ppc: Rename 2.13 machines to 3.0
[qemu.git] / hw / ppc / spapr.c
blob213f6f9599d395b0666a04188fc9690f07d5a408
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "hw/mem/memory-device.h"
79 #include <libfdt.h>
81 /* SLOF memory layout:
83 * SLOF raw image loaded at 0, copies its romfs right below the flat
84 * device-tree, then position SLOF itself 31M below that
86 * So we set FW_OVERHEAD to 40MB which should account for all of that
87 * and more
89 * We load our kernel at 4M, leaving space for SLOF initial image
91 #define FDT_MAX_SIZE 0x100000
92 #define RTAS_MAX_SIZE 0x10000
93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE 0x400000
95 #define FW_FILE_NAME "slof.bin"
96 #define FW_OVERHEAD 0x2800000
97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
99 #define MIN_RMA_SLOF 128UL
101 #define PHANDLE_XICP 0x00001111
103 /* These two functions implement the VCPU id numbering: one to compute them
104 * all and one to identify thread 0 of a VCORE. Any change to the first one
105 * is likely to have an impact on the second one, so let's keep them close.
107 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
109 assert(spapr->vsmt);
110 return
111 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
113 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
114 PowerPCCPU *cpu)
116 assert(spapr->vsmt);
117 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
120 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
121 const char *type_ics,
122 int nr_irqs, Error **errp)
124 Error *local_err = NULL;
125 Object *obj;
127 obj = object_new(type_ics);
128 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
129 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
130 &error_abort);
131 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
132 if (local_err) {
133 goto error;
135 object_property_set_bool(obj, true, "realized", &local_err);
136 if (local_err) {
137 goto error;
140 return ICS_SIMPLE(obj);
142 error:
143 error_propagate(errp, local_err);
144 return NULL;
147 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
149 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
150 * and newer QEMUs don't even have them. In both cases, we don't want
151 * to send anything on the wire.
153 return false;
156 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
157 .name = "icp/server",
158 .version_id = 1,
159 .minimum_version_id = 1,
160 .needed = pre_2_10_vmstate_dummy_icp_needed,
161 .fields = (VMStateField[]) {
162 VMSTATE_UNUSED(4), /* uint32_t xirr */
163 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
164 VMSTATE_UNUSED(1), /* uint8_t mfrr */
165 VMSTATE_END_OF_LIST()
169 static void pre_2_10_vmstate_register_dummy_icp(int i)
171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
172 (void *)(uintptr_t) i);
175 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
177 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
178 (void *)(uintptr_t) i);
181 static int xics_max_server_number(sPAPRMachineState *spapr)
183 assert(spapr->vsmt);
184 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
187 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
189 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
191 if (kvm_enabled()) {
192 if (machine_kernel_irqchip_allowed(machine) &&
193 !xics_kvm_init(spapr, errp)) {
194 spapr->icp_type = TYPE_KVM_ICP;
195 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
197 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
198 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
199 return;
203 if (!spapr->ics) {
204 xics_spapr_init(spapr);
205 spapr->icp_type = TYPE_ICP;
206 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
207 if (!spapr->ics) {
208 return;
213 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
214 int smt_threads)
216 int i, ret = 0;
217 uint32_t servers_prop[smt_threads];
218 uint32_t gservers_prop[smt_threads * 2];
219 int index = spapr_get_vcpu_id(cpu);
221 if (cpu->compat_pvr) {
222 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
223 if (ret < 0) {
224 return ret;
228 /* Build interrupt servers and gservers properties */
229 for (i = 0; i < smt_threads; i++) {
230 servers_prop[i] = cpu_to_be32(index + i);
231 /* Hack, direct the group queues back to cpu 0 */
232 gservers_prop[i*2] = cpu_to_be32(index + i);
233 gservers_prop[i*2 + 1] = 0;
235 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
236 servers_prop, sizeof(servers_prop));
237 if (ret < 0) {
238 return ret;
240 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
241 gservers_prop, sizeof(gservers_prop));
243 return ret;
246 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
248 int index = spapr_get_vcpu_id(cpu);
249 uint32_t associativity[] = {cpu_to_be32(0x5),
250 cpu_to_be32(0x0),
251 cpu_to_be32(0x0),
252 cpu_to_be32(0x0),
253 cpu_to_be32(cpu->node_id),
254 cpu_to_be32(index)};
256 /* Advertise NUMA via ibm,associativity */
257 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
258 sizeof(associativity));
261 /* Populate the "ibm,pa-features" property */
262 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
263 PowerPCCPU *cpu,
264 void *fdt, int offset,
265 bool legacy_guest)
267 uint8_t pa_features_206[] = { 6, 0,
268 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
269 uint8_t pa_features_207[] = { 24, 0,
270 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
271 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
272 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
273 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
274 uint8_t pa_features_300[] = { 66, 0,
275 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
276 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
277 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
278 /* 6: DS207 */
279 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
280 /* 16: Vector */
281 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
282 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
283 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
284 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
286 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
287 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
288 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
289 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
290 /* 42: PM, 44: PC RA, 46: SC vec'd */
291 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
292 /* 48: SIMD, 50: QP BFP, 52: String */
293 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
294 /* 54: DecFP, 56: DecI, 58: SHA */
295 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
296 /* 60: NM atomic, 62: RNG */
297 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
299 uint8_t *pa_features = NULL;
300 size_t pa_size;
302 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
303 pa_features = pa_features_206;
304 pa_size = sizeof(pa_features_206);
306 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
307 pa_features = pa_features_207;
308 pa_size = sizeof(pa_features_207);
310 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
311 pa_features = pa_features_300;
312 pa_size = sizeof(pa_features_300);
314 if (!pa_features) {
315 return;
318 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
320 * Note: we keep CI large pages off by default because a 64K capable
321 * guest provisioned with large pages might otherwise try to map a qemu
322 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
323 * even if that qemu runs on a 4k host.
324 * We dd this bit back here if we are confident this is not an issue
326 pa_features[3] |= 0x20;
328 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
329 pa_features[24] |= 0x80; /* Transactional memory support */
331 if (legacy_guest && pa_size > 40) {
332 /* Workaround for broken kernels that attempt (guest) radix
333 * mode when they can't handle it, if they see the radix bit set
334 * in pa-features. So hide it from them. */
335 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
338 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
341 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
343 int ret = 0, offset, cpus_offset;
344 CPUState *cs;
345 char cpu_model[32];
346 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
348 CPU_FOREACH(cs) {
349 PowerPCCPU *cpu = POWERPC_CPU(cs);
350 DeviceClass *dc = DEVICE_GET_CLASS(cs);
351 int index = spapr_get_vcpu_id(cpu);
352 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
354 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
355 continue;
358 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
360 cpus_offset = fdt_path_offset(fdt, "/cpus");
361 if (cpus_offset < 0) {
362 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
363 if (cpus_offset < 0) {
364 return cpus_offset;
367 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
368 if (offset < 0) {
369 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
370 if (offset < 0) {
371 return offset;
375 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
376 pft_size_prop, sizeof(pft_size_prop));
377 if (ret < 0) {
378 return ret;
381 if (nb_numa_nodes > 1) {
382 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
383 if (ret < 0) {
384 return ret;
388 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
389 if (ret < 0) {
390 return ret;
393 spapr_populate_pa_features(spapr, cpu, fdt, offset,
394 spapr->cas_legacy_guest_workaround);
396 return ret;
399 static hwaddr spapr_node0_size(MachineState *machine)
401 if (nb_numa_nodes) {
402 int i;
403 for (i = 0; i < nb_numa_nodes; ++i) {
404 if (numa_info[i].node_mem) {
405 return MIN(pow2floor(numa_info[i].node_mem),
406 machine->ram_size);
410 return machine->ram_size;
413 static void add_str(GString *s, const gchar *s1)
415 g_string_append_len(s, s1, strlen(s1) + 1);
418 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
419 hwaddr size)
421 uint32_t associativity[] = {
422 cpu_to_be32(0x4), /* length */
423 cpu_to_be32(0x0), cpu_to_be32(0x0),
424 cpu_to_be32(0x0), cpu_to_be32(nodeid)
426 char mem_name[32];
427 uint64_t mem_reg_property[2];
428 int off;
430 mem_reg_property[0] = cpu_to_be64(start);
431 mem_reg_property[1] = cpu_to_be64(size);
433 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
434 off = fdt_add_subnode(fdt, 0, mem_name);
435 _FDT(off);
436 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
437 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
438 sizeof(mem_reg_property))));
439 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
440 sizeof(associativity))));
441 return off;
444 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
446 MachineState *machine = MACHINE(spapr);
447 hwaddr mem_start, node_size;
448 int i, nb_nodes = nb_numa_nodes;
449 NodeInfo *nodes = numa_info;
450 NodeInfo ramnode;
452 /* No NUMA nodes, assume there is just one node with whole RAM */
453 if (!nb_numa_nodes) {
454 nb_nodes = 1;
455 ramnode.node_mem = machine->ram_size;
456 nodes = &ramnode;
459 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
460 if (!nodes[i].node_mem) {
461 continue;
463 if (mem_start >= machine->ram_size) {
464 node_size = 0;
465 } else {
466 node_size = nodes[i].node_mem;
467 if (node_size > machine->ram_size - mem_start) {
468 node_size = machine->ram_size - mem_start;
471 if (!mem_start) {
472 /* spapr_machine_init() checks for rma_size <= node0_size
473 * already */
474 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
475 mem_start += spapr->rma_size;
476 node_size -= spapr->rma_size;
478 for ( ; node_size; ) {
479 hwaddr sizetmp = pow2floor(node_size);
481 /* mem_start != 0 here */
482 if (ctzl(mem_start) < ctzl(sizetmp)) {
483 sizetmp = 1ULL << ctzl(mem_start);
486 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
487 node_size -= sizetmp;
488 mem_start += sizetmp;
492 return 0;
495 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
496 sPAPRMachineState *spapr)
498 PowerPCCPU *cpu = POWERPC_CPU(cs);
499 CPUPPCState *env = &cpu->env;
500 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
501 int index = spapr_get_vcpu_id(cpu);
502 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
503 0xffffffff, 0xffffffff};
504 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
505 : SPAPR_TIMEBASE_FREQ;
506 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
507 uint32_t page_sizes_prop[64];
508 size_t page_sizes_prop_size;
509 uint32_t vcpus_per_socket = smp_threads * smp_cores;
510 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
511 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
512 sPAPRDRConnector *drc;
513 int drc_index;
514 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
515 int i;
517 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
518 if (drc) {
519 drc_index = spapr_drc_index(drc);
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
523 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
524 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
526 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
527 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
528 env->dcache_line_size)));
529 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
530 env->dcache_line_size)));
531 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
532 env->icache_line_size)));
533 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
534 env->icache_line_size)));
536 if (pcc->l1_dcache_size) {
537 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
538 pcc->l1_dcache_size)));
539 } else {
540 warn_report("Unknown L1 dcache size for cpu");
542 if (pcc->l1_icache_size) {
543 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
544 pcc->l1_icache_size)));
545 } else {
546 warn_report("Unknown L1 icache size for cpu");
549 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
550 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
551 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
552 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
553 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
554 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
556 if (env->spr_cb[SPR_PURR].oea_read) {
557 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
560 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
561 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
562 segs, sizeof(segs))));
565 /* Advertise VSX (vector extensions) if available
566 * 1 == VMX / Altivec available
567 * 2 == VSX available
569 * Only CPUs for which we create core types in spapr_cpu_core.c
570 * are possible, and all of those have VMX */
571 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
572 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
573 } else {
574 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
577 /* Advertise DFP (Decimal Floating Point) if available
578 * 0 / no property == no DFP
579 * 1 == DFP available */
580 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
581 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
584 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
585 sizeof(page_sizes_prop));
586 if (page_sizes_prop_size) {
587 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
588 page_sizes_prop, page_sizes_prop_size)));
591 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
593 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
594 cs->cpu_index / vcpus_per_socket)));
596 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
597 pft_size_prop, sizeof(pft_size_prop))));
599 if (nb_numa_nodes > 1) {
600 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
603 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
605 if (pcc->radix_page_info) {
606 for (i = 0; i < pcc->radix_page_info->count; i++) {
607 radix_AP_encodings[i] =
608 cpu_to_be32(pcc->radix_page_info->entries[i]);
610 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
611 radix_AP_encodings,
612 pcc->radix_page_info->count *
613 sizeof(radix_AP_encodings[0]))));
617 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
619 CPUState *cs;
620 int cpus_offset;
621 char *nodename;
623 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
624 _FDT(cpus_offset);
625 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
626 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
629 * We walk the CPUs in reverse order to ensure that CPU DT nodes
630 * created by fdt_add_subnode() end up in the right order in FDT
631 * for the guest kernel the enumerate the CPUs correctly.
633 CPU_FOREACH_REVERSE(cs) {
634 PowerPCCPU *cpu = POWERPC_CPU(cs);
635 int index = spapr_get_vcpu_id(cpu);
636 DeviceClass *dc = DEVICE_GET_CLASS(cs);
637 int offset;
639 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
640 continue;
643 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
644 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
645 g_free(nodename);
646 _FDT(offset);
647 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
652 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
654 MemoryDeviceInfoList *info;
656 for (info = list; info; info = info->next) {
657 MemoryDeviceInfo *value = info->value;
659 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
660 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
662 if (pcdimm_info->addr >= addr &&
663 addr < (pcdimm_info->addr + pcdimm_info->size)) {
664 return pcdimm_info->node;
669 return -1;
672 struct sPAPRDrconfCellV2 {
673 uint32_t seq_lmbs;
674 uint64_t base_addr;
675 uint32_t drc_index;
676 uint32_t aa_index;
677 uint32_t flags;
678 } QEMU_PACKED;
680 typedef struct DrconfCellQueue {
681 struct sPAPRDrconfCellV2 cell;
682 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
683 } DrconfCellQueue;
685 static DrconfCellQueue *
686 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
687 uint32_t drc_index, uint32_t aa_index,
688 uint32_t flags)
690 DrconfCellQueue *elem;
692 elem = g_malloc0(sizeof(*elem));
693 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
694 elem->cell.base_addr = cpu_to_be64(base_addr);
695 elem->cell.drc_index = cpu_to_be32(drc_index);
696 elem->cell.aa_index = cpu_to_be32(aa_index);
697 elem->cell.flags = cpu_to_be32(flags);
699 return elem;
702 /* ibm,dynamic-memory-v2 */
703 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
704 int offset, MemoryDeviceInfoList *dimms)
706 MachineState *machine = MACHINE(spapr);
707 uint8_t *int_buf, *cur_index, buf_len;
708 int ret;
709 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
710 uint64_t addr, cur_addr, size;
711 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
712 uint64_t mem_end = machine->device_memory->base +
713 memory_region_size(&machine->device_memory->mr);
714 uint32_t node, nr_entries = 0;
715 sPAPRDRConnector *drc;
716 DrconfCellQueue *elem, *next;
717 MemoryDeviceInfoList *info;
718 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
719 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
721 /* Entry to cover RAM and the gap area */
722 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
723 SPAPR_LMB_FLAGS_RESERVED |
724 SPAPR_LMB_FLAGS_DRC_INVALID);
725 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
726 nr_entries++;
728 cur_addr = machine->device_memory->base;
729 for (info = dimms; info; info = info->next) {
730 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
732 addr = di->addr;
733 size = di->size;
734 node = di->node;
736 /* Entry for hot-pluggable area */
737 if (cur_addr < addr) {
738 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
739 g_assert(drc);
740 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
741 cur_addr, spapr_drc_index(drc), -1, 0);
742 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
743 nr_entries++;
746 /* Entry for DIMM */
747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
748 g_assert(drc);
749 elem = spapr_get_drconf_cell(size / lmb_size, addr,
750 spapr_drc_index(drc), node,
751 SPAPR_LMB_FLAGS_ASSIGNED);
752 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
753 nr_entries++;
754 cur_addr = addr + size;
757 /* Entry for remaining hotpluggable area */
758 if (cur_addr < mem_end) {
759 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
760 g_assert(drc);
761 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
762 cur_addr, spapr_drc_index(drc), -1, 0);
763 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
764 nr_entries++;
767 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
768 int_buf = cur_index = g_malloc0(buf_len);
769 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
770 cur_index += sizeof(nr_entries);
772 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
773 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
774 cur_index += sizeof(elem->cell);
775 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
776 g_free(elem);
779 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
780 g_free(int_buf);
781 if (ret < 0) {
782 return -1;
784 return 0;
787 /* ibm,dynamic-memory */
788 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
789 int offset, MemoryDeviceInfoList *dimms)
791 MachineState *machine = MACHINE(spapr);
792 int i, ret;
793 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
794 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
795 uint32_t nr_lmbs = (machine->device_memory->base +
796 memory_region_size(&machine->device_memory->mr)) /
797 lmb_size;
798 uint32_t *int_buf, *cur_index, buf_len;
801 * Allocate enough buffer size to fit in ibm,dynamic-memory
803 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
804 cur_index = int_buf = g_malloc0(buf_len);
805 int_buf[0] = cpu_to_be32(nr_lmbs);
806 cur_index++;
807 for (i = 0; i < nr_lmbs; i++) {
808 uint64_t addr = i * lmb_size;
809 uint32_t *dynamic_memory = cur_index;
811 if (i >= device_lmb_start) {
812 sPAPRDRConnector *drc;
814 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
815 g_assert(drc);
817 dynamic_memory[0] = cpu_to_be32(addr >> 32);
818 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
819 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
820 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
821 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
822 if (memory_region_present(get_system_memory(), addr)) {
823 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
824 } else {
825 dynamic_memory[5] = cpu_to_be32(0);
827 } else {
829 * LMB information for RMA, boot time RAM and gap b/n RAM and
830 * device memory region -- all these are marked as reserved
831 * and as having no valid DRC.
833 dynamic_memory[0] = cpu_to_be32(addr >> 32);
834 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
835 dynamic_memory[2] = cpu_to_be32(0);
836 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
837 dynamic_memory[4] = cpu_to_be32(-1);
838 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
839 SPAPR_LMB_FLAGS_DRC_INVALID);
842 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
844 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
845 g_free(int_buf);
846 if (ret < 0) {
847 return -1;
849 return 0;
853 * Adds ibm,dynamic-reconfiguration-memory node.
854 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
855 * of this device tree node.
857 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
859 MachineState *machine = MACHINE(spapr);
860 int ret, i, offset;
861 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
862 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
863 uint32_t *int_buf, *cur_index, buf_len;
864 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
865 MemoryDeviceInfoList *dimms = NULL;
868 * Don't create the node if there is no device memory
870 if (machine->ram_size == machine->maxram_size) {
871 return 0;
874 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
876 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
877 sizeof(prop_lmb_size));
878 if (ret < 0) {
879 return ret;
882 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
883 if (ret < 0) {
884 return ret;
887 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
888 if (ret < 0) {
889 return ret;
892 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
893 dimms = qmp_memory_device_list();
894 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
895 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
896 } else {
897 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
899 qapi_free_MemoryDeviceInfoList(dimms);
901 if (ret < 0) {
902 return ret;
905 /* ibm,associativity-lookup-arrays */
906 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
907 cur_index = int_buf = g_malloc0(buf_len);
909 cur_index = int_buf;
910 int_buf[0] = cpu_to_be32(nr_nodes);
911 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
912 cur_index += 2;
913 for (i = 0; i < nr_nodes; i++) {
914 uint32_t associativity[] = {
915 cpu_to_be32(0x0),
916 cpu_to_be32(0x0),
917 cpu_to_be32(0x0),
918 cpu_to_be32(i)
920 memcpy(cur_index, associativity, sizeof(associativity));
921 cur_index += 4;
923 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
924 (cur_index - int_buf) * sizeof(uint32_t));
925 g_free(int_buf);
927 return ret;
930 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
931 sPAPROptionVector *ov5_updates)
933 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
934 int ret = 0, offset;
936 /* Generate ibm,dynamic-reconfiguration-memory node if required */
937 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
938 g_assert(smc->dr_lmb_enabled);
939 ret = spapr_populate_drconf_memory(spapr, fdt);
940 if (ret) {
941 goto out;
945 offset = fdt_path_offset(fdt, "/chosen");
946 if (offset < 0) {
947 offset = fdt_add_subnode(fdt, 0, "chosen");
948 if (offset < 0) {
949 return offset;
952 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
953 "ibm,architecture-vec-5");
955 out:
956 return ret;
959 static bool spapr_hotplugged_dev_before_cas(void)
961 Object *drc_container, *obj;
962 ObjectProperty *prop;
963 ObjectPropertyIterator iter;
965 drc_container = container_get(object_get_root(), "/dr-connector");
966 object_property_iter_init(&iter, drc_container);
967 while ((prop = object_property_iter_next(&iter))) {
968 if (!strstart(prop->type, "link<", NULL)) {
969 continue;
971 obj = object_property_get_link(drc_container, prop->name, NULL);
972 if (spapr_drc_needed(obj)) {
973 return true;
976 return false;
979 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
980 target_ulong addr, target_ulong size,
981 sPAPROptionVector *ov5_updates)
983 void *fdt, *fdt_skel;
984 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
986 if (spapr_hotplugged_dev_before_cas()) {
987 return 1;
990 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
991 error_report("SLOF provided an unexpected CAS buffer size "
992 TARGET_FMT_lu " (min: %zu, max: %u)",
993 size, sizeof(hdr), FW_MAX_SIZE);
994 exit(EXIT_FAILURE);
997 size -= sizeof(hdr);
999 /* Create skeleton */
1000 fdt_skel = g_malloc0(size);
1001 _FDT((fdt_create(fdt_skel, size)));
1002 _FDT((fdt_finish_reservemap(fdt_skel)));
1003 _FDT((fdt_begin_node(fdt_skel, "")));
1004 _FDT((fdt_end_node(fdt_skel)));
1005 _FDT((fdt_finish(fdt_skel)));
1006 fdt = g_malloc0(size);
1007 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1008 g_free(fdt_skel);
1010 /* Fixup cpu nodes */
1011 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1013 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1014 return -1;
1017 /* Pack resulting tree */
1018 _FDT((fdt_pack(fdt)));
1020 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1021 trace_spapr_cas_failed(size);
1022 return -1;
1025 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1026 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1027 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1028 g_free(fdt);
1030 return 0;
1033 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1035 int rtas;
1036 GString *hypertas = g_string_sized_new(256);
1037 GString *qemu_hypertas = g_string_sized_new(256);
1038 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1039 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1040 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1041 uint32_t lrdr_capacity[] = {
1042 cpu_to_be32(max_device_addr >> 32),
1043 cpu_to_be32(max_device_addr & 0xffffffff),
1044 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1045 cpu_to_be32(max_cpus / smp_threads),
1047 uint32_t maxdomains[] = {
1048 cpu_to_be32(4),
1049 cpu_to_be32(0),
1050 cpu_to_be32(0),
1051 cpu_to_be32(0),
1052 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1055 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1057 /* hypertas */
1058 add_str(hypertas, "hcall-pft");
1059 add_str(hypertas, "hcall-term");
1060 add_str(hypertas, "hcall-dabr");
1061 add_str(hypertas, "hcall-interrupt");
1062 add_str(hypertas, "hcall-tce");
1063 add_str(hypertas, "hcall-vio");
1064 add_str(hypertas, "hcall-splpar");
1065 add_str(hypertas, "hcall-bulk");
1066 add_str(hypertas, "hcall-set-mode");
1067 add_str(hypertas, "hcall-sprg0");
1068 add_str(hypertas, "hcall-copy");
1069 add_str(hypertas, "hcall-debug");
1070 add_str(qemu_hypertas, "hcall-memop1");
1072 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1073 add_str(hypertas, "hcall-multi-tce");
1076 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1077 add_str(hypertas, "hcall-hpt-resize");
1080 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1081 hypertas->str, hypertas->len));
1082 g_string_free(hypertas, TRUE);
1083 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1084 qemu_hypertas->str, qemu_hypertas->len));
1085 g_string_free(qemu_hypertas, TRUE);
1087 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1088 refpoints, sizeof(refpoints)));
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1091 maxdomains, sizeof(maxdomains)));
1093 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1094 RTAS_ERROR_LOG_MAX));
1095 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1096 RTAS_EVENT_SCAN_RATE));
1098 g_assert(msi_nonbroken);
1099 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1102 * According to PAPR, rtas ibm,os-term does not guarantee a return
1103 * back to the guest cpu.
1105 * While an additional ibm,extended-os-term property indicates
1106 * that rtas call return will always occur. Set this property.
1108 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1110 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1111 lrdr_capacity, sizeof(lrdr_capacity)));
1113 spapr_dt_rtas_tokens(fdt, rtas);
1116 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1117 * that the guest may request and thus the valid values for bytes 24..26 of
1118 * option vector 5: */
1119 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1121 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1123 char val[2 * 4] = {
1124 23, 0x00, /* Xive mode, filled in below. */
1125 24, 0x00, /* Hash/Radix, filled in below. */
1126 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1127 26, 0x40, /* Radix options: GTSE == yes. */
1130 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1131 first_ppc_cpu->compat_pvr)) {
1132 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1133 val[3] = 0x00; /* Hash */
1134 } else if (kvm_enabled()) {
1135 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1136 val[3] = 0x80; /* OV5_MMU_BOTH */
1137 } else if (kvmppc_has_cap_mmu_radix()) {
1138 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1139 } else {
1140 val[3] = 0x00; /* Hash */
1142 } else {
1143 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1144 val[3] = 0xC0;
1146 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1147 val, sizeof(val)));
1150 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1152 MachineState *machine = MACHINE(spapr);
1153 int chosen;
1154 const char *boot_device = machine->boot_order;
1155 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1156 size_t cb = 0;
1157 char *bootlist = get_boot_devices_list(&cb, true);
1159 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1161 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1162 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1163 spapr->initrd_base));
1164 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1165 spapr->initrd_base + spapr->initrd_size));
1167 if (spapr->kernel_size) {
1168 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1169 cpu_to_be64(spapr->kernel_size) };
1171 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1172 &kprop, sizeof(kprop)));
1173 if (spapr->kernel_le) {
1174 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1177 if (boot_menu) {
1178 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1180 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1181 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1182 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1184 if (cb && bootlist) {
1185 int i;
1187 for (i = 0; i < cb; i++) {
1188 if (bootlist[i] == '\n') {
1189 bootlist[i] = ' ';
1192 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1195 if (boot_device && strlen(boot_device)) {
1196 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1199 if (!spapr->has_graphics && stdout_path) {
1201 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1202 * kernel. New platforms should only use the "stdout-path" property. Set
1203 * the new property and continue using older property to remain
1204 * compatible with the existing firmware.
1206 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1207 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1210 spapr_dt_ov5_platform_support(fdt, chosen);
1212 g_free(stdout_path);
1213 g_free(bootlist);
1216 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1218 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1219 * KVM to work under pHyp with some guest co-operation */
1220 int hypervisor;
1221 uint8_t hypercall[16];
1223 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1224 /* indicate KVM hypercall interface */
1225 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1226 if (kvmppc_has_cap_fixup_hcalls()) {
1228 * Older KVM versions with older guest kernels were broken
1229 * with the magic page, don't allow the guest to map it.
1231 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1232 sizeof(hypercall))) {
1233 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1234 hypercall, sizeof(hypercall)));
1239 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1240 hwaddr rtas_addr,
1241 hwaddr rtas_size)
1243 MachineState *machine = MACHINE(spapr);
1244 MachineClass *mc = MACHINE_GET_CLASS(machine);
1245 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1246 int ret;
1247 void *fdt;
1248 sPAPRPHBState *phb;
1249 char *buf;
1251 fdt = g_malloc0(FDT_MAX_SIZE);
1252 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1254 /* Root node */
1255 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1256 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1257 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1260 * Add info to guest to indentify which host is it being run on
1261 * and what is the uuid of the guest
1263 if (kvmppc_get_host_model(&buf)) {
1264 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1265 g_free(buf);
1267 if (kvmppc_get_host_serial(&buf)) {
1268 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1269 g_free(buf);
1272 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1274 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1275 if (qemu_uuid_set) {
1276 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1278 g_free(buf);
1280 if (qemu_get_vm_name()) {
1281 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1282 qemu_get_vm_name()));
1285 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1286 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1288 /* /interrupt controller */
1289 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1291 ret = spapr_populate_memory(spapr, fdt);
1292 if (ret < 0) {
1293 error_report("couldn't setup memory nodes in fdt");
1294 exit(1);
1297 /* /vdevice */
1298 spapr_dt_vdevice(spapr->vio_bus, fdt);
1300 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1301 ret = spapr_rng_populate_dt(fdt);
1302 if (ret < 0) {
1303 error_report("could not set up rng device in the fdt");
1304 exit(1);
1308 QLIST_FOREACH(phb, &spapr->phbs, list) {
1309 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1310 if (ret < 0) {
1311 error_report("couldn't setup PCI devices in fdt");
1312 exit(1);
1316 /* cpus */
1317 spapr_populate_cpus_dt_node(fdt, spapr);
1319 if (smc->dr_lmb_enabled) {
1320 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1323 if (mc->has_hotpluggable_cpus) {
1324 int offset = fdt_path_offset(fdt, "/cpus");
1325 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1326 SPAPR_DR_CONNECTOR_TYPE_CPU);
1327 if (ret < 0) {
1328 error_report("Couldn't set up CPU DR device tree properties");
1329 exit(1);
1333 /* /event-sources */
1334 spapr_dt_events(spapr, fdt);
1336 /* /rtas */
1337 spapr_dt_rtas(spapr, fdt);
1339 /* /chosen */
1340 spapr_dt_chosen(spapr, fdt);
1342 /* /hypervisor */
1343 if (kvm_enabled()) {
1344 spapr_dt_hypervisor(spapr, fdt);
1347 /* Build memory reserve map */
1348 if (spapr->kernel_size) {
1349 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1351 if (spapr->initrd_size) {
1352 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1355 /* ibm,client-architecture-support updates */
1356 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1357 if (ret < 0) {
1358 error_report("couldn't setup CAS properties fdt");
1359 exit(1);
1362 return fdt;
1365 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1367 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1370 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1371 PowerPCCPU *cpu)
1373 CPUPPCState *env = &cpu->env;
1375 /* The TCG path should also be holding the BQL at this point */
1376 g_assert(qemu_mutex_iothread_locked());
1378 if (msr_pr) {
1379 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1380 env->gpr[3] = H_PRIVILEGE;
1381 } else {
1382 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1386 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1388 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1390 return spapr->patb_entry;
1393 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1394 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1395 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1396 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1397 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1400 * Get the fd to access the kernel htab, re-opening it if necessary
1402 static int get_htab_fd(sPAPRMachineState *spapr)
1404 Error *local_err = NULL;
1406 if (spapr->htab_fd >= 0) {
1407 return spapr->htab_fd;
1410 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1411 if (spapr->htab_fd < 0) {
1412 error_report_err(local_err);
1415 return spapr->htab_fd;
1418 void close_htab_fd(sPAPRMachineState *spapr)
1420 if (spapr->htab_fd >= 0) {
1421 close(spapr->htab_fd);
1423 spapr->htab_fd = -1;
1426 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1428 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1430 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1433 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1435 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1437 assert(kvm_enabled());
1439 if (!spapr->htab) {
1440 return 0;
1443 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1446 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1447 hwaddr ptex, int n)
1449 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1450 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1452 if (!spapr->htab) {
1454 * HTAB is controlled by KVM. Fetch into temporary buffer
1456 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1457 kvmppc_read_hptes(hptes, ptex, n);
1458 return hptes;
1462 * HTAB is controlled by QEMU. Just point to the internally
1463 * accessible PTEG.
1465 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1468 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1469 const ppc_hash_pte64_t *hptes,
1470 hwaddr ptex, int n)
1472 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1474 if (!spapr->htab) {
1475 g_free((void *)hptes);
1478 /* Nothing to do for qemu managed HPT */
1481 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1482 uint64_t pte0, uint64_t pte1)
1484 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1485 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1487 if (!spapr->htab) {
1488 kvmppc_write_hpte(ptex, pte0, pte1);
1489 } else {
1490 stq_p(spapr->htab + offset, pte0);
1491 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1495 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1497 int shift;
1499 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1500 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1501 * that's much more than is needed for Linux guests */
1502 shift = ctz64(pow2ceil(ramsize)) - 7;
1503 shift = MAX(shift, 18); /* Minimum architected size */
1504 shift = MIN(shift, 46); /* Maximum architected size */
1505 return shift;
1508 void spapr_free_hpt(sPAPRMachineState *spapr)
1510 g_free(spapr->htab);
1511 spapr->htab = NULL;
1512 spapr->htab_shift = 0;
1513 close_htab_fd(spapr);
1516 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1517 Error **errp)
1519 long rc;
1521 /* Clean up any HPT info from a previous boot */
1522 spapr_free_hpt(spapr);
1524 rc = kvmppc_reset_htab(shift);
1525 if (rc < 0) {
1526 /* kernel-side HPT needed, but couldn't allocate one */
1527 error_setg_errno(errp, errno,
1528 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1529 shift);
1530 /* This is almost certainly fatal, but if the caller really
1531 * wants to carry on with shift == 0, it's welcome to try */
1532 } else if (rc > 0) {
1533 /* kernel-side HPT allocated */
1534 if (rc != shift) {
1535 error_setg(errp,
1536 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1537 shift, rc);
1540 spapr->htab_shift = shift;
1541 spapr->htab = NULL;
1542 } else {
1543 /* kernel-side HPT not needed, allocate in userspace instead */
1544 size_t size = 1ULL << shift;
1545 int i;
1547 spapr->htab = qemu_memalign(size, size);
1548 if (!spapr->htab) {
1549 error_setg_errno(errp, errno,
1550 "Could not allocate HPT of order %d", shift);
1551 return;
1554 memset(spapr->htab, 0, size);
1555 spapr->htab_shift = shift;
1557 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1558 DIRTY_HPTE(HPTE(spapr->htab, i));
1561 /* We're setting up a hash table, so that means we're not radix */
1562 spapr->patb_entry = 0;
1565 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1567 int hpt_shift;
1569 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1570 || (spapr->cas_reboot
1571 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1572 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1573 } else {
1574 uint64_t current_ram_size;
1576 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1577 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1579 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1581 if (spapr->vrma_adjust) {
1582 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1583 spapr->htab_shift);
1587 static int spapr_reset_drcs(Object *child, void *opaque)
1589 sPAPRDRConnector *drc =
1590 (sPAPRDRConnector *) object_dynamic_cast(child,
1591 TYPE_SPAPR_DR_CONNECTOR);
1593 if (drc) {
1594 spapr_drc_reset(drc);
1597 return 0;
1600 static void spapr_machine_reset(void)
1602 MachineState *machine = MACHINE(qdev_get_machine());
1603 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1604 PowerPCCPU *first_ppc_cpu;
1605 uint32_t rtas_limit;
1606 hwaddr rtas_addr, fdt_addr;
1607 void *fdt;
1608 int rc;
1610 spapr_caps_reset(spapr);
1612 first_ppc_cpu = POWERPC_CPU(first_cpu);
1613 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1614 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1615 spapr->max_compat_pvr)) {
1616 /* If using KVM with radix mode available, VCPUs can be started
1617 * without a HPT because KVM will start them in radix mode.
1618 * Set the GR bit in PATB so that we know there is no HPT. */
1619 spapr->patb_entry = PATBE1_GR;
1620 } else {
1621 spapr_setup_hpt_and_vrma(spapr);
1624 /* if this reset wasn't generated by CAS, we should reset our
1625 * negotiated options and start from scratch */
1626 if (!spapr->cas_reboot) {
1627 spapr_ovec_cleanup(spapr->ov5_cas);
1628 spapr->ov5_cas = spapr_ovec_new();
1630 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1633 qemu_devices_reset();
1635 /* DRC reset may cause a device to be unplugged. This will cause troubles
1636 * if this device is used by another device (eg, a running vhost backend
1637 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1638 * situations, we reset DRCs after all devices have been reset.
1640 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1642 spapr_clear_pending_events(spapr);
1645 * We place the device tree and RTAS just below either the top of the RMA,
1646 * or just below 2GB, whichever is lowere, so that it can be
1647 * processed with 32-bit real mode code if necessary
1649 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1650 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1651 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1653 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1655 spapr_load_rtas(spapr, fdt, rtas_addr);
1657 rc = fdt_pack(fdt);
1659 /* Should only fail if we've built a corrupted tree */
1660 assert(rc == 0);
1662 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1663 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1664 fdt_totalsize(fdt), FDT_MAX_SIZE);
1665 exit(1);
1668 /* Load the fdt */
1669 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1670 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1671 g_free(fdt);
1673 /* Set up the entry state */
1674 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1675 first_ppc_cpu->env.gpr[5] = 0;
1677 spapr->cas_reboot = false;
1680 static void spapr_create_nvram(sPAPRMachineState *spapr)
1682 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1683 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1685 if (dinfo) {
1686 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1687 &error_fatal);
1690 qdev_init_nofail(dev);
1692 spapr->nvram = (struct sPAPRNVRAM *)dev;
1695 static void spapr_rtc_create(sPAPRMachineState *spapr)
1697 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1698 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1699 &error_fatal);
1700 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1701 &error_fatal);
1702 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1703 "date", &error_fatal);
1706 /* Returns whether we want to use VGA or not */
1707 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1709 switch (vga_interface_type) {
1710 case VGA_NONE:
1711 return false;
1712 case VGA_DEVICE:
1713 return true;
1714 case VGA_STD:
1715 case VGA_VIRTIO:
1716 return pci_vga_init(pci_bus) != NULL;
1717 default:
1718 error_setg(errp,
1719 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1720 return false;
1724 static int spapr_pre_load(void *opaque)
1726 int rc;
1728 rc = spapr_caps_pre_load(opaque);
1729 if (rc) {
1730 return rc;
1733 return 0;
1736 static int spapr_post_load(void *opaque, int version_id)
1738 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1739 int err = 0;
1741 err = spapr_caps_post_migration(spapr);
1742 if (err) {
1743 return err;
1746 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1747 CPUState *cs;
1748 CPU_FOREACH(cs) {
1749 PowerPCCPU *cpu = POWERPC_CPU(cs);
1750 icp_resend(ICP(cpu->intc));
1754 /* In earlier versions, there was no separate qdev for the PAPR
1755 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1756 * So when migrating from those versions, poke the incoming offset
1757 * value into the RTC device */
1758 if (version_id < 3) {
1759 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1762 if (kvm_enabled() && spapr->patb_entry) {
1763 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1764 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1765 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1767 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1768 if (err) {
1769 error_report("Process table config unsupported by the host");
1770 return -EINVAL;
1774 return err;
1777 static int spapr_pre_save(void *opaque)
1779 int rc;
1781 rc = spapr_caps_pre_save(opaque);
1782 if (rc) {
1783 return rc;
1786 return 0;
1789 static bool version_before_3(void *opaque, int version_id)
1791 return version_id < 3;
1794 static bool spapr_pending_events_needed(void *opaque)
1796 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1797 return !QTAILQ_EMPTY(&spapr->pending_events);
1800 static const VMStateDescription vmstate_spapr_event_entry = {
1801 .name = "spapr_event_log_entry",
1802 .version_id = 1,
1803 .minimum_version_id = 1,
1804 .fields = (VMStateField[]) {
1805 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1806 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1807 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1808 NULL, extended_length),
1809 VMSTATE_END_OF_LIST()
1813 static const VMStateDescription vmstate_spapr_pending_events = {
1814 .name = "spapr_pending_events",
1815 .version_id = 1,
1816 .minimum_version_id = 1,
1817 .needed = spapr_pending_events_needed,
1818 .fields = (VMStateField[]) {
1819 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1820 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1821 VMSTATE_END_OF_LIST()
1825 static bool spapr_ov5_cas_needed(void *opaque)
1827 sPAPRMachineState *spapr = opaque;
1828 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1829 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1830 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1831 bool cas_needed;
1833 /* Prior to the introduction of sPAPROptionVector, we had two option
1834 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1835 * Both of these options encode machine topology into the device-tree
1836 * in such a way that the now-booted OS should still be able to interact
1837 * appropriately with QEMU regardless of what options were actually
1838 * negotiatied on the source side.
1840 * As such, we can avoid migrating the CAS-negotiated options if these
1841 * are the only options available on the current machine/platform.
1842 * Since these are the only options available for pseries-2.7 and
1843 * earlier, this allows us to maintain old->new/new->old migration
1844 * compatibility.
1846 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1847 * via default pseries-2.8 machines and explicit command-line parameters.
1848 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1849 * of the actual CAS-negotiated values to continue working properly. For
1850 * example, availability of memory unplug depends on knowing whether
1851 * OV5_HP_EVT was negotiated via CAS.
1853 * Thus, for any cases where the set of available CAS-negotiatable
1854 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1855 * include the CAS-negotiated options in the migration stream, unless
1856 * if they affect boot time behaviour only.
1858 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1859 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1860 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1862 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1863 * the mask itself since in the future it's possible "legacy" bits may be
1864 * removed via machine options, which could generate a false positive
1865 * that breaks migration.
1867 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1868 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1870 spapr_ovec_cleanup(ov5_mask);
1871 spapr_ovec_cleanup(ov5_legacy);
1872 spapr_ovec_cleanup(ov5_removed);
1874 return cas_needed;
1877 static const VMStateDescription vmstate_spapr_ov5_cas = {
1878 .name = "spapr_option_vector_ov5_cas",
1879 .version_id = 1,
1880 .minimum_version_id = 1,
1881 .needed = spapr_ov5_cas_needed,
1882 .fields = (VMStateField[]) {
1883 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1884 vmstate_spapr_ovec, sPAPROptionVector),
1885 VMSTATE_END_OF_LIST()
1889 static bool spapr_patb_entry_needed(void *opaque)
1891 sPAPRMachineState *spapr = opaque;
1893 return !!spapr->patb_entry;
1896 static const VMStateDescription vmstate_spapr_patb_entry = {
1897 .name = "spapr_patb_entry",
1898 .version_id = 1,
1899 .minimum_version_id = 1,
1900 .needed = spapr_patb_entry_needed,
1901 .fields = (VMStateField[]) {
1902 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1903 VMSTATE_END_OF_LIST()
1907 static const VMStateDescription vmstate_spapr = {
1908 .name = "spapr",
1909 .version_id = 3,
1910 .minimum_version_id = 1,
1911 .pre_load = spapr_pre_load,
1912 .post_load = spapr_post_load,
1913 .pre_save = spapr_pre_save,
1914 .fields = (VMStateField[]) {
1915 /* used to be @next_irq */
1916 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1918 /* RTC offset */
1919 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1921 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1922 VMSTATE_END_OF_LIST()
1924 .subsections = (const VMStateDescription*[]) {
1925 &vmstate_spapr_ov5_cas,
1926 &vmstate_spapr_patb_entry,
1927 &vmstate_spapr_pending_events,
1928 &vmstate_spapr_cap_htm,
1929 &vmstate_spapr_cap_vsx,
1930 &vmstate_spapr_cap_dfp,
1931 &vmstate_spapr_cap_cfpc,
1932 &vmstate_spapr_cap_sbbc,
1933 &vmstate_spapr_cap_ibs,
1934 NULL
1938 static int htab_save_setup(QEMUFile *f, void *opaque)
1940 sPAPRMachineState *spapr = opaque;
1942 /* "Iteration" header */
1943 if (!spapr->htab_shift) {
1944 qemu_put_be32(f, -1);
1945 } else {
1946 qemu_put_be32(f, spapr->htab_shift);
1949 if (spapr->htab) {
1950 spapr->htab_save_index = 0;
1951 spapr->htab_first_pass = true;
1952 } else {
1953 if (spapr->htab_shift) {
1954 assert(kvm_enabled());
1959 return 0;
1962 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1963 int chunkstart, int n_valid, int n_invalid)
1965 qemu_put_be32(f, chunkstart);
1966 qemu_put_be16(f, n_valid);
1967 qemu_put_be16(f, n_invalid);
1968 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1969 HASH_PTE_SIZE_64 * n_valid);
1972 static void htab_save_end_marker(QEMUFile *f)
1974 qemu_put_be32(f, 0);
1975 qemu_put_be16(f, 0);
1976 qemu_put_be16(f, 0);
1979 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1980 int64_t max_ns)
1982 bool has_timeout = max_ns != -1;
1983 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1984 int index = spapr->htab_save_index;
1985 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1987 assert(spapr->htab_first_pass);
1989 do {
1990 int chunkstart;
1992 /* Consume invalid HPTEs */
1993 while ((index < htabslots)
1994 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1995 CLEAN_HPTE(HPTE(spapr->htab, index));
1996 index++;
1999 /* Consume valid HPTEs */
2000 chunkstart = index;
2001 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2002 && HPTE_VALID(HPTE(spapr->htab, index))) {
2003 CLEAN_HPTE(HPTE(spapr->htab, index));
2004 index++;
2007 if (index > chunkstart) {
2008 int n_valid = index - chunkstart;
2010 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2012 if (has_timeout &&
2013 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2014 break;
2017 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2019 if (index >= htabslots) {
2020 assert(index == htabslots);
2021 index = 0;
2022 spapr->htab_first_pass = false;
2024 spapr->htab_save_index = index;
2027 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2028 int64_t max_ns)
2030 bool final = max_ns < 0;
2031 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2032 int examined = 0, sent = 0;
2033 int index = spapr->htab_save_index;
2034 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2036 assert(!spapr->htab_first_pass);
2038 do {
2039 int chunkstart, invalidstart;
2041 /* Consume non-dirty HPTEs */
2042 while ((index < htabslots)
2043 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2044 index++;
2045 examined++;
2048 chunkstart = index;
2049 /* Consume valid dirty HPTEs */
2050 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2051 && HPTE_DIRTY(HPTE(spapr->htab, index))
2052 && HPTE_VALID(HPTE(spapr->htab, index))) {
2053 CLEAN_HPTE(HPTE(spapr->htab, index));
2054 index++;
2055 examined++;
2058 invalidstart = index;
2059 /* Consume invalid dirty HPTEs */
2060 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2061 && HPTE_DIRTY(HPTE(spapr->htab, index))
2062 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2063 CLEAN_HPTE(HPTE(spapr->htab, index));
2064 index++;
2065 examined++;
2068 if (index > chunkstart) {
2069 int n_valid = invalidstart - chunkstart;
2070 int n_invalid = index - invalidstart;
2072 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2073 sent += index - chunkstart;
2075 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2076 break;
2080 if (examined >= htabslots) {
2081 break;
2084 if (index >= htabslots) {
2085 assert(index == htabslots);
2086 index = 0;
2088 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2090 if (index >= htabslots) {
2091 assert(index == htabslots);
2092 index = 0;
2095 spapr->htab_save_index = index;
2097 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2100 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2101 #define MAX_KVM_BUF_SIZE 2048
2103 static int htab_save_iterate(QEMUFile *f, void *opaque)
2105 sPAPRMachineState *spapr = opaque;
2106 int fd;
2107 int rc = 0;
2109 /* Iteration header */
2110 if (!spapr->htab_shift) {
2111 qemu_put_be32(f, -1);
2112 return 1;
2113 } else {
2114 qemu_put_be32(f, 0);
2117 if (!spapr->htab) {
2118 assert(kvm_enabled());
2120 fd = get_htab_fd(spapr);
2121 if (fd < 0) {
2122 return fd;
2125 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2126 if (rc < 0) {
2127 return rc;
2129 } else if (spapr->htab_first_pass) {
2130 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2131 } else {
2132 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2135 htab_save_end_marker(f);
2137 return rc;
2140 static int htab_save_complete(QEMUFile *f, void *opaque)
2142 sPAPRMachineState *spapr = opaque;
2143 int fd;
2145 /* Iteration header */
2146 if (!spapr->htab_shift) {
2147 qemu_put_be32(f, -1);
2148 return 0;
2149 } else {
2150 qemu_put_be32(f, 0);
2153 if (!spapr->htab) {
2154 int rc;
2156 assert(kvm_enabled());
2158 fd = get_htab_fd(spapr);
2159 if (fd < 0) {
2160 return fd;
2163 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2164 if (rc < 0) {
2165 return rc;
2167 } else {
2168 if (spapr->htab_first_pass) {
2169 htab_save_first_pass(f, spapr, -1);
2171 htab_save_later_pass(f, spapr, -1);
2174 /* End marker */
2175 htab_save_end_marker(f);
2177 return 0;
2180 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2182 sPAPRMachineState *spapr = opaque;
2183 uint32_t section_hdr;
2184 int fd = -1;
2185 Error *local_err = NULL;
2187 if (version_id < 1 || version_id > 1) {
2188 error_report("htab_load() bad version");
2189 return -EINVAL;
2192 section_hdr = qemu_get_be32(f);
2194 if (section_hdr == -1) {
2195 spapr_free_hpt(spapr);
2196 return 0;
2199 if (section_hdr) {
2200 /* First section gives the htab size */
2201 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2202 if (local_err) {
2203 error_report_err(local_err);
2204 return -EINVAL;
2206 return 0;
2209 if (!spapr->htab) {
2210 assert(kvm_enabled());
2212 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2213 if (fd < 0) {
2214 error_report_err(local_err);
2215 return fd;
2219 while (true) {
2220 uint32_t index;
2221 uint16_t n_valid, n_invalid;
2223 index = qemu_get_be32(f);
2224 n_valid = qemu_get_be16(f);
2225 n_invalid = qemu_get_be16(f);
2227 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2228 /* End of Stream */
2229 break;
2232 if ((index + n_valid + n_invalid) >
2233 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2234 /* Bad index in stream */
2235 error_report(
2236 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2237 index, n_valid, n_invalid, spapr->htab_shift);
2238 return -EINVAL;
2241 if (spapr->htab) {
2242 if (n_valid) {
2243 qemu_get_buffer(f, HPTE(spapr->htab, index),
2244 HASH_PTE_SIZE_64 * n_valid);
2246 if (n_invalid) {
2247 memset(HPTE(spapr->htab, index + n_valid), 0,
2248 HASH_PTE_SIZE_64 * n_invalid);
2250 } else {
2251 int rc;
2253 assert(fd >= 0);
2255 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2256 if (rc < 0) {
2257 return rc;
2262 if (!spapr->htab) {
2263 assert(fd >= 0);
2264 close(fd);
2267 return 0;
2270 static void htab_save_cleanup(void *opaque)
2272 sPAPRMachineState *spapr = opaque;
2274 close_htab_fd(spapr);
2277 static SaveVMHandlers savevm_htab_handlers = {
2278 .save_setup = htab_save_setup,
2279 .save_live_iterate = htab_save_iterate,
2280 .save_live_complete_precopy = htab_save_complete,
2281 .save_cleanup = htab_save_cleanup,
2282 .load_state = htab_load,
2285 static void spapr_boot_set(void *opaque, const char *boot_device,
2286 Error **errp)
2288 MachineState *machine = MACHINE(opaque);
2289 machine->boot_order = g_strdup(boot_device);
2292 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2294 MachineState *machine = MACHINE(spapr);
2295 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2296 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2297 int i;
2299 for (i = 0; i < nr_lmbs; i++) {
2300 uint64_t addr;
2302 addr = i * lmb_size + machine->device_memory->base;
2303 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2304 addr / lmb_size);
2309 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2310 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2311 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2313 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2315 int i;
2317 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2318 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2319 " is not aligned to %llu MiB",
2320 machine->ram_size,
2321 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2322 return;
2325 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2326 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2327 " is not aligned to %llu MiB",
2328 machine->ram_size,
2329 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2330 return;
2333 for (i = 0; i < nb_numa_nodes; i++) {
2334 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2335 error_setg(errp,
2336 "Node %d memory size 0x%" PRIx64
2337 " is not aligned to %llu MiB",
2338 i, numa_info[i].node_mem,
2339 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2340 return;
2345 /* find cpu slot in machine->possible_cpus by core_id */
2346 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2348 int index = id / smp_threads;
2350 if (index >= ms->possible_cpus->len) {
2351 return NULL;
2353 if (idx) {
2354 *idx = index;
2356 return &ms->possible_cpus->cpus[index];
2359 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2361 Error *local_err = NULL;
2362 bool vsmt_user = !!spapr->vsmt;
2363 int kvm_smt = kvmppc_smt_threads();
2364 int ret;
2366 if (!kvm_enabled() && (smp_threads > 1)) {
2367 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2368 "on a pseries machine");
2369 goto out;
2371 if (!is_power_of_2(smp_threads)) {
2372 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2373 "machine because it must be a power of 2", smp_threads);
2374 goto out;
2377 /* Detemine the VSMT mode to use: */
2378 if (vsmt_user) {
2379 if (spapr->vsmt < smp_threads) {
2380 error_setg(&local_err, "Cannot support VSMT mode %d"
2381 " because it must be >= threads/core (%d)",
2382 spapr->vsmt, smp_threads);
2383 goto out;
2385 /* In this case, spapr->vsmt has been set by the command line */
2386 } else {
2388 * Default VSMT value is tricky, because we need it to be as
2389 * consistent as possible (for migration), but this requires
2390 * changing it for at least some existing cases. We pick 8 as
2391 * the value that we'd get with KVM on POWER8, the
2392 * overwhelmingly common case in production systems.
2394 spapr->vsmt = MAX(8, smp_threads);
2397 /* KVM: If necessary, set the SMT mode: */
2398 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2399 ret = kvmppc_set_smt_threads(spapr->vsmt);
2400 if (ret) {
2401 /* Looks like KVM isn't able to change VSMT mode */
2402 error_setg(&local_err,
2403 "Failed to set KVM's VSMT mode to %d (errno %d)",
2404 spapr->vsmt, ret);
2405 /* We can live with that if the default one is big enough
2406 * for the number of threads, and a submultiple of the one
2407 * we want. In this case we'll waste some vcpu ids, but
2408 * behaviour will be correct */
2409 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2410 warn_report_err(local_err);
2411 local_err = NULL;
2412 goto out;
2413 } else {
2414 if (!vsmt_user) {
2415 error_append_hint(&local_err,
2416 "On PPC, a VM with %d threads/core"
2417 " on a host with %d threads/core"
2418 " requires the use of VSMT mode %d.\n",
2419 smp_threads, kvm_smt, spapr->vsmt);
2421 kvmppc_hint_smt_possible(&local_err);
2422 goto out;
2426 /* else TCG: nothing to do currently */
2427 out:
2428 error_propagate(errp, local_err);
2431 static void spapr_init_cpus(sPAPRMachineState *spapr)
2433 MachineState *machine = MACHINE(spapr);
2434 MachineClass *mc = MACHINE_GET_CLASS(machine);
2435 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2436 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2437 const CPUArchIdList *possible_cpus;
2438 int boot_cores_nr = smp_cpus / smp_threads;
2439 int i;
2441 possible_cpus = mc->possible_cpu_arch_ids(machine);
2442 if (mc->has_hotpluggable_cpus) {
2443 if (smp_cpus % smp_threads) {
2444 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2445 smp_cpus, smp_threads);
2446 exit(1);
2448 if (max_cpus % smp_threads) {
2449 error_report("max_cpus (%u) must be multiple of threads (%u)",
2450 max_cpus, smp_threads);
2451 exit(1);
2453 } else {
2454 if (max_cpus != smp_cpus) {
2455 error_report("This machine version does not support CPU hotplug");
2456 exit(1);
2458 boot_cores_nr = possible_cpus->len;
2461 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2462 * call xics_max_server_number() or spapr_vcpu_id().
2464 spapr_set_vsmt_mode(spapr, &error_fatal);
2466 if (smc->pre_2_10_has_unused_icps) {
2467 int i;
2469 for (i = 0; i < xics_max_server_number(spapr); i++) {
2470 /* Dummy entries get deregistered when real ICPState objects
2471 * are registered during CPU core hotplug.
2473 pre_2_10_vmstate_register_dummy_icp(i);
2477 for (i = 0; i < possible_cpus->len; i++) {
2478 int core_id = i * smp_threads;
2480 if (mc->has_hotpluggable_cpus) {
2481 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2482 spapr_vcpu_id(spapr, core_id));
2485 if (i < boot_cores_nr) {
2486 Object *core = object_new(type);
2487 int nr_threads = smp_threads;
2489 /* Handle the partially filled core for older machine types */
2490 if ((i + 1) * smp_threads >= smp_cpus) {
2491 nr_threads = smp_cpus - i * smp_threads;
2494 object_property_set_int(core, nr_threads, "nr-threads",
2495 &error_fatal);
2496 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2497 &error_fatal);
2498 object_property_set_bool(core, true, "realized", &error_fatal);
2503 /* pSeries LPAR / sPAPR hardware init */
2504 static void spapr_machine_init(MachineState *machine)
2506 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2507 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2508 const char *kernel_filename = machine->kernel_filename;
2509 const char *initrd_filename = machine->initrd_filename;
2510 PCIHostState *phb;
2511 int i;
2512 MemoryRegion *sysmem = get_system_memory();
2513 MemoryRegion *ram = g_new(MemoryRegion, 1);
2514 hwaddr node0_size = spapr_node0_size(machine);
2515 long load_limit, fw_size;
2516 char *filename;
2517 Error *resize_hpt_err = NULL;
2518 PowerPCCPU *first_ppc_cpu;
2520 msi_nonbroken = true;
2522 QLIST_INIT(&spapr->phbs);
2523 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2525 /* Check HPT resizing availability */
2526 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2527 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2529 * If the user explicitly requested a mode we should either
2530 * supply it, or fail completely (which we do below). But if
2531 * it's not set explicitly, we reset our mode to something
2532 * that works
2534 if (resize_hpt_err) {
2535 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2536 error_free(resize_hpt_err);
2537 resize_hpt_err = NULL;
2538 } else {
2539 spapr->resize_hpt = smc->resize_hpt_default;
2543 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2545 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2547 * User requested HPT resize, but this host can't supply it. Bail out
2549 error_report_err(resize_hpt_err);
2550 exit(1);
2553 spapr->rma_size = node0_size;
2555 /* With KVM, we don't actually know whether KVM supports an
2556 * unbounded RMA (PR KVM) or is limited by the hash table size
2557 * (HV KVM using VRMA), so we always assume the latter
2559 * In that case, we also limit the initial allocations for RTAS
2560 * etc... to 256M since we have no way to know what the VRMA size
2561 * is going to be as it depends on the size of the hash table
2562 * which isn't determined yet.
2564 if (kvm_enabled()) {
2565 spapr->vrma_adjust = 1;
2566 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2569 /* Actually we don't support unbounded RMA anymore since we added
2570 * proper emulation of HV mode. The max we can get is 16G which
2571 * also happens to be what we configure for PAPR mode so make sure
2572 * we don't do anything bigger than that
2574 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2576 if (spapr->rma_size > node0_size) {
2577 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2578 spapr->rma_size);
2579 exit(1);
2582 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2583 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2585 /* Set up Interrupt Controller before we create the VCPUs */
2586 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2588 /* Set up containers for ibm,client-architecture-support negotiated options
2590 spapr->ov5 = spapr_ovec_new();
2591 spapr->ov5_cas = spapr_ovec_new();
2593 if (smc->dr_lmb_enabled) {
2594 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2595 spapr_validate_node_memory(machine, &error_fatal);
2598 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2600 /* advertise support for dedicated HP event source to guests */
2601 if (spapr->use_hotplug_event_source) {
2602 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2605 /* advertise support for HPT resizing */
2606 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2607 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2610 /* advertise support for ibm,dyamic-memory-v2 */
2611 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2613 /* init CPUs */
2614 spapr_init_cpus(spapr);
2616 first_ppc_cpu = POWERPC_CPU(first_cpu);
2617 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2618 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
2619 spapr->max_compat_pvr)) {
2620 /* KVM and TCG always allow GTSE with radix... */
2621 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2623 /* ... but not with hash (currently). */
2625 if (kvm_enabled()) {
2626 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2627 kvmppc_enable_logical_ci_hcalls();
2628 kvmppc_enable_set_mode_hcall();
2630 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2631 kvmppc_enable_clear_ref_mod_hcalls();
2634 /* allocate RAM */
2635 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2636 machine->ram_size);
2637 memory_region_add_subregion(sysmem, 0, ram);
2639 /* always allocate the device memory information */
2640 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2642 /* initialize hotplug memory address space */
2643 if (machine->ram_size < machine->maxram_size) {
2644 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2646 * Limit the number of hotpluggable memory slots to half the number
2647 * slots that KVM supports, leaving the other half for PCI and other
2648 * devices. However ensure that number of slots doesn't drop below 32.
2650 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2651 SPAPR_MAX_RAM_SLOTS;
2653 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2654 max_memslots = SPAPR_MAX_RAM_SLOTS;
2656 if (machine->ram_slots > max_memslots) {
2657 error_report("Specified number of memory slots %"
2658 PRIu64" exceeds max supported %d",
2659 machine->ram_slots, max_memslots);
2660 exit(1);
2663 machine->device_memory->base = ROUND_UP(machine->ram_size,
2664 SPAPR_DEVICE_MEM_ALIGN);
2665 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2666 "device-memory", device_mem_size);
2667 memory_region_add_subregion(sysmem, machine->device_memory->base,
2668 &machine->device_memory->mr);
2671 if (smc->dr_lmb_enabled) {
2672 spapr_create_lmb_dr_connectors(spapr);
2675 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2676 if (!filename) {
2677 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2678 exit(1);
2680 spapr->rtas_size = get_image_size(filename);
2681 if (spapr->rtas_size < 0) {
2682 error_report("Could not get size of LPAR rtas '%s'", filename);
2683 exit(1);
2685 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2686 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2687 error_report("Could not load LPAR rtas '%s'", filename);
2688 exit(1);
2690 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2691 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2692 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2693 exit(1);
2695 g_free(filename);
2697 /* Set up RTAS event infrastructure */
2698 spapr_events_init(spapr);
2700 /* Set up the RTC RTAS interfaces */
2701 spapr_rtc_create(spapr);
2703 /* Set up VIO bus */
2704 spapr->vio_bus = spapr_vio_bus_init();
2706 for (i = 0; i < serial_max_hds(); i++) {
2707 if (serial_hd(i)) {
2708 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2712 /* We always have at least the nvram device on VIO */
2713 spapr_create_nvram(spapr);
2715 /* Set up PCI */
2716 spapr_pci_rtas_init();
2718 phb = spapr_create_phb(spapr, 0);
2720 for (i = 0; i < nb_nics; i++) {
2721 NICInfo *nd = &nd_table[i];
2723 if (!nd->model) {
2724 nd->model = g_strdup("spapr-vlan");
2727 if (g_str_equal(nd->model, "spapr-vlan") ||
2728 g_str_equal(nd->model, "ibmveth")) {
2729 spapr_vlan_create(spapr->vio_bus, nd);
2730 } else {
2731 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2735 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2736 spapr_vscsi_create(spapr->vio_bus);
2739 /* Graphics */
2740 if (spapr_vga_init(phb->bus, &error_fatal)) {
2741 spapr->has_graphics = true;
2742 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2745 if (machine->usb) {
2746 if (smc->use_ohci_by_default) {
2747 pci_create_simple(phb->bus, -1, "pci-ohci");
2748 } else {
2749 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2752 if (spapr->has_graphics) {
2753 USBBus *usb_bus = usb_bus_find(-1);
2755 usb_create_simple(usb_bus, "usb-kbd");
2756 usb_create_simple(usb_bus, "usb-mouse");
2760 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2761 error_report(
2762 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2763 MIN_RMA_SLOF);
2764 exit(1);
2767 if (kernel_filename) {
2768 uint64_t lowaddr = 0;
2770 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2771 NULL, NULL, &lowaddr, NULL, 1,
2772 PPC_ELF_MACHINE, 0, 0);
2773 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2774 spapr->kernel_size = load_elf(kernel_filename,
2775 translate_kernel_address, NULL, NULL,
2776 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2777 0, 0);
2778 spapr->kernel_le = spapr->kernel_size > 0;
2780 if (spapr->kernel_size < 0) {
2781 error_report("error loading %s: %s", kernel_filename,
2782 load_elf_strerror(spapr->kernel_size));
2783 exit(1);
2786 /* load initrd */
2787 if (initrd_filename) {
2788 /* Try to locate the initrd in the gap between the kernel
2789 * and the firmware. Add a bit of space just in case
2791 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2792 + 0x1ffff) & ~0xffff;
2793 spapr->initrd_size = load_image_targphys(initrd_filename,
2794 spapr->initrd_base,
2795 load_limit
2796 - spapr->initrd_base);
2797 if (spapr->initrd_size < 0) {
2798 error_report("could not load initial ram disk '%s'",
2799 initrd_filename);
2800 exit(1);
2805 if (bios_name == NULL) {
2806 bios_name = FW_FILE_NAME;
2808 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2809 if (!filename) {
2810 error_report("Could not find LPAR firmware '%s'", bios_name);
2811 exit(1);
2813 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2814 if (fw_size <= 0) {
2815 error_report("Could not load LPAR firmware '%s'", filename);
2816 exit(1);
2818 g_free(filename);
2820 /* FIXME: Should register things through the MachineState's qdev
2821 * interface, this is a legacy from the sPAPREnvironment structure
2822 * which predated MachineState but had a similar function */
2823 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2824 register_savevm_live(NULL, "spapr/htab", -1, 1,
2825 &savevm_htab_handlers, spapr);
2827 qemu_register_boot_set(spapr_boot_set, spapr);
2829 if (kvm_enabled()) {
2830 /* to stop and start vmclock */
2831 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2832 &spapr->tb);
2834 kvmppc_spapr_enable_inkernel_multitce();
2838 static int spapr_kvm_type(const char *vm_type)
2840 if (!vm_type) {
2841 return 0;
2844 if (!strcmp(vm_type, "HV")) {
2845 return 1;
2848 if (!strcmp(vm_type, "PR")) {
2849 return 2;
2852 error_report("Unknown kvm-type specified '%s'", vm_type);
2853 exit(1);
2857 * Implementation of an interface to adjust firmware path
2858 * for the bootindex property handling.
2860 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2861 DeviceState *dev)
2863 #define CAST(type, obj, name) \
2864 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2865 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2866 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2867 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2869 if (d) {
2870 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2871 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2872 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2874 if (spapr) {
2876 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2877 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2878 * in the top 16 bits of the 64-bit LUN
2880 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2881 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2882 (uint64_t)id << 48);
2883 } else if (virtio) {
2885 * We use SRP luns of the form 01000000 | (target << 8) | lun
2886 * in the top 32 bits of the 64-bit LUN
2887 * Note: the quote above is from SLOF and it is wrong,
2888 * the actual binding is:
2889 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2891 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2892 if (d->lun >= 256) {
2893 /* Use the LUN "flat space addressing method" */
2894 id |= 0x4000;
2896 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2897 (uint64_t)id << 32);
2898 } else if (usb) {
2900 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2901 * in the top 32 bits of the 64-bit LUN
2903 unsigned usb_port = atoi(usb->port->path);
2904 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2905 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2906 (uint64_t)id << 32);
2911 * SLOF probes the USB devices, and if it recognizes that the device is a
2912 * storage device, it changes its name to "storage" instead of "usb-host",
2913 * and additionally adds a child node for the SCSI LUN, so the correct
2914 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2916 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2917 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2918 if (usb_host_dev_is_scsi_storage(usbdev)) {
2919 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2923 if (phb) {
2924 /* Replace "pci" with "pci@800000020000000" */
2925 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2928 if (vsc) {
2929 /* Same logic as virtio above */
2930 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2931 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2934 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2935 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2936 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2937 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2940 return NULL;
2943 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2945 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2947 return g_strdup(spapr->kvm_type);
2950 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2952 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2954 g_free(spapr->kvm_type);
2955 spapr->kvm_type = g_strdup(value);
2958 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2960 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2962 return spapr->use_hotplug_event_source;
2965 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2966 Error **errp)
2968 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2970 spapr->use_hotplug_event_source = value;
2973 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2975 return true;
2978 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2980 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2982 switch (spapr->resize_hpt) {
2983 case SPAPR_RESIZE_HPT_DEFAULT:
2984 return g_strdup("default");
2985 case SPAPR_RESIZE_HPT_DISABLED:
2986 return g_strdup("disabled");
2987 case SPAPR_RESIZE_HPT_ENABLED:
2988 return g_strdup("enabled");
2989 case SPAPR_RESIZE_HPT_REQUIRED:
2990 return g_strdup("required");
2992 g_assert_not_reached();
2995 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2997 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2999 if (strcmp(value, "default") == 0) {
3000 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3001 } else if (strcmp(value, "disabled") == 0) {
3002 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3003 } else if (strcmp(value, "enabled") == 0) {
3004 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3005 } else if (strcmp(value, "required") == 0) {
3006 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3007 } else {
3008 error_setg(errp, "Bad value for \"resize-hpt\" property");
3012 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3013 void *opaque, Error **errp)
3015 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3018 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3019 void *opaque, Error **errp)
3021 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3024 static void spapr_instance_init(Object *obj)
3026 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3028 spapr->htab_fd = -1;
3029 spapr->use_hotplug_event_source = true;
3030 object_property_add_str(obj, "kvm-type",
3031 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3032 object_property_set_description(obj, "kvm-type",
3033 "Specifies the KVM virtualization mode (HV, PR)",
3034 NULL);
3035 object_property_add_bool(obj, "modern-hotplug-events",
3036 spapr_get_modern_hotplug_events,
3037 spapr_set_modern_hotplug_events,
3038 NULL);
3039 object_property_set_description(obj, "modern-hotplug-events",
3040 "Use dedicated hotplug event mechanism in"
3041 " place of standard EPOW events when possible"
3042 " (required for memory hot-unplug support)",
3043 NULL);
3044 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3045 "Maximum permitted CPU compatibility mode",
3046 &error_fatal);
3048 object_property_add_str(obj, "resize-hpt",
3049 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3050 object_property_set_description(obj, "resize-hpt",
3051 "Resizing of the Hash Page Table (enabled, disabled, required)",
3052 NULL);
3053 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3054 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3055 object_property_set_description(obj, "vsmt",
3056 "Virtual SMT: KVM behaves as if this were"
3057 " the host's SMT mode", &error_abort);
3058 object_property_add_bool(obj, "vfio-no-msix-emulation",
3059 spapr_get_msix_emulation, NULL, NULL);
3062 static void spapr_machine_finalizefn(Object *obj)
3064 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3066 g_free(spapr->kvm_type);
3069 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3071 cpu_synchronize_state(cs);
3072 ppc_cpu_do_system_reset(cs);
3075 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3077 CPUState *cs;
3079 CPU_FOREACH(cs) {
3080 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3084 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3085 uint32_t node, bool dedicated_hp_event_source,
3086 Error **errp)
3088 sPAPRDRConnector *drc;
3089 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3090 int i, fdt_offset, fdt_size;
3091 void *fdt;
3092 uint64_t addr = addr_start;
3093 bool hotplugged = spapr_drc_hotplugged(dev);
3094 Error *local_err = NULL;
3096 for (i = 0; i < nr_lmbs; i++) {
3097 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3098 addr / SPAPR_MEMORY_BLOCK_SIZE);
3099 g_assert(drc);
3101 fdt = create_device_tree(&fdt_size);
3102 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3103 SPAPR_MEMORY_BLOCK_SIZE);
3105 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3106 if (local_err) {
3107 while (addr > addr_start) {
3108 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3109 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3110 addr / SPAPR_MEMORY_BLOCK_SIZE);
3111 spapr_drc_detach(drc);
3113 g_free(fdt);
3114 error_propagate(errp, local_err);
3115 return;
3117 if (!hotplugged) {
3118 spapr_drc_reset(drc);
3120 addr += SPAPR_MEMORY_BLOCK_SIZE;
3122 /* send hotplug notification to the
3123 * guest only in case of hotplugged memory
3125 if (hotplugged) {
3126 if (dedicated_hp_event_source) {
3127 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3128 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3129 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3130 nr_lmbs,
3131 spapr_drc_index(drc));
3132 } else {
3133 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3134 nr_lmbs);
3139 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3140 uint32_t node, Error **errp)
3142 Error *local_err = NULL;
3143 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3144 PCDIMMDevice *dimm = PC_DIMM(dev);
3145 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3146 MemoryRegion *mr;
3147 uint64_t align, size, addr;
3149 mr = ddc->get_memory_region(dimm, &local_err);
3150 if (local_err) {
3151 goto out;
3153 align = memory_region_get_alignment(mr);
3154 size = memory_region_size(mr);
3156 pc_dimm_memory_plug(dev, MACHINE(ms), align, &local_err);
3157 if (local_err) {
3158 goto out;
3161 addr = object_property_get_uint(OBJECT(dimm),
3162 PC_DIMM_ADDR_PROP, &local_err);
3163 if (local_err) {
3164 goto out_unplug;
3167 spapr_add_lmbs(dev, addr, size, node,
3168 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3169 &local_err);
3170 if (local_err) {
3171 goto out_unplug;
3174 return;
3176 out_unplug:
3177 pc_dimm_memory_unplug(dev, MACHINE(ms));
3178 out:
3179 error_propagate(errp, local_err);
3182 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3183 Error **errp)
3185 PCDIMMDevice *dimm = PC_DIMM(dev);
3186 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3187 MemoryRegion *mr;
3188 uint64_t size;
3189 char *mem_dev;
3191 mr = ddc->get_memory_region(dimm, errp);
3192 if (!mr) {
3193 return;
3195 size = memory_region_size(mr);
3197 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3198 error_setg(errp, "Hotplugged memory size must be a multiple of "
3199 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3200 return;
3203 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3204 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3205 error_setg(errp, "Memory backend has bad page size. "
3206 "Use 'memory-backend-file' with correct mem-path.");
3207 goto out;
3210 out:
3211 g_free(mem_dev);
3214 struct sPAPRDIMMState {
3215 PCDIMMDevice *dimm;
3216 uint32_t nr_lmbs;
3217 QTAILQ_ENTRY(sPAPRDIMMState) next;
3220 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3221 PCDIMMDevice *dimm)
3223 sPAPRDIMMState *dimm_state = NULL;
3225 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3226 if (dimm_state->dimm == dimm) {
3227 break;
3230 return dimm_state;
3233 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3234 uint32_t nr_lmbs,
3235 PCDIMMDevice *dimm)
3237 sPAPRDIMMState *ds = NULL;
3240 * If this request is for a DIMM whose removal had failed earlier
3241 * (due to guest's refusal to remove the LMBs), we would have this
3242 * dimm already in the pending_dimm_unplugs list. In that
3243 * case don't add again.
3245 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3246 if (!ds) {
3247 ds = g_malloc0(sizeof(sPAPRDIMMState));
3248 ds->nr_lmbs = nr_lmbs;
3249 ds->dimm = dimm;
3250 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3252 return ds;
3255 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3256 sPAPRDIMMState *dimm_state)
3258 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3259 g_free(dimm_state);
3262 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3263 PCDIMMDevice *dimm)
3265 sPAPRDRConnector *drc;
3266 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3267 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3268 uint64_t size = memory_region_size(mr);
3269 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3270 uint32_t avail_lmbs = 0;
3271 uint64_t addr_start, addr;
3272 int i;
3274 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3275 &error_abort);
3277 addr = addr_start;
3278 for (i = 0; i < nr_lmbs; i++) {
3279 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3280 addr / SPAPR_MEMORY_BLOCK_SIZE);
3281 g_assert(drc);
3282 if (drc->dev) {
3283 avail_lmbs++;
3285 addr += SPAPR_MEMORY_BLOCK_SIZE;
3288 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3291 /* Callback to be called during DRC release. */
3292 void spapr_lmb_release(DeviceState *dev)
3294 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3295 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3297 /* This information will get lost if a migration occurs
3298 * during the unplug process. In this case recover it. */
3299 if (ds == NULL) {
3300 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3301 g_assert(ds);
3302 /* The DRC being examined by the caller at least must be counted */
3303 g_assert(ds->nr_lmbs);
3306 if (--ds->nr_lmbs) {
3307 return;
3311 * Now that all the LMBs have been removed by the guest, call the
3312 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3314 pc_dimm_memory_unplug(dev, MACHINE(spapr));
3315 object_unparent(OBJECT(dev));
3316 spapr_pending_dimm_unplugs_remove(spapr, ds);
3319 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3320 DeviceState *dev, Error **errp)
3322 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3323 Error *local_err = NULL;
3324 PCDIMMDevice *dimm = PC_DIMM(dev);
3325 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3326 MemoryRegion *mr;
3327 uint32_t nr_lmbs;
3328 uint64_t size, addr_start, addr;
3329 int i;
3330 sPAPRDRConnector *drc;
3332 mr = ddc->get_memory_region(dimm, &local_err);
3333 if (local_err) {
3334 goto out;
3336 size = memory_region_size(mr);
3337 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3339 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3340 &local_err);
3341 if (local_err) {
3342 goto out;
3346 * An existing pending dimm state for this DIMM means that there is an
3347 * unplug operation in progress, waiting for the spapr_lmb_release
3348 * callback to complete the job (BQL can't cover that far). In this case,
3349 * bail out to avoid detaching DRCs that were already released.
3351 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3352 error_setg(&local_err,
3353 "Memory unplug already in progress for device %s",
3354 dev->id);
3355 goto out;
3358 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3360 addr = addr_start;
3361 for (i = 0; i < nr_lmbs; i++) {
3362 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3363 addr / SPAPR_MEMORY_BLOCK_SIZE);
3364 g_assert(drc);
3366 spapr_drc_detach(drc);
3367 addr += SPAPR_MEMORY_BLOCK_SIZE;
3370 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3371 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3372 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3373 nr_lmbs, spapr_drc_index(drc));
3374 out:
3375 error_propagate(errp, local_err);
3378 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3379 sPAPRMachineState *spapr)
3381 PowerPCCPU *cpu = POWERPC_CPU(cs);
3382 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3383 int id = spapr_get_vcpu_id(cpu);
3384 void *fdt;
3385 int offset, fdt_size;
3386 char *nodename;
3388 fdt = create_device_tree(&fdt_size);
3389 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3390 offset = fdt_add_subnode(fdt, 0, nodename);
3392 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3393 g_free(nodename);
3395 *fdt_offset = offset;
3396 return fdt;
3399 /* Callback to be called during DRC release. */
3400 void spapr_core_release(DeviceState *dev)
3402 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3403 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3404 CPUCore *cc = CPU_CORE(dev);
3405 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3407 if (smc->pre_2_10_has_unused_icps) {
3408 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3409 int i;
3411 for (i = 0; i < cc->nr_threads; i++) {
3412 CPUState *cs = CPU(sc->threads[i]);
3414 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3418 assert(core_slot);
3419 core_slot->cpu = NULL;
3420 object_unparent(OBJECT(dev));
3423 static
3424 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3425 Error **errp)
3427 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3428 int index;
3429 sPAPRDRConnector *drc;
3430 CPUCore *cc = CPU_CORE(dev);
3432 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3433 error_setg(errp, "Unable to find CPU core with core-id: %d",
3434 cc->core_id);
3435 return;
3437 if (index == 0) {
3438 error_setg(errp, "Boot CPU core may not be unplugged");
3439 return;
3442 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3443 spapr_vcpu_id(spapr, cc->core_id));
3444 g_assert(drc);
3446 spapr_drc_detach(drc);
3448 spapr_hotplug_req_remove_by_index(drc);
3451 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3452 Error **errp)
3454 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3455 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3456 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3457 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3458 CPUCore *cc = CPU_CORE(dev);
3459 CPUState *cs = CPU(core->threads[0]);
3460 sPAPRDRConnector *drc;
3461 Error *local_err = NULL;
3462 CPUArchId *core_slot;
3463 int index;
3464 bool hotplugged = spapr_drc_hotplugged(dev);
3466 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3467 if (!core_slot) {
3468 error_setg(errp, "Unable to find CPU core with core-id: %d",
3469 cc->core_id);
3470 return;
3472 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3473 spapr_vcpu_id(spapr, cc->core_id));
3475 g_assert(drc || !mc->has_hotpluggable_cpus);
3477 if (drc) {
3478 void *fdt;
3479 int fdt_offset;
3481 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3483 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3484 if (local_err) {
3485 g_free(fdt);
3486 error_propagate(errp, local_err);
3487 return;
3490 if (hotplugged) {
3492 * Send hotplug notification interrupt to the guest only
3493 * in case of hotplugged CPUs.
3495 spapr_hotplug_req_add_by_index(drc);
3496 } else {
3497 spapr_drc_reset(drc);
3501 core_slot->cpu = OBJECT(dev);
3503 if (smc->pre_2_10_has_unused_icps) {
3504 int i;
3506 for (i = 0; i < cc->nr_threads; i++) {
3507 cs = CPU(core->threads[i]);
3508 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3513 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3514 Error **errp)
3516 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3517 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3518 Error *local_err = NULL;
3519 CPUCore *cc = CPU_CORE(dev);
3520 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3521 const char *type = object_get_typename(OBJECT(dev));
3522 CPUArchId *core_slot;
3523 int index;
3525 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3526 error_setg(&local_err, "CPU hotplug not supported for this machine");
3527 goto out;
3530 if (strcmp(base_core_type, type)) {
3531 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3532 goto out;
3535 if (cc->core_id % smp_threads) {
3536 error_setg(&local_err, "invalid core id %d", cc->core_id);
3537 goto out;
3541 * In general we should have homogeneous threads-per-core, but old
3542 * (pre hotplug support) machine types allow the last core to have
3543 * reduced threads as a compatibility hack for when we allowed
3544 * total vcpus not a multiple of threads-per-core.
3546 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3547 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3548 cc->nr_threads, smp_threads);
3549 goto out;
3552 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3553 if (!core_slot) {
3554 error_setg(&local_err, "core id %d out of range", cc->core_id);
3555 goto out;
3558 if (core_slot->cpu) {
3559 error_setg(&local_err, "core %d already populated", cc->core_id);
3560 goto out;
3563 numa_cpu_pre_plug(core_slot, dev, &local_err);
3565 out:
3566 error_propagate(errp, local_err);
3569 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3570 DeviceState *dev, Error **errp)
3572 MachineState *ms = MACHINE(hotplug_dev);
3573 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3575 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3576 int node;
3578 if (!smc->dr_lmb_enabled) {
3579 error_setg(errp, "Memory hotplug not supported for this machine");
3580 return;
3582 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3583 if (*errp) {
3584 return;
3586 if (node < 0 || node >= MAX_NODES) {
3587 error_setg(errp, "Invaild node %d", node);
3588 return;
3591 spapr_memory_plug(hotplug_dev, dev, node, errp);
3592 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3593 spapr_core_plug(hotplug_dev, dev, errp);
3597 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3598 DeviceState *dev, Error **errp)
3600 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3601 MachineClass *mc = MACHINE_GET_CLASS(sms);
3603 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3604 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3605 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3606 } else {
3607 /* NOTE: this means there is a window after guest reset, prior to
3608 * CAS negotiation, where unplug requests will fail due to the
3609 * capability not being detected yet. This is a bit different than
3610 * the case with PCI unplug, where the events will be queued and
3611 * eventually handled by the guest after boot
3613 error_setg(errp, "Memory hot unplug not supported for this guest");
3615 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3616 if (!mc->has_hotpluggable_cpus) {
3617 error_setg(errp, "CPU hot unplug not supported on this machine");
3618 return;
3620 spapr_core_unplug_request(hotplug_dev, dev, errp);
3624 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3625 DeviceState *dev, Error **errp)
3627 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3628 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3629 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3630 spapr_core_pre_plug(hotplug_dev, dev, errp);
3634 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3635 DeviceState *dev)
3637 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3638 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3639 return HOTPLUG_HANDLER(machine);
3641 return NULL;
3644 static CpuInstanceProperties
3645 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3647 CPUArchId *core_slot;
3648 MachineClass *mc = MACHINE_GET_CLASS(machine);
3650 /* make sure possible_cpu are intialized */
3651 mc->possible_cpu_arch_ids(machine);
3652 /* get CPU core slot containing thread that matches cpu_index */
3653 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3654 assert(core_slot);
3655 return core_slot->props;
3658 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3660 return idx / smp_cores % nb_numa_nodes;
3663 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3665 int i;
3666 const char *core_type;
3667 int spapr_max_cores = max_cpus / smp_threads;
3668 MachineClass *mc = MACHINE_GET_CLASS(machine);
3670 if (!mc->has_hotpluggable_cpus) {
3671 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3673 if (machine->possible_cpus) {
3674 assert(machine->possible_cpus->len == spapr_max_cores);
3675 return machine->possible_cpus;
3678 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3679 if (!core_type) {
3680 error_report("Unable to find sPAPR CPU Core definition");
3681 exit(1);
3684 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3685 sizeof(CPUArchId) * spapr_max_cores);
3686 machine->possible_cpus->len = spapr_max_cores;
3687 for (i = 0; i < machine->possible_cpus->len; i++) {
3688 int core_id = i * smp_threads;
3690 machine->possible_cpus->cpus[i].type = core_type;
3691 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3692 machine->possible_cpus->cpus[i].arch_id = core_id;
3693 machine->possible_cpus->cpus[i].props.has_core_id = true;
3694 machine->possible_cpus->cpus[i].props.core_id = core_id;
3696 return machine->possible_cpus;
3699 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3700 uint64_t *buid, hwaddr *pio,
3701 hwaddr *mmio32, hwaddr *mmio64,
3702 unsigned n_dma, uint32_t *liobns, Error **errp)
3705 * New-style PHB window placement.
3707 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3708 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3709 * windows.
3711 * Some guest kernels can't work with MMIO windows above 1<<46
3712 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3714 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3715 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3716 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3717 * 1TiB 64-bit MMIO windows for each PHB.
3719 const uint64_t base_buid = 0x800000020000000ULL;
3720 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3721 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3722 int i;
3724 /* Sanity check natural alignments */
3725 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3726 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3727 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3728 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3729 /* Sanity check bounds */
3730 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3731 SPAPR_PCI_MEM32_WIN_SIZE);
3732 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3733 SPAPR_PCI_MEM64_WIN_SIZE);
3735 if (index >= SPAPR_MAX_PHBS) {
3736 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3737 SPAPR_MAX_PHBS - 1);
3738 return;
3741 *buid = base_buid + index;
3742 for (i = 0; i < n_dma; ++i) {
3743 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3746 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3747 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3748 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3751 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3753 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3755 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3758 static void spapr_ics_resend(XICSFabric *dev)
3760 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3762 ics_resend(spapr->ics);
3765 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3767 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3769 return cpu ? ICP(cpu->intc) : NULL;
3772 #define ICS_IRQ_FREE(ics, srcno) \
3773 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3775 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3777 int first, i;
3779 for (first = 0; first < ics->nr_irqs; first += alignnum) {
3780 if (num > (ics->nr_irqs - first)) {
3781 return -1;
3783 for (i = first; i < first + num; ++i) {
3784 if (!ICS_IRQ_FREE(ics, i)) {
3785 break;
3788 if (i == (first + num)) {
3789 return first;
3793 return -1;
3797 * Allocate the IRQ number and set the IRQ type, LSI or MSI
3799 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3801 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3804 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3805 Error **errp)
3807 ICSState *ics = spapr->ics;
3808 int irq;
3810 assert(ics);
3812 if (irq_hint) {
3813 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3814 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3815 return -1;
3817 irq = irq_hint;
3818 } else {
3819 irq = ics_find_free_block(ics, 1, 1);
3820 if (irq < 0) {
3821 error_setg(errp, "can't allocate IRQ: no IRQ left");
3822 return -1;
3824 irq += ics->offset;
3827 spapr_irq_set_lsi(spapr, irq, lsi);
3828 trace_spapr_irq_alloc(irq);
3830 return irq;
3834 * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3835 * the block. If align==true, aligns the first IRQ number to num.
3837 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3838 bool align, Error **errp)
3840 ICSState *ics = spapr->ics;
3841 int i, first = -1;
3843 assert(ics);
3846 * MSIMesage::data is used for storing VIRQ so
3847 * it has to be aligned to num to support multiple
3848 * MSI vectors. MSI-X is not affected by this.
3849 * The hint is used for the first IRQ, the rest should
3850 * be allocated continuously.
3852 if (align) {
3853 assert((num == 1) || (num == 2) || (num == 4) ||
3854 (num == 8) || (num == 16) || (num == 32));
3855 first = ics_find_free_block(ics, num, num);
3856 } else {
3857 first = ics_find_free_block(ics, num, 1);
3859 if (first < 0) {
3860 error_setg(errp, "can't find a free %d-IRQ block", num);
3861 return -1;
3864 first += ics->offset;
3865 for (i = first; i < first + num; ++i) {
3866 spapr_irq_set_lsi(spapr, i, lsi);
3869 trace_spapr_irq_alloc_block(first, num, lsi, align);
3871 return first;
3874 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3876 ICSState *ics = spapr->ics;
3877 int srcno = irq - ics->offset;
3878 int i;
3880 if (ics_valid_irq(ics, irq)) {
3881 trace_spapr_irq_free(0, irq, num);
3882 for (i = srcno; i < srcno + num; ++i) {
3883 if (ICS_IRQ_FREE(ics, i)) {
3884 trace_spapr_irq_free_warn(0, i + ics->offset);
3886 memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3891 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3893 ICSState *ics = spapr->ics;
3895 if (ics_valid_irq(ics, irq)) {
3896 return ics->qirqs[irq - ics->offset];
3899 return NULL;
3902 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3903 Monitor *mon)
3905 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3906 CPUState *cs;
3908 CPU_FOREACH(cs) {
3909 PowerPCCPU *cpu = POWERPC_CPU(cs);
3911 icp_pic_print_info(ICP(cpu->intc), mon);
3914 ics_pic_print_info(spapr->ics, mon);
3917 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3919 return cpu->vcpu_id;
3922 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3924 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3925 int vcpu_id;
3927 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3929 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3930 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3931 error_append_hint(errp, "Adjust the number of cpus to %d "
3932 "or try to raise the number of threads per core\n",
3933 vcpu_id * smp_threads / spapr->vsmt);
3934 return;
3937 cpu->vcpu_id = vcpu_id;
3940 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3942 CPUState *cs;
3944 CPU_FOREACH(cs) {
3945 PowerPCCPU *cpu = POWERPC_CPU(cs);
3947 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3948 return cpu;
3952 return NULL;
3955 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3957 MachineClass *mc = MACHINE_CLASS(oc);
3958 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3959 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3960 NMIClass *nc = NMI_CLASS(oc);
3961 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3962 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3963 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3964 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3966 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3969 * We set up the default / latest behaviour here. The class_init
3970 * functions for the specific versioned machine types can override
3971 * these details for backwards compatibility
3973 mc->init = spapr_machine_init;
3974 mc->reset = spapr_machine_reset;
3975 mc->block_default_type = IF_SCSI;
3976 mc->max_cpus = 1024;
3977 mc->no_parallel = 1;
3978 mc->default_boot_order = "";
3979 mc->default_ram_size = 512 * M_BYTE;
3980 mc->kvm_type = spapr_kvm_type;
3981 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3982 mc->pci_allow_0_address = true;
3983 assert(!mc->get_hotplug_handler);
3984 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3985 hc->pre_plug = spapr_machine_device_pre_plug;
3986 hc->plug = spapr_machine_device_plug;
3987 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3988 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3989 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3990 hc->unplug_request = spapr_machine_device_unplug_request;
3992 smc->dr_lmb_enabled = true;
3993 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3994 mc->has_hotpluggable_cpus = true;
3995 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3996 fwc->get_dev_path = spapr_get_fw_dev_path;
3997 nc->nmi_monitor_handler = spapr_nmi;
3998 smc->phb_placement = spapr_phb_placement;
3999 vhc->hypercall = emulate_spapr_hypercall;
4000 vhc->hpt_mask = spapr_hpt_mask;
4001 vhc->map_hptes = spapr_map_hptes;
4002 vhc->unmap_hptes = spapr_unmap_hptes;
4003 vhc->store_hpte = spapr_store_hpte;
4004 vhc->get_patbe = spapr_get_patbe;
4005 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4006 xic->ics_get = spapr_ics_get;
4007 xic->ics_resend = spapr_ics_resend;
4008 xic->icp_get = spapr_icp_get;
4009 ispc->print_info = spapr_pic_print_info;
4010 /* Force NUMA node memory size to be a multiple of
4011 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4012 * in which LMBs are represented and hot-added
4014 mc->numa_mem_align_shift = 28;
4016 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4017 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4018 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4019 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4020 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4021 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4022 spapr_caps_add_properties(smc, &error_abort);
4025 static const TypeInfo spapr_machine_info = {
4026 .name = TYPE_SPAPR_MACHINE,
4027 .parent = TYPE_MACHINE,
4028 .abstract = true,
4029 .instance_size = sizeof(sPAPRMachineState),
4030 .instance_init = spapr_instance_init,
4031 .instance_finalize = spapr_machine_finalizefn,
4032 .class_size = sizeof(sPAPRMachineClass),
4033 .class_init = spapr_machine_class_init,
4034 .interfaces = (InterfaceInfo[]) {
4035 { TYPE_FW_PATH_PROVIDER },
4036 { TYPE_NMI },
4037 { TYPE_HOTPLUG_HANDLER },
4038 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4039 { TYPE_XICS_FABRIC },
4040 { TYPE_INTERRUPT_STATS_PROVIDER },
4045 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4046 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4047 void *data) \
4049 MachineClass *mc = MACHINE_CLASS(oc); \
4050 spapr_machine_##suffix##_class_options(mc); \
4051 if (latest) { \
4052 mc->alias = "pseries"; \
4053 mc->is_default = 1; \
4056 static void spapr_machine_##suffix##_instance_init(Object *obj) \
4058 MachineState *machine = MACHINE(obj); \
4059 spapr_machine_##suffix##_instance_options(machine); \
4061 static const TypeInfo spapr_machine_##suffix##_info = { \
4062 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4063 .parent = TYPE_SPAPR_MACHINE, \
4064 .class_init = spapr_machine_##suffix##_class_init, \
4065 .instance_init = spapr_machine_##suffix##_instance_init, \
4066 }; \
4067 static void spapr_machine_register_##suffix(void) \
4069 type_register(&spapr_machine_##suffix##_info); \
4071 type_init(spapr_machine_register_##suffix)
4074 * pseries-3.0
4076 static void spapr_machine_3_0_instance_options(MachineState *machine)
4080 static void spapr_machine_3_0_class_options(MachineClass *mc)
4082 /* Defaults for the latest behaviour inherited from the base class */
4085 DEFINE_SPAPR_MACHINE(3_0, "3.0", true);
4088 * pseries-2.12
4090 #define SPAPR_COMPAT_2_12 \
4091 HW_COMPAT_2_12 \
4093 .driver = TYPE_POWERPC_CPU, \
4094 .property = "pre-3.0-migration", \
4095 .value = "on", \
4098 static void spapr_machine_2_12_instance_options(MachineState *machine)
4100 spapr_machine_3_0_instance_options(machine);
4103 static void spapr_machine_2_12_class_options(MachineClass *mc)
4105 spapr_machine_3_0_class_options(mc);
4106 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4109 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4111 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4113 spapr_machine_2_12_instance_options(machine);
4116 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4118 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4120 spapr_machine_2_12_class_options(mc);
4121 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4122 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4123 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4126 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4129 * pseries-2.11
4131 #define SPAPR_COMPAT_2_11 \
4132 HW_COMPAT_2_11
4134 static void spapr_machine_2_11_instance_options(MachineState *machine)
4136 spapr_machine_2_12_instance_options(machine);
4139 static void spapr_machine_2_11_class_options(MachineClass *mc)
4141 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4143 spapr_machine_2_12_class_options(mc);
4144 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4145 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4148 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4151 * pseries-2.10
4153 #define SPAPR_COMPAT_2_10 \
4154 HW_COMPAT_2_10
4156 static void spapr_machine_2_10_instance_options(MachineState *machine)
4158 spapr_machine_2_11_instance_options(machine);
4161 static void spapr_machine_2_10_class_options(MachineClass *mc)
4163 spapr_machine_2_11_class_options(mc);
4164 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4167 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4170 * pseries-2.9
4172 #define SPAPR_COMPAT_2_9 \
4173 HW_COMPAT_2_9 \
4175 .driver = TYPE_POWERPC_CPU, \
4176 .property = "pre-2.10-migration", \
4177 .value = "on", \
4178 }, \
4180 static void spapr_machine_2_9_instance_options(MachineState *machine)
4182 spapr_machine_2_10_instance_options(machine);
4185 static void spapr_machine_2_9_class_options(MachineClass *mc)
4187 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4189 spapr_machine_2_10_class_options(mc);
4190 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4191 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4192 smc->pre_2_10_has_unused_icps = true;
4193 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4196 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4199 * pseries-2.8
4201 #define SPAPR_COMPAT_2_8 \
4202 HW_COMPAT_2_8 \
4204 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4205 .property = "pcie-extended-configuration-space", \
4206 .value = "off", \
4209 static void spapr_machine_2_8_instance_options(MachineState *machine)
4211 spapr_machine_2_9_instance_options(machine);
4214 static void spapr_machine_2_8_class_options(MachineClass *mc)
4216 spapr_machine_2_9_class_options(mc);
4217 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4218 mc->numa_mem_align_shift = 23;
4221 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4224 * pseries-2.7
4226 #define SPAPR_COMPAT_2_7 \
4227 HW_COMPAT_2_7 \
4229 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4230 .property = "mem_win_size", \
4231 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4232 }, \
4234 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4235 .property = "mem64_win_size", \
4236 .value = "0", \
4237 }, \
4239 .driver = TYPE_POWERPC_CPU, \
4240 .property = "pre-2.8-migration", \
4241 .value = "on", \
4242 }, \
4244 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4245 .property = "pre-2.8-migration", \
4246 .value = "on", \
4249 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4250 uint64_t *buid, hwaddr *pio,
4251 hwaddr *mmio32, hwaddr *mmio64,
4252 unsigned n_dma, uint32_t *liobns, Error **errp)
4254 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4255 const uint64_t base_buid = 0x800000020000000ULL;
4256 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4257 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4258 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4259 const uint32_t max_index = 255;
4260 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4262 uint64_t ram_top = MACHINE(spapr)->ram_size;
4263 hwaddr phb0_base, phb_base;
4264 int i;
4266 /* Do we have device memory? */
4267 if (MACHINE(spapr)->maxram_size > ram_top) {
4268 /* Can't just use maxram_size, because there may be an
4269 * alignment gap between normal and device memory regions
4271 ram_top = MACHINE(spapr)->device_memory->base +
4272 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4275 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4277 if (index > max_index) {
4278 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4279 max_index);
4280 return;
4283 *buid = base_buid + index;
4284 for (i = 0; i < n_dma; ++i) {
4285 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4288 phb_base = phb0_base + index * phb_spacing;
4289 *pio = phb_base + pio_offset;
4290 *mmio32 = phb_base + mmio_offset;
4292 * We don't set the 64-bit MMIO window, relying on the PHB's
4293 * fallback behaviour of automatically splitting a large "32-bit"
4294 * window into contiguous 32-bit and 64-bit windows
4298 static void spapr_machine_2_7_instance_options(MachineState *machine)
4300 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4302 spapr_machine_2_8_instance_options(machine);
4303 spapr->use_hotplug_event_source = false;
4306 static void spapr_machine_2_7_class_options(MachineClass *mc)
4308 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4310 spapr_machine_2_8_class_options(mc);
4311 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4312 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4313 smc->phb_placement = phb_placement_2_7;
4316 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4319 * pseries-2.6
4321 #define SPAPR_COMPAT_2_6 \
4322 HW_COMPAT_2_6 \
4324 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4325 .property = "ddw",\
4326 .value = stringify(off),\
4329 static void spapr_machine_2_6_instance_options(MachineState *machine)
4331 spapr_machine_2_7_instance_options(machine);
4334 static void spapr_machine_2_6_class_options(MachineClass *mc)
4336 spapr_machine_2_7_class_options(mc);
4337 mc->has_hotpluggable_cpus = false;
4338 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4341 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4344 * pseries-2.5
4346 #define SPAPR_COMPAT_2_5 \
4347 HW_COMPAT_2_5 \
4349 .driver = "spapr-vlan", \
4350 .property = "use-rx-buffer-pools", \
4351 .value = "off", \
4354 static void spapr_machine_2_5_instance_options(MachineState *machine)
4356 spapr_machine_2_6_instance_options(machine);
4359 static void spapr_machine_2_5_class_options(MachineClass *mc)
4361 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4363 spapr_machine_2_6_class_options(mc);
4364 smc->use_ohci_by_default = true;
4365 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4368 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4371 * pseries-2.4
4373 #define SPAPR_COMPAT_2_4 \
4374 HW_COMPAT_2_4
4376 static void spapr_machine_2_4_instance_options(MachineState *machine)
4378 spapr_machine_2_5_instance_options(machine);
4381 static void spapr_machine_2_4_class_options(MachineClass *mc)
4383 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4385 spapr_machine_2_5_class_options(mc);
4386 smc->dr_lmb_enabled = false;
4387 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4390 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4393 * pseries-2.3
4395 #define SPAPR_COMPAT_2_3 \
4396 HW_COMPAT_2_3 \
4398 .driver = "spapr-pci-host-bridge",\
4399 .property = "dynamic-reconfiguration",\
4400 .value = "off",\
4403 static void spapr_machine_2_3_instance_options(MachineState *machine)
4405 spapr_machine_2_4_instance_options(machine);
4408 static void spapr_machine_2_3_class_options(MachineClass *mc)
4410 spapr_machine_2_4_class_options(mc);
4411 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4413 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4416 * pseries-2.2
4419 #define SPAPR_COMPAT_2_2 \
4420 HW_COMPAT_2_2 \
4422 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4423 .property = "mem_win_size",\
4424 .value = "0x20000000",\
4427 static void spapr_machine_2_2_instance_options(MachineState *machine)
4429 spapr_machine_2_3_instance_options(machine);
4430 machine->suppress_vmdesc = true;
4433 static void spapr_machine_2_2_class_options(MachineClass *mc)
4435 spapr_machine_2_3_class_options(mc);
4436 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4438 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4441 * pseries-2.1
4443 #define SPAPR_COMPAT_2_1 \
4444 HW_COMPAT_2_1
4446 static void spapr_machine_2_1_instance_options(MachineState *machine)
4448 spapr_machine_2_2_instance_options(machine);
4451 static void spapr_machine_2_1_class_options(MachineClass *mc)
4453 spapr_machine_2_2_class_options(mc);
4454 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4456 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4458 static void spapr_machine_register_types(void)
4460 type_register_static(&spapr_machine_info);
4463 type_init(spapr_machine_register_types)