange {
71 AddrRange addr;
72 QTAILQ_ENTRY(CoalescedMemoryRange) link;
75 struct MemoryRegionIoeventfd {
76 AddrRange addr;
77 bool match_data;
78 uint64_t data;
79 int fd;
82 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
83 MemoryRegionIoeventfd b)
85 if (a.addr.start < b.addr.start) {
86 return true;
87 } else if (a.addr.start > b.addr.start) {
88 return false;
89 } else if (a.addr.size < b.addr.size) {
90 return true;
91 } else if (a.addr.size > b.addr.size) {
92 return false;
93 } else if (a.match_data < b.match_data) {
94 return true;
95 } else if (a.match_data > b.match_data) {
96 return false;
97 } else if (a.match_data) {
98 if (a.data < b.data) {
99 return true;
100 } else if (a.data > b.data) {
101 return false;
104 if (a.fd < b.fd) {
105 return true;
106 } else if (a.fd > b.fd) {
107 return false;
109 return false;
112 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
113 MemoryRegionIoeventfd b)
115 return !memory_region_ioeventfd_before(a, b)
116 && !memory_region_ioeventfd_before(b, a);
119 typedef struct FlatRange FlatRange;
120 typedef struct FlatView FlatView;
122 /* Range of memory in the global map. Addresses are absolute. */
123 struct FlatRange {
124 MemoryRegion *mr;
125 target_phys_addr_t offset_in_region;
126 AddrRange addr;
127 uint8_t dirty_log_mask;
128 bool readable;
129 bool readonly;
132 /* Flattened global view of current active memory hierarchy. Kept in sorted
133 * order.
135 struct FlatView {
136 FlatRange *ranges;
137 unsigned nr;
138 unsigned nr_allocated;
141 typedef struct AddressSpace AddressSpace;
142 typedef struct AddressSpaceOps AddressSpaceOps;
144 /* A system address space - I/O, memory, etc. */
145 struct AddressSpace {
146 const AddressSpaceOps *ops;
147 MemoryRegion *root;
148 FlatView current_map;
149 int ioeventfd_nb;
150 MemoryRegionIoeventfd *ioeventfds;
153 struct AddressSpaceOps {
154 void (*range_add)(AddressSpace *as, FlatRange *fr);
155 void (*range_del)(AddressSpace *as, FlatRange *fr);
156 void (*log_start)(AddressSpace *as, FlatRange *fr);
157 void (*log_stop)(AddressSpace *as, FlatRange *fr);
158 void (*ioeventfd_add)(AddressSpace *as, MemoryRegionIoeventfd *fd);
159 void (*ioeventfd_del)(AddressSpace *as, MemoryRegionIoeventfd *fd);
162 #define FOR_EACH_FLAT_RANGE(var, view) \
163 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
165 static bool flatrange_equal(FlatRange *a, FlatRange *b)
167 return a->mr == b->mr
168 && addrrange_equal(a->addr, b->addr)
169 && a->offset_in_region == b->offset_in_region
170 && a->readable == b->readable
171 && a->readonly == b->readonly;
174 static void flatview_init(FlatView *view)
176 view->ranges = NULL;
177 view->nr = 0;
178 view->nr_allocated = 0;
181 /* Insert a range into a given position. Caller is responsible for maintaining
182 * sorting order.
184 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
186 if (view->nr == view->nr_allocated) {
187 view->nr_allocated = MAX(2 * view->nr, 10);
188 view->ranges = g_realloc(view->ranges,
189 view->nr_allocated * sizeof(*view->ranges));
191 memmove(view->ranges + pos + 1, view->ranges + pos,
192 (view->nr - pos) * sizeof(FlatRange));
193 view->ranges[pos] = *range;
194 ++view->nr;
197 static void flatview_destroy(FlatView *view)
199 g_free(view->ranges);
202 static bool can_merge(FlatRange *r1, FlatRange *r2)
204 return addrrange_end(r1->addr) == r2->addr.start
205 && r1->mr == r2->mr
206 && r1->offset_in_region + r1->addr.size == r2->offset_in_region
207 && r1->dirty_log_mask == r2->dirty_log_mask
208 && r1->readable == r2->readable
209 && r1->readonly == r2->readonly;
212 /* Attempt to simplify a view by merging ajacent ranges */
213 static void flatview_simplify(FlatView *view)
215 unsigned i, j;
217 i = 0;
218 while (i < view->nr) {
219 j = i + 1;
220 while (j < view->nr
221 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
222 view->ranges[i].addr.size += view->ranges[j].addr.size;
223 ++j;
225 ++i;
226 memmove(&view->ranges[i], &view->ranges[j],
227 (view->nr - j) * sizeof(view->ranges[j]));
228 view->nr -= j - i;
232 static void memory_region_read_accessor(void *opaque,
233 target_phys_addr_t addr,
234 uint64_t *value,
235 unsigned size,
236 unsigned shift,
237 uint64_t mask)
239 MemoryRegion *mr = opaque;
240 uint64_t tmp;
242 tmp = mr->ops->read(mr->opaque, addr, size);
243 *value |= (tmp & mask) << shift;
246 static void memory_region_write_accessor(void *opaque,
247 target_phys_addr_t addr,
248 uint64_t *value,
249 unsigned size,
250 unsigned shift,
251 uint64_t mask)
253 MemoryRegion *mr = opaque;
254 uint64_t tmp;
256 tmp = (*value >> shift) & mask;
257 mr->ops->write(mr->opaque, addr, tmp, size);
260 static void access_with_adjusted_size(target_phys_addr_t addr,
261 uint64_t *value,
262 unsigned size,
263 unsigned access_size_min,
264 unsigned access_size_max,
265 void (*access)(void *opaque,
266 target_phys_addr_t addr,
267 uint64_t *value,
268 unsigned size,
269 unsigned shift,
270 uint64_t mask),
271 void *opaque)
273 uint64_t access_mask;
274 unsigned access_size;
275 unsigned i;
277 if (!access_size_min) {
278 access_size_min = 1;
280 if (!access_size_max) {
281 access_size_max = 4;
283 access_size = MAX(MIN(size, access_size_max), access_size_min);
284 access_mask = -1ULL >> (64 - access_size * 8);
285 for (i = 0; i < size; i += access_size) {
286 /* FIXME: big-endian support */
287 access(opaque, addr + i, value, access_size, i * 8, access_mask);
291 static void memory_region_prepare_ram_addr(MemoryRegion *mr);
293 static void as_memory_range_add(AddressSpace *as, FlatRange *fr)
295 ram_addr_t phys_offset, region_offset;
297 memory_region_prepare_ram_addr(fr->mr);
299 phys_offset = fr->mr->ram_addr;
300 region_offset = fr->offset_in_region;
301 /* cpu_register_physical_memory_log() wants region_offset for
302 * mmio, but prefers offseting phys_offset for RAM. Humour it.
304 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
305 phys_offset += region_offset;
306 region_offset = 0;
309 if (!fr->readable) {
310 phys_offset &= ~TARGET_PAGE_MASK & ~IO_MEM_ROMD;
313 if (fr->readonly) {
314 phys_offset |= IO_MEM_ROM;
317 cpu_register_physical_memory_log(fr->addr.start,
318 fr->addr.size,
319 phys_offset,
320 region_offset,
321 fr->dirty_log_mask);
324 static void as_memory_range_del(AddressSpace *as, FlatRange *fr)
326 if (fr->dirty_log_mask) {
327 cpu_physical_sync_dirty_bitmap(fr->addr.start,
328 fr->addr.start + fr->addr.size);
330 cpu_register_physical_memory(fr->addr.start, fr->addr.size,
331 IO_MEM_UNASSIGNED);
334 static void as_memory_log_start(AddressSpace *as, FlatRange *fr)
336 cpu_physical_log_start(fr->addr.start, fr->addr.size);
339 static void as_memory_log_stop(AddressSpace *as, FlatRange *fr)
341 cpu_physical_log_stop(fr->addr.start, fr->addr.size);
344 static void as_memory_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
346 int r;
348 assert(fd->match_data && fd->addr.size == 4);
350 r = kvm_set_ioeventfd_mmio_long(fd->fd, fd->addr.start, fd->data, true);
351 if (r < 0) {
352 abort();
356 static void as_memory_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
358 int r;
360 r = kvm_set_ioeventfd_mmio_long(fd->fd, fd->addr.start, fd->data, false);
361 if (r < 0) {
362 abort();
366 static const AddressSpaceOps address_space_ops_memory = {
367 .range_add = as_memory_range_add,
368 .range_del = as_memory_range_del,
369 .log_start = as_memory_log_start,
370 .log_stop = as_memory_log_stop,
371 .ioeventfd_add = as_memory_ioeventfd_add,
372 .ioeventfd_del = as_memory_ioeventfd_del,
375 static AddressSpace address_space_memory = {
376 .ops = &address_space_ops_memory,
379 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
380 unsigned width, bool write)
382 const MemoryRegionPortio *mrp;
384 for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
385 if (offset >= mrp->offset && offset < mrp->offset + mrp->len
386 && width == mrp->size
387 && (write ? (bool)mrp->write : (bool)mrp->read)) {
388 return mrp;
391 return NULL;
394 static void memory_region_iorange_read(IORange *iorange,
395 uint64_t offset,
396 unsigned width,
397 uint64_t *data)
399 MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
401 if (mr->ops->old_portio) {
402 const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false);
404 *data = ((uint64_t)1 << (width * 8)) - 1;
405 if (mrp) {
406 *data = mrp->read(mr->opaque, offset);
408 return;
410 *data = 0;
411 access_with_adjusted_size(offset, data, width,
412 mr->ops->impl.min_access_size,
413 mr->ops->impl.max_access_size,
414 memory_region_read_accessor, mr);
417 static void memory_region_iorange_write(IORange *iorange,
418 uint64_t offset,
419 unsigned width,
420 uint64_t data)
422 MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange);
424 if (mr->ops->old_portio) {
425 const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true);
427 if (mrp) {
428 mrp->write(mr->opaque, offset, data);
430 return;
432 access_with_adjusted_size(offset, &data, width,
433 mr->ops->impl.min_access_size,
434 mr->ops->impl.max_access_size,
435 memory_region_write_accessor, mr);
438 static const IORangeOps memory_region_iorange_ops = {
439 .read = memory_region_iorange_read,
440 .write = memory_region_iorange_write,
443 static void as_io_range_add(AddressSpace *as, FlatRange *fr)
445 iorange_init(&fr->mr->iorange, &memory_region_iorange_ops,
446 fr->addr.start,fr->addr.size);
447 ioport_register(&fr->mr->iorange);
450 static void as_io_range_del(AddressSpace *as, FlatRange *fr)
452 isa_unassign_ioport(fr->addr.start, fr->addr.size);
455 static void as_io_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd)
457 int r;
459 assert(fd->match_data && fd->addr.size == 2);
461 r = kvm_set_ioeventfd_pio_word(fd->fd, fd->addr.start, fd->data, true);
462 if (r < 0) {
463 abort();
467 static void as_io_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd)
469 int r;
471 r = kvm_set_ioeventfd_pio_word(fd->fd, fd->addr.start, fd->data, false);
472 if (r < 0) {
473 abort();
477 static const AddressSpaceOps address_space_ops_io = {
478 .range_add = as_io_range_add,
479 .range_del = as_io_range_del,
480 .ioeventfd_add = as_io_ioeventfd_add,
481 .ioeventfd_del = as_io_ioeventfd_del,
484 static AddressSpace address_space_io = {
485 .ops = &address_space_ops_io,
488 /* Render a memory region into the global view. Ranges in @view obscure
489 * ranges in @mr.
491 static void render_memory_region(FlatView *view,
492 MemoryRegion *mr,
493 target_phys_addr_t base,
494 AddrRange clip,
495 bool readonly)
497 MemoryRegion *subregion;
498 unsigned i;
499 target_phys_addr_t offset_in_region;
500 int64_t remain;
501 int64_t now;
502 FlatRange fr;
503 AddrRange tmp;
505 base += mr->addr;
506 readonly |= mr->readonly;
508 tmp = addrrange_make(base, mr->size);
510 if (!addrrange_intersects(tmp, clip)) {
511 return;
514 clip = addrrange_intersection(tmp, clip);
516 if (mr->alias) {
517 base -= mr->alias->addr;
518 base -= mr->alias_offset;
519 render_memory_region(view, mr->alias, base, clip, readonly);
520 return;
523 /* Render subregions in priority order. */
524 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
525 render_memory_region(view, subregion, base, clip, readonly);
528 if (!mr->terminates) {
529 return;
532 offset_in_region = clip.start - base;
533 base = clip.start;
534 remain = clip.size;
536 /* Render the region itself into any gaps left by the current view. */
537 for (i = 0; i < view->nr && remain; ++i) {
538 if (base >= addrrange_end(view->ranges[i].addr)) {
539 continue;
541 if (base < view->ranges[i].addr.start) {
542 now = MIN(remain, view->ranges[i].addr.start - base);
543 fr.mr = mr;
544 fr.offset_in_region = offset_in_region;
545 fr.addr = addrrange_make(base, now);
546 fr.dirty_log_mask = mr->dirty_log_mask;
547 fr.readable = mr->readable;
548 fr.readonly = readonly;
549 flatview_insert(view, i, &fr);
550 ++i;
551 base += now;
552 offset_in_region += now;
553 remain -= now;
555 if (base == view->ranges[i].addr.start) {
556 now = MIN(remain, view->ranges[i].addr.size);
557 base += now;
558 offset_in_region += now;
559 remain -= now;
562 if (remain) {
563 fr.mr = mr;
564 fr.offset_in_region = offset_in_region;
565 fr.addr = addrrange_make(base, remain);
566 fr.dirty_log_mask = mr->dirty_log_mask;
567 fr.readable = mr->readable;
568 fr.readonly = readonly;
569 flatview_insert(view, i, &fr);
573 /* Render a memory topology into a list of disjoint absolute ranges. */
574 static FlatView generate_memory_topology(MemoryRegion *mr)
576 FlatView view;
578 flatview_init(&view);
580 render_memory_region(&view, mr, 0, addrrange_make(0, INT64_MAX), false);
581 flatview_simplify(&view);
583 return view;
586 static void address_space_add_del_ioeventfds(AddressSpace *as,
587 MemoryRegionIoeventfd *fds_new,
588 unsigned fds_new_nb,
589 MemoryRegionIoeventfd *fds_old,
590 unsigned fds_old_nb)
592 unsigned iold, inew;
594 /* Generate a symmetric difference of the old and new fd sets, adding
595 * and deleting as necessary.
598 iold = inew = 0;
599 while (iold < fds_old_nb || inew < fds_new_nb) {
600 if (iold < fds_old_nb
601 && (inew == fds_new_nb
602 || memory_region_ioeventfd_before(fds_old[iold],
603 fds_new[inew]))) {
604 as->ops->ioeventfd_del(as, &fds_old[iold]);
605 ++iold;
606 } else if (inew < fds_new_nb
607 && (iold == fds_old_nb
608 || memory_region_ioeventfd_before(fds_new[inew],
609 fds_old[iold]))) {
610 as->ops->ioeventfd_add(as, &fds_new[inew]);
611 ++inew;
612 } else {
613 ++iold;
614 ++inew;
619 static void address_space_update_ioeventfds(AddressSpace *as)
621 FlatRange *fr;
622 unsigned ioeventfd_nb = 0;
623 MemoryRegionIoeventfd *ioeventfds = NULL;
624 AddrRange tmp;
625 unsigned i;
627 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
628 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
629 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
630 fr->addr.start - fr->offset_in_region);
631 if (addrrange_intersects(fr->addr, tmp)) {
632 ++ioeventfd_nb;
633 ioeventfds = g_realloc(ioeventfds,
634 ioeventfd_nb * sizeof(*ioeventfds));
635 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
636 ioeventfds[ioeventfd_nb-1].addr = tmp;
641 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
642 as->ioeventfds, as->ioeventfd_nb);
644 g_free(as->ioeventfds);
645 as->ioeventfds = ioeventfds;
646 as->ioeventfd_nb = ioeventfd_nb;
649 static void address_space_update_topology_pass(AddressSpace *as,
650 FlatView old_view,
651 FlatView new_view,
652 bool adding)
654 unsigned iold, inew;
655 FlatRange *frold, *frnew;
657 /* Generate a symmetric difference of the old and new memory maps.
658 * Kill ranges in the old map, and instantiate ranges in the new map.
660 iold = inew = 0;
661 while (iold < old_view.nr || inew < new_view.nr) {
662 if (iold < old_view.nr) {
663 frold = &old_view.ranges[iold];
664 } else {
665 frold = NULL;
667 if (inew < new_view.nr) {
668 frnew = &new_view.ranges[inew];
669 } else {
670 frnew = NULL;
673 if (frold
674 && (!frnew
675 || frold->addr.start < frnew->addr.start
676 || (frold->addr.start == frnew->addr.start
677 && !flatrange_equal(frold, frnew)))) {
678 /* In old, but (not in new, or in new but attributes changed). */
680 if (!adding) {
681 as->ops->range_del(as, frold);
684 ++iold;
685 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
686 /* In both (logging may have changed) */
688 if (adding) {
689 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
690 as->ops->log_stop(as, frnew);
691 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
692 as->ops->log_start(as, frnew);
696 ++iold;
697 ++inew;
698 } else {
699 /* In new */
701 if (adding) {
702 as->ops->range_add(as, frnew);
705 ++inew;
711 static void address_space_update_topology(AddressSpace *as)
713 FlatView old_view = as->current_map;
714 FlatView new_view = generate_memory_topology(as->root);
716 address_space_update_topology_pass(as, old_view, new_view, false);
717 address_space_update_topology_pass(as, old_view, new_view, true);
719 as->current_map = new_view;
720 flatview_destroy(&old_view);
721 address_space_update_ioeventfds(as);
724 static void memory_region_update_topology(void)
726 if (memory_region_transaction_depth) {
727 return;
730 if (address_space_memory.root) {
731 address_space_update_topology(&address_space_memory);
733 if (address_space_io.root) {
734 address_space_update_topology(&address_space_io);
738 void memory_region_transaction_begin(void)
740 ++memory_region_transaction_depth;
743 void memory_region_transaction_commit(void)
745 assert(memory_region_transaction_depth);
746 --memory_region_transaction_depth;
747 memory_region_update_topology();
750 static void memory_region_destructor_none(MemoryRegion *mr)
754 static void memory_region_destructor_ram(MemoryRegion *mr)
756 qemu_ram_free(mr->ram_addr);
759 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
761 qemu_ram_free_from_ptr(mr->ram_addr);
764 static void memory_region_destructor_iomem(MemoryRegion *mr)
766 cpu_unregister_io_memory(mr->ram_addr);
769 static void memory_region_destructor_rom_device(MemoryRegion *mr)
771 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
772 cpu_unregister_io_memory(mr->ram_addr & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
775 void memory_region_init(MemoryRegion *mr,
776 const char *name,
777 uint64_t size)
779 mr->ops = NULL;
780 mr->parent = NULL;
781 mr->size = size;
782 mr->addr = 0;
783 mr->offset = 0;
784 mr->terminates = false;
785 mr->readable = true;
786 mr->readonly = false;
787 mr->destructor = memory_region_destructor_none;
788 mr->priority = 0;
789 mr->may_overlap = false;
790 mr->alias = NULL;
791 QTAILQ_INIT(&mr->subregions);
792 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
793 QTAILQ_INIT(&mr->coalesced);
794 mr->name = g_strdup(name);
795 mr->dirty_log_mask = 0;
796 mr->ioeventfd_nb = 0;
797 mr->ioeventfds = NULL;
800 static bool memory_region_access_valid(MemoryRegion *mr,
801 target_phys_addr_t addr,
802 unsigned size)
804 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
805 return false;
808 /* Treat zero as compatibility all valid */
809 if (!mr->ops->valid.max_access_size) {
810 return true;
813 if (size > mr->ops->valid.max_access_size
814 || size < mr->ops->valid.min_access_size) {
815 return false;
817 return true;
820 static uint32_t memory_region_read_thunk_n(void *_mr,
821 target_phys_addr_t addr,
822 unsigned size)
824 MemoryRegion *mr = _mr;
825 uint64_t data = 0;
827 if (!memory_region_access_valid(mr, addr, size)) {
828 return -1U; /* FIXME: better signalling */
831 if (!mr->ops->read) {
832 return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
835 /* FIXME: support unaligned access */
836 access_with_adjusted_size(addr + mr->offset, &data, size,
837 mr->ops->impl.min_access_size,
838 mr->ops->impl.max_access_size,
839 memory_region_read_accessor, mr);
841 return data;
844 static void memory_region_write_thunk_n(void *_mr,
845 target_phys_addr_t addr,
846 unsigned size,
847 uint64_t data)
849 MemoryRegion *mr = _mr;
851 if (!memory_region_access_valid(mr, addr, size)) {
852 return; /* FIXME: better signalling */
855 if (!mr->ops->write) {
856 mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
857 return;
860 /* FIXME: support unaligned access */
861 access_with_adjusted_size(addr + mr->offset, &data, size,
862 mr->ops->impl.min_access_size,
863 mr->ops->impl.max_access_size,
864 memory_region_write_accessor, mr);
867 static uint32_t memory_region_read_thunk_b(void *mr, target_phys_addr_t addr)
869 return memory_region_read_thunk_n(mr, addr, 1);
872 static uint32_t memory_region_read_thunk_w(void *mr, target_phys_addr_t addr)
874 return memory_region_read_thunk_n(mr, addr, 2);
877 static uint32_t memory_region_read_thunk_l(void *mr, target_phys_addr_t addr)
879 return memory_region_read_thunk_n(mr, addr, 4);
882 static void memory_region_write_thunk_b(void *mr, target_phys_addr_t addr,
883 uint32_t data)
885 memory_region_write_thunk_n(mr, addr, 1, data);
888 static void memory_region_write_thunk_w(void *mr, target_phys_addr_t addr,
889 uint32_t data)
891 memory_region_write_thunk_n(mr, addr, 2, data);
894 static void memory_region_write_thunk_l(void *mr, target_phys_addr_t addr,
895 uint32_t data)
897 memory_region_write_thunk_n(mr, addr, 4, data);
900 static CPUReadMemoryFunc * const memory_region_read_thunk[] = {
901 memory_region_read_thunk_b,
902 memory_region_read_thunk_w,
903 memory_region_read_thunk_l,
906 static CPUWriteMemoryFunc * const memory_region_write_thunk[] = {
907 memory_region_write_thunk_b,
908 memory_region_write_thunk_w,
909 memory_region_write_thunk_l,
912 static void memory_region_prepare_ram_addr(MemoryRegion *mr)
914 if (mr->backend_registered) {
915 return;
918 mr->destructor = memory_region_destructor_iomem;
919 mr->ram_addr = cpu_register_io_memory(memory_region_read_thunk,
920 memory_region_write_thunk,
922 mr->ops->endianness);
923 mr->backend_registered = true;
926 void memory_region_init_io(MemoryRegion *mr,
927 const MemoryRegionOps *ops,
928 void *opaque,
929 const char *name,
930 uint64_t size)
932 memory_region_init(mr, name, size);
933 mr->ops = ops;
934 mr->opaque = opaque;
935 mr->terminates = true;
936 mr->backend_registered = false;
939 void memory_region_init_ram(MemoryRegion *mr,
940 DeviceState *dev,
941 const char *name,
942 uint64_t size)
944 memory_region_init(mr, name, size);
945 mr->terminates = true;
946 mr->destructor = memory_region_destructor_ram;
947 mr->ram_addr = qemu_ram_alloc(dev, name, size);
948 mr->backend_registered = true;
951 void memory_region_init_ram_ptr(MemoryRegion *mr,
952 DeviceState *dev,
953 const char *name,
954 uint64_t size,
955 void *ptr)
957 memory_region_init(mr, name, size);
958 mr->terminates = true;
959 mr->destructor = memory_region_destructor_ram_from_ptr;
960 mr->ram_addr = qemu_ram_alloc_from_ptr(dev, name, size, ptr);
961 mr->backend_registered = true;
964 void memory_region_init_alias(MemoryRegion *mr,
965 const char *name,
966 MemoryRegion *orig,
967 target_phys_addr_t offset,
968 uint64_t size)
970 memory_region_init(mr, name, size);
971 mr->alias = orig;
972 mr->alias_offset = offset;
975 void memory_region_init_rom_device(MemoryRegion *mr,
976 const MemoryRegionOps *ops,
977 void *opaque,
978 DeviceState *dev,
979 const char *name,
980 uint64_t size)
982 memory_region_init(mr, name, size);
983 mr->ops = ops;
984 mr->opaque = opaque;
985 mr->terminates = true;
986 mr->destructor = memory_region_destructor_rom_device;
987 mr->ram_addr = qemu_ram_alloc(dev, name, size);
988 mr->ram_addr |= cpu_register_io_memory(memory_region_read_thunk,
989 memory_region_write_thunk,
991 mr->ops->endianness);
992 mr->ram_addr |= IO_MEM_ROMD;
993 mr->backend_registered = true;
996 void memory_region_destroy(MemoryRegion *mr)
998 assert(QTAILQ_EMPTY(&mr->subregions));
999 mr->destructor(mr);
1000 memory_region_clear_coalescing(mr);
1001 g_free((char *)mr->name);
1002 g_free(mr->ioeventfds);
1005 uint64_t memory_region_size(MemoryRegion *mr)
1007 return mr->size;
1010 void memory_region_set_offset(MemoryRegion *mr, target_phys_addr_t offset)
1012 mr->offset = offset;
1015 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1017 uint8_t mask = 1 << client;
1019 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1020 memory_region_update_topology();
1023 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1024 unsigned client)
1026 assert(mr->terminates);
1027 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, 1 << client);
1030 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr)
1032 assert(mr->terminates);
1033 return cpu_physical_memory_set_dirty(mr->ram_addr + addr);
1036 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1038 FlatRange *fr;
1040 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1041 if (fr->mr == mr) {
1042 cpu_physical_sync_dirty_bitmap(fr->addr.start,
1043 fr->addr.start + fr->addr.size);
1048 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1050 if (mr->readonly != readonly) {
1051 mr->readonly = readonly;
1052 memory_region_update_topology();
1056 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1058 if (mr->readable != readable) {
1059 mr->readable = readable;
1060 memory_region_update_topology();
1064 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1065 target_phys_addr_t size, unsigned client)
1067 assert(mr->terminates);
1068 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1069 mr->ram_addr + addr + size,
1070 1 << client);
1073 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1075 if (mr->alias) {
1076 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1079 assert(mr->terminates);
1081 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1084 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1086 FlatRange *fr;
1087 CoalescedMemoryRange *cmr;
1088 AddrRange tmp;
1090 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1091 if (fr->mr == mr) {
1092 qemu_unregister_coalesced_mmio(fr->addr.start, fr->addr.size);
1093 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1094 tmp = addrrange_shift(cmr->addr,
1095 fr->addr.start - fr->offset_in_region);
1096 if (!addrrange_intersects(tmp, fr->addr)) {
1097 continue;
1099 tmp = addrrange_intersection(tmp, fr->addr);
1100 qemu_register_coalesced_mmio(tmp.start, tmp.size);
1106 void memory_region_set_coalescing(MemoryRegion *mr)
1108 memory_region_clear_coalescing(mr);
1109 memory_region_add_coalescing(mr, 0, mr->size);
1112 void memory_region_add_coalescing(MemoryRegion *mr,
1113 target_phys_addr_t offset,
1114 uint64_t size)
1116 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1118 cmr->addr = addrrange_make(offset, size);
1119 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1120 memory_region_update_coalesced_range(mr);
1123 void memory_region_clear_coalescing(MemoryRegion *mr)
1125 CoalescedMemoryRange *cmr;
1127 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1128 cmr = QTAILQ_FIRST(&mr->coalesced);
1129 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1130 g_free(cmr);
1132 memory_region_update_coalesced_range(mr);
1135 void memory_region_add_eventfd(MemoryRegion *mr,
1136 target_phys_addr_t addr,
1137 unsigned size,
1138 bool match_data,
1139 uint64_t data,
1140 int fd)
1142 MemoryRegionIoeventfd mrfd = {
1143 .addr.start = addr,
1144 .addr.size = size,
1145 .match_data = match_data,
1146 .data = data,
1147 .fd = fd,
1149 unsigned i;
1151 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1152 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1153 break;
1156 ++mr->ioeventfd_nb;
1157 mr->ioeventfds = g_realloc(mr->ioeventfds,
1158 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1159 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1160 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1161 mr->ioeventfds[i] = mrfd;
1162 memory_region_update_topology();
1165 void memory_region_del_eventfd(MemoryRegion *mr,
1166 target_phys_addr_t addr,
1167 unsigned size,
1168 bool match_data,
1169 uint64_t data,
1170 int fd)
1172 MemoryRegionIoeventfd mrfd = {
1173 .addr.start = addr,
1174 .addr.size = size,
1175 .match_data = match_data,
1176 .data = data,
1177 .fd = fd,
1179 unsigned i;
1181 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1182 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1183 break;
1186 assert(i != mr->ioeventfd_nb);
1187 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1188 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1189 --mr->ioeventfd_nb;
1190 mr->ioeventfds = g_realloc(mr->ioeventfds,
1191 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1192 memory_region_update_topology();
1195 static void memory_region_add_subregion_common(MemoryRegion *mr,
1196 target_phys_addr_t offset,
1197 MemoryRegion *subregion)
1199 MemoryRegion *other;
1201 assert(!subregion->parent);
1202 subregion->parent = mr;
1203 subregion->addr = offset;
1204 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1205 if (subregion->may_overlap || other->may_overlap) {
1206 continue;
1208 if (offset >= other->addr + other->size
1209 || offset + subregion->size <= other->addr) {
1210 continue;
1212 #if 0
1213 printf("warning: subregion collision %llx/%llx (%s) "
1214 "vs %llx/%llx (%s)\n",
1215 (unsigned long long)offset,
1216 (unsigned long long)subregion->size,
1217 subregion->name,
1218 (unsigned long long)other->addr,
1219 (unsigned long long)other->size,
1220 other->name);
1221 #endif
1223 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1224 if (subregion->priority >= other->priority) {
1225 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1226 goto done;
1229 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1230 done:
1231 memory_region_update_topology();
1235 void memory_region_add_subregion(MemoryRegion *mr,
1236 target_phys_addr_t offset,
1237 MemoryRegion *subregion)
1239 subregion->may_overlap = false;
1240 subregion->priority = 0;
1241 memory_region_add_subregion_common(mr, offset, subregion);
1244 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1245 target_phys_addr_t offset,
1246 MemoryRegion *subregion,
1247 unsigned priority)
1249 subregion->may_overlap = true;
1250 subregion->priority = priority;
1251 memory_region_add_subregion_common(mr, offset, subregion);
1254 void memory_region_del_subregion(MemoryRegion *mr,
1255 MemoryRegion *subregion)
1257 assert(subregion->parent == mr);
1258 subregion->parent = NULL;
1259 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1260 memory_region_update_topology();
1263 void set_system_memory_map(MemoryRegion *mr)
1265 address_space_memory.root = mr;
1266 memory_region_update_topology();
1269 void set_system_io_map(MemoryRegion *mr)
1271 address_space_io.root = mr;
1272 memory_region_update_topology();
1275 typedef struct MemoryRegionList MemoryRegionList;
1277 struct MemoryRegionList {
1278 const MemoryRegion *mr;
1279 bool printed;
1280 QTAILQ_ENTRY(MemoryRegionList) queue;
1283 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1285 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1286 const MemoryRegion *mr, unsigned int level,
1287 target_phys_addr_t base,
1288 MemoryRegionListHead *alias_print_queue)
1290 MemoryRegionList *new_ml, *ml, *next_ml;
1291 MemoryRegionListHead submr_print_queue;
1292 const MemoryRegion *submr;
1293 unsigned int i;
1295 if (!mr) {
1296 return;
1299 for (i = 0; i < level; i++) {
1300 mon_printf(f, " ");
1303 if (mr->alias) {
1304 MemoryRegionList *ml;
1305 bool found = false;
1307 /* check if the alias is already in the queue */
1308 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1309 if (ml->mr == mr->alias && !ml->printed) {
1310 found = true;
1314 if (!found) {
1315 ml = g_new(MemoryRegionList, 1);
1316 ml->mr = mr->alias;
1317 ml->printed = false;
1318 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1320 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): alias %s @%s "
1321 TARGET_FMT_plx "-" TARGET_FMT_plx "\n",
1322 base + mr->addr,
1323 base + mr->addr + (target_phys_addr_t)mr->size - 1,
1324 mr->priority,
1325 mr->name,
1326 mr->alias->name,
1327 mr->alias_offset,
1328 mr->alias_offset + (target_phys_addr_t)mr->size - 1);
1329 } else {
1330 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): %s\n",
1331 base + mr->addr,
1332 base + mr->addr + (target_phys_addr_t)mr->size - 1,
1333 mr->priority,
1334 mr->name);
1337 QTAILQ_INIT(&submr_print_queue);
1339 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1340 new_ml = g_new(MemoryRegionList, 1);
1341 new_ml->mr = submr;
1342 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1343 if (new_ml->mr->addr < ml->mr->addr ||
1344 (new_ml->mr->addr == ml->mr->addr &&
1345 new_ml->mr->priority > ml->mr->priority)) {
1346 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1347 new_ml = NULL;
1348 break;
1351 if (new_ml) {
1352 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1356 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1357 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1358 alias_print_queue);
1361 QTAILQ_FOREACH_SAFE(next_ml, &submr_print_queue, queue, ml) {
1362 g_free(ml);
1366 void mtree_info(fprintf_function mon_printf, void *f)
1368 MemoryRegionListHead ml_head;
1369 MemoryRegionList *ml, *ml2;
1371 QTAILQ_INIT(&ml_head);
1373 mon_printf(f, "memory\n");
1374 mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1376 /* print aliased regions */
1377 QTAILQ_FOREACH(ml, &ml_head, queue) {
1378 if (!ml->printed) {
1379 mon_printf(f, "%s\n", ml->mr->name);
1380 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1384 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1385 g_free(ml2);
1388 if (address_space_io.root &&
1389 !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1390 QTAILQ_INIT(&ml_head);
1391 mon_printf(f, "I/O\n");
1392 mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);