virtio-serial: Turn props any virtio-serial-bus device must have into bus props
[qemu.git] / target-i386 / kvm.c
blob10fb2c4b07302c80c4328b6830f2dadcd39bf80b
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "cpu.h"
27 #include "gdbstub.h"
28 #include "host-utils.h"
29 #include "hw/pc.h"
30 #include "hw/apic.h"
31 #include "ioport.h"
33 //#define DEBUG_KVM
35 #ifdef DEBUG_KVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
43 #define MSR_KVM_WALL_CLOCK 0x11
44 #define MSR_KVM_SYSTEM_TIME 0x12
46 #ifndef BUS_MCEERR_AR
47 #define BUS_MCEERR_AR 4
48 #endif
49 #ifndef BUS_MCEERR_AO
50 #define BUS_MCEERR_AO 5
51 #endif
53 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
54 KVM_CAP_INFO(SET_TSS_ADDR),
55 KVM_CAP_INFO(EXT_CPUID),
56 KVM_CAP_INFO(MP_STATE),
57 KVM_CAP_LAST_INFO
60 static bool has_msr_star;
61 static bool has_msr_hsave_pa;
62 static bool has_msr_async_pf_en;
63 static int lm_capable_kernel;
65 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
67 struct kvm_cpuid2 *cpuid;
68 int r, size;
70 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
71 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
72 cpuid->nent = max;
73 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
74 if (r == 0 && cpuid->nent >= max) {
75 r = -E2BIG;
77 if (r < 0) {
78 if (r == -E2BIG) {
79 qemu_free(cpuid);
80 return NULL;
81 } else {
82 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
83 strerror(-r));
84 exit(1);
87 return cpuid;
90 struct kvm_para_features {
91 int cap;
92 int feature;
93 } para_features[] = {
94 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
95 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
96 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
97 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
98 { -1, -1 }
101 static int get_para_features(KVMState *s)
103 int i, features = 0;
105 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
106 if (kvm_check_extension(s, para_features[i].cap)) {
107 features |= (1 << para_features[i].feature);
111 return features;
115 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
116 uint32_t index, int reg)
118 struct kvm_cpuid2 *cpuid;
119 int i, max;
120 uint32_t ret = 0;
121 uint32_t cpuid_1_edx;
122 int has_kvm_features = 0;
124 max = 1;
125 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
126 max *= 2;
129 for (i = 0; i < cpuid->nent; ++i) {
130 if (cpuid->entries[i].function == function &&
131 cpuid->entries[i].index == index) {
132 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
133 has_kvm_features = 1;
135 switch (reg) {
136 case R_EAX:
137 ret = cpuid->entries[i].eax;
138 break;
139 case R_EBX:
140 ret = cpuid->entries[i].ebx;
141 break;
142 case R_ECX:
143 ret = cpuid->entries[i].ecx;
144 break;
145 case R_EDX:
146 ret = cpuid->entries[i].edx;
147 switch (function) {
148 case 1:
149 /* KVM before 2.6.30 misreports the following features */
150 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
151 break;
152 case 0x80000001:
153 /* On Intel, kvm returns cpuid according to the Intel spec,
154 * so add missing bits according to the AMD spec:
156 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
157 ret |= cpuid_1_edx & 0x183f7ff;
158 break;
160 break;
165 qemu_free(cpuid);
167 /* fallback for older kernels */
168 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
169 ret = get_para_features(s);
172 return ret;
175 typedef struct HWPoisonPage {
176 ram_addr_t ram_addr;
177 QLIST_ENTRY(HWPoisonPage) list;
178 } HWPoisonPage;
180 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
181 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
183 static void kvm_unpoison_all(void *param)
185 HWPoisonPage *page, *next_page;
187 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
188 QLIST_REMOVE(page, list);
189 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
190 qemu_free(page);
194 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
196 HWPoisonPage *page;
198 QLIST_FOREACH(page, &hwpoison_page_list, list) {
199 if (page->ram_addr == ram_addr) {
200 return;
203 page = qemu_malloc(sizeof(HWPoisonPage));
204 page->ram_addr = ram_addr;
205 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
208 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
209 int *max_banks)
211 int r;
213 r = kvm_check_extension(s, KVM_CAP_MCE);
214 if (r > 0) {
215 *max_banks = r;
216 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
218 return -ENOSYS;
221 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
223 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
224 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
225 uint64_t mcg_status = MCG_STATUS_MCIP;
227 if (code == BUS_MCEERR_AR) {
228 status |= MCI_STATUS_AR | 0x134;
229 mcg_status |= MCG_STATUS_EIPV;
230 } else {
231 status |= 0xc0;
232 mcg_status |= MCG_STATUS_RIPV;
234 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
235 (MCM_ADDR_PHYS << 6) | 0xc,
236 cpu_x86_support_mca_broadcast(env) ?
237 MCE_INJECT_BROADCAST : 0);
240 static void hardware_memory_error(void)
242 fprintf(stderr, "Hardware memory error!\n");
243 exit(1);
246 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
248 ram_addr_t ram_addr;
249 target_phys_addr_t paddr;
251 if ((env->mcg_cap & MCG_SER_P) && addr
252 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
253 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
254 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
255 &paddr)) {
256 fprintf(stderr, "Hardware memory error for memory used by "
257 "QEMU itself instead of guest system!\n");
258 /* Hope we are lucky for AO MCE */
259 if (code == BUS_MCEERR_AO) {
260 return 0;
261 } else {
262 hardware_memory_error();
265 kvm_hwpoison_page_add(ram_addr);
266 kvm_mce_inject(env, paddr, code);
267 } else {
268 if (code == BUS_MCEERR_AO) {
269 return 0;
270 } else if (code == BUS_MCEERR_AR) {
271 hardware_memory_error();
272 } else {
273 return 1;
276 return 0;
279 int kvm_arch_on_sigbus(int code, void *addr)
281 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
282 ram_addr_t ram_addr;
283 target_phys_addr_t paddr;
285 /* Hope we are lucky for AO MCE */
286 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
287 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
288 &paddr)) {
289 fprintf(stderr, "Hardware memory error for memory used by "
290 "QEMU itself instead of guest system!: %p\n", addr);
291 return 0;
293 kvm_hwpoison_page_add(ram_addr);
294 kvm_mce_inject(first_cpu, paddr, code);
295 } else {
296 if (code == BUS_MCEERR_AO) {
297 return 0;
298 } else if (code == BUS_MCEERR_AR) {
299 hardware_memory_error();
300 } else {
301 return 1;
304 return 0;
307 static int kvm_inject_mce_oldstyle(CPUState *env)
309 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
310 unsigned int bank, bank_num = env->mcg_cap & 0xff;
311 struct kvm_x86_mce mce;
313 env->exception_injected = -1;
316 * There must be at least one bank in use if an MCE is pending.
317 * Find it and use its values for the event injection.
319 for (bank = 0; bank < bank_num; bank++) {
320 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
321 break;
324 assert(bank < bank_num);
326 mce.bank = bank;
327 mce.status = env->mce_banks[bank * 4 + 1];
328 mce.mcg_status = env->mcg_status;
329 mce.addr = env->mce_banks[bank * 4 + 2];
330 mce.misc = env->mce_banks[bank * 4 + 3];
332 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
334 return 0;
337 static void cpu_update_state(void *opaque, int running, int reason)
339 CPUState *env = opaque;
341 if (running) {
342 env->tsc_valid = false;
346 int kvm_arch_init_vcpu(CPUState *env)
348 struct {
349 struct kvm_cpuid2 cpuid;
350 struct kvm_cpuid_entry2 entries[100];
351 } __attribute__((packed)) cpuid_data;
352 KVMState *s = env->kvm_state;
353 uint32_t limit, i, j, cpuid_i;
354 uint32_t unused;
355 struct kvm_cpuid_entry2 *c;
356 uint32_t signature[3];
358 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
360 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
361 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
362 env->cpuid_ext_features |= i;
364 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
365 0, R_EDX);
366 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
367 0, R_ECX);
368 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
369 0, R_EDX);
371 cpuid_i = 0;
373 /* Paravirtualization CPUIDs */
374 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
375 c = &cpuid_data.entries[cpuid_i++];
376 memset(c, 0, sizeof(*c));
377 c->function = KVM_CPUID_SIGNATURE;
378 c->eax = 0;
379 c->ebx = signature[0];
380 c->ecx = signature[1];
381 c->edx = signature[2];
383 c = &cpuid_data.entries[cpuid_i++];
384 memset(c, 0, sizeof(*c));
385 c->function = KVM_CPUID_FEATURES;
386 c->eax = env->cpuid_kvm_features &
387 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
389 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
391 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
393 for (i = 0; i <= limit; i++) {
394 c = &cpuid_data.entries[cpuid_i++];
396 switch (i) {
397 case 2: {
398 /* Keep reading function 2 till all the input is received */
399 int times;
401 c->function = i;
402 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
403 KVM_CPUID_FLAG_STATE_READ_NEXT;
404 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
405 times = c->eax & 0xff;
407 for (j = 1; j < times; ++j) {
408 c = &cpuid_data.entries[cpuid_i++];
409 c->function = i;
410 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
411 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
413 break;
415 case 4:
416 case 0xb:
417 case 0xd:
418 for (j = 0; ; j++) {
419 if (i == 0xd && j == 64) {
420 break;
422 c->function = i;
423 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
424 c->index = j;
425 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
427 if (i == 4 && c->eax == 0) {
428 break;
430 if (i == 0xb && !(c->ecx & 0xff00)) {
431 break;
433 if (i == 0xd && c->eax == 0) {
434 continue;
436 c = &cpuid_data.entries[cpuid_i++];
438 break;
439 default:
440 c->function = i;
441 c->flags = 0;
442 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
443 break;
446 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
448 for (i = 0x80000000; i <= limit; i++) {
449 c = &cpuid_data.entries[cpuid_i++];
451 c->function = i;
452 c->flags = 0;
453 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
456 /* Call Centaur's CPUID instructions they are supported. */
457 if (env->cpuid_xlevel2 > 0) {
458 env->cpuid_ext4_features &=
459 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
460 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
462 for (i = 0xC0000000; i <= limit; i++) {
463 c = &cpuid_data.entries[cpuid_i++];
465 c->function = i;
466 c->flags = 0;
467 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
471 cpuid_data.cpuid.nent = cpuid_i;
473 if (((env->cpuid_version >> 8)&0xF) >= 6
474 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
475 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
476 uint64_t mcg_cap;
477 int banks;
478 int ret;
480 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
481 if (ret < 0) {
482 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
483 return ret;
486 if (banks > MCE_BANKS_DEF) {
487 banks = MCE_BANKS_DEF;
489 mcg_cap &= MCE_CAP_DEF;
490 mcg_cap |= banks;
491 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
492 if (ret < 0) {
493 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
494 return ret;
497 env->mcg_cap = mcg_cap;
500 qemu_add_vm_change_state_handler(cpu_update_state, env);
502 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
505 void kvm_arch_reset_vcpu(CPUState *env)
507 env->exception_injected = -1;
508 env->interrupt_injected = -1;
509 env->xcr0 = 1;
510 if (kvm_irqchip_in_kernel()) {
511 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
512 KVM_MP_STATE_UNINITIALIZED;
513 } else {
514 env->mp_state = KVM_MP_STATE_RUNNABLE;
518 static int kvm_get_supported_msrs(KVMState *s)
520 static int kvm_supported_msrs;
521 int ret = 0;
523 /* first time */
524 if (kvm_supported_msrs == 0) {
525 struct kvm_msr_list msr_list, *kvm_msr_list;
527 kvm_supported_msrs = -1;
529 /* Obtain MSR list from KVM. These are the MSRs that we must
530 * save/restore */
531 msr_list.nmsrs = 0;
532 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
533 if (ret < 0 && ret != -E2BIG) {
534 return ret;
536 /* Old kernel modules had a bug and could write beyond the provided
537 memory. Allocate at least a safe amount of 1K. */
538 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
539 msr_list.nmsrs *
540 sizeof(msr_list.indices[0])));
542 kvm_msr_list->nmsrs = msr_list.nmsrs;
543 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
544 if (ret >= 0) {
545 int i;
547 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
548 if (kvm_msr_list->indices[i] == MSR_STAR) {
549 has_msr_star = true;
550 continue;
552 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
553 has_msr_hsave_pa = true;
554 continue;
559 qemu_free(kvm_msr_list);
562 return ret;
565 int kvm_arch_init(KVMState *s)
567 uint64_t identity_base = 0xfffbc000;
568 int ret;
569 struct utsname utsname;
571 ret = kvm_get_supported_msrs(s);
572 if (ret < 0) {
573 return ret;
576 uname(&utsname);
577 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
580 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
581 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
582 * Since these must be part of guest physical memory, we need to allocate
583 * them, both by setting their start addresses in the kernel and by
584 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
586 * Older KVM versions may not support setting the identity map base. In
587 * that case we need to stick with the default, i.e. a 256K maximum BIOS
588 * size.
590 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
591 /* Allows up to 16M BIOSes. */
592 identity_base = 0xfeffc000;
594 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
595 if (ret < 0) {
596 return ret;
600 /* Set TSS base one page after EPT identity map. */
601 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
602 if (ret < 0) {
603 return ret;
606 /* Tell fw_cfg to notify the BIOS to reserve the range. */
607 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
608 if (ret < 0) {
609 fprintf(stderr, "e820_add_entry() table is full\n");
610 return ret;
612 qemu_register_reset(kvm_unpoison_all, NULL);
614 return 0;
617 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
619 lhs->selector = rhs->selector;
620 lhs->base = rhs->base;
621 lhs->limit = rhs->limit;
622 lhs->type = 3;
623 lhs->present = 1;
624 lhs->dpl = 3;
625 lhs->db = 0;
626 lhs->s = 1;
627 lhs->l = 0;
628 lhs->g = 0;
629 lhs->avl = 0;
630 lhs->unusable = 0;
633 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
635 unsigned flags = rhs->flags;
636 lhs->selector = rhs->selector;
637 lhs->base = rhs->base;
638 lhs->limit = rhs->limit;
639 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
640 lhs->present = (flags & DESC_P_MASK) != 0;
641 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
642 lhs->db = (flags >> DESC_B_SHIFT) & 1;
643 lhs->s = (flags & DESC_S_MASK) != 0;
644 lhs->l = (flags >> DESC_L_SHIFT) & 1;
645 lhs->g = (flags & DESC_G_MASK) != 0;
646 lhs->avl = (flags & DESC_AVL_MASK) != 0;
647 lhs->unusable = 0;
650 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
652 lhs->selector = rhs->selector;
653 lhs->base = rhs->base;
654 lhs->limit = rhs->limit;
655 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
656 (rhs->present * DESC_P_MASK) |
657 (rhs->dpl << DESC_DPL_SHIFT) |
658 (rhs->db << DESC_B_SHIFT) |
659 (rhs->s * DESC_S_MASK) |
660 (rhs->l << DESC_L_SHIFT) |
661 (rhs->g * DESC_G_MASK) |
662 (rhs->avl * DESC_AVL_MASK);
665 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
667 if (set) {
668 *kvm_reg = *qemu_reg;
669 } else {
670 *qemu_reg = *kvm_reg;
674 static int kvm_getput_regs(CPUState *env, int set)
676 struct kvm_regs regs;
677 int ret = 0;
679 if (!set) {
680 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
681 if (ret < 0) {
682 return ret;
686 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
687 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
688 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
689 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
690 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
691 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
692 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
693 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
694 #ifdef TARGET_X86_64
695 kvm_getput_reg(&regs.r8, &env->regs[8], set);
696 kvm_getput_reg(&regs.r9, &env->regs[9], set);
697 kvm_getput_reg(&regs.r10, &env->regs[10], set);
698 kvm_getput_reg(&regs.r11, &env->regs[11], set);
699 kvm_getput_reg(&regs.r12, &env->regs[12], set);
700 kvm_getput_reg(&regs.r13, &env->regs[13], set);
701 kvm_getput_reg(&regs.r14, &env->regs[14], set);
702 kvm_getput_reg(&regs.r15, &env->regs[15], set);
703 #endif
705 kvm_getput_reg(&regs.rflags, &env->eflags, set);
706 kvm_getput_reg(&regs.rip, &env->eip, set);
708 if (set) {
709 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
712 return ret;
715 static int kvm_put_fpu(CPUState *env)
717 struct kvm_fpu fpu;
718 int i;
720 memset(&fpu, 0, sizeof fpu);
721 fpu.fsw = env->fpus & ~(7 << 11);
722 fpu.fsw |= (env->fpstt & 7) << 11;
723 fpu.fcw = env->fpuc;
724 fpu.last_opcode = env->fpop;
725 fpu.last_ip = env->fpip;
726 fpu.last_dp = env->fpdp;
727 for (i = 0; i < 8; ++i) {
728 fpu.ftwx |= (!env->fptags[i]) << i;
730 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
731 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
732 fpu.mxcsr = env->mxcsr;
734 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
737 #define XSAVE_CWD_RIP 2
738 #define XSAVE_CWD_RDP 4
739 #define XSAVE_MXCSR 6
740 #define XSAVE_ST_SPACE 8
741 #define XSAVE_XMM_SPACE 40
742 #define XSAVE_XSTATE_BV 128
743 #define XSAVE_YMMH_SPACE 144
745 static int kvm_put_xsave(CPUState *env)
747 int i, r;
748 struct kvm_xsave* xsave;
749 uint16_t cwd, swd, twd;
751 if (!kvm_has_xsave()) {
752 return kvm_put_fpu(env);
755 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
756 memset(xsave, 0, sizeof(struct kvm_xsave));
757 cwd = swd = twd = 0;
758 swd = env->fpus & ~(7 << 11);
759 swd |= (env->fpstt & 7) << 11;
760 cwd = env->fpuc;
761 for (i = 0; i < 8; ++i) {
762 twd |= (!env->fptags[i]) << i;
764 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
765 xsave->region[1] = (uint32_t)(env->fpop << 16) + twd;
766 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
767 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
768 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
769 sizeof env->fpregs);
770 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
771 sizeof env->xmm_regs);
772 xsave->region[XSAVE_MXCSR] = env->mxcsr;
773 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
774 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
775 sizeof env->ymmh_regs);
776 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
777 qemu_free(xsave);
778 return r;
781 static int kvm_put_xcrs(CPUState *env)
783 struct kvm_xcrs xcrs;
785 if (!kvm_has_xcrs()) {
786 return 0;
789 xcrs.nr_xcrs = 1;
790 xcrs.flags = 0;
791 xcrs.xcrs[0].xcr = 0;
792 xcrs.xcrs[0].value = env->xcr0;
793 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
796 static int kvm_put_sregs(CPUState *env)
798 struct kvm_sregs sregs;
800 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
801 if (env->interrupt_injected >= 0) {
802 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
803 (uint64_t)1 << (env->interrupt_injected % 64);
806 if ((env->eflags & VM_MASK)) {
807 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
808 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
809 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
810 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
811 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
812 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
813 } else {
814 set_seg(&sregs.cs, &env->segs[R_CS]);
815 set_seg(&sregs.ds, &env->segs[R_DS]);
816 set_seg(&sregs.es, &env->segs[R_ES]);
817 set_seg(&sregs.fs, &env->segs[R_FS]);
818 set_seg(&sregs.gs, &env->segs[R_GS]);
819 set_seg(&sregs.ss, &env->segs[R_SS]);
822 set_seg(&sregs.tr, &env->tr);
823 set_seg(&sregs.ldt, &env->ldt);
825 sregs.idt.limit = env->idt.limit;
826 sregs.idt.base = env->idt.base;
827 sregs.gdt.limit = env->gdt.limit;
828 sregs.gdt.base = env->gdt.base;
830 sregs.cr0 = env->cr[0];
831 sregs.cr2 = env->cr[2];
832 sregs.cr3 = env->cr[3];
833 sregs.cr4 = env->cr[4];
835 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
836 sregs.apic_base = cpu_get_apic_base(env->apic_state);
838 sregs.efer = env->efer;
840 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
843 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
844 uint32_t index, uint64_t value)
846 entry->index = index;
847 entry->data = value;
850 static int kvm_put_msrs(CPUState *env, int level)
852 struct {
853 struct kvm_msrs info;
854 struct kvm_msr_entry entries[100];
855 } msr_data;
856 struct kvm_msr_entry *msrs = msr_data.entries;
857 int n = 0;
859 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
860 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
861 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
862 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
863 if (has_msr_star) {
864 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
866 if (has_msr_hsave_pa) {
867 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
869 #ifdef TARGET_X86_64
870 if (lm_capable_kernel) {
871 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
872 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
873 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
874 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
876 #endif
877 if (level == KVM_PUT_FULL_STATE) {
879 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
880 * writeback. Until this is fixed, we only write the offset to SMP
881 * guests after migration, desynchronizing the VCPUs, but avoiding
882 * huge jump-backs that would occur without any writeback at all.
884 if (smp_cpus == 1 || env->tsc != 0) {
885 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
889 * The following paravirtual MSRs have side effects on the guest or are
890 * too heavy for normal writeback. Limit them to reset or full state
891 * updates.
893 if (level >= KVM_PUT_RESET_STATE) {
894 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
895 env->system_time_msr);
896 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
897 if (has_msr_async_pf_en) {
898 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
899 env->async_pf_en_msr);
902 if (env->mcg_cap) {
903 int i;
905 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
906 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
907 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
908 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
912 msr_data.info.nmsrs = n;
914 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
919 static int kvm_get_fpu(CPUState *env)
921 struct kvm_fpu fpu;
922 int i, ret;
924 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
925 if (ret < 0) {
926 return ret;
929 env->fpstt = (fpu.fsw >> 11) & 7;
930 env->fpus = fpu.fsw;
931 env->fpuc = fpu.fcw;
932 env->fpop = fpu.last_opcode;
933 env->fpip = fpu.last_ip;
934 env->fpdp = fpu.last_dp;
935 for (i = 0; i < 8; ++i) {
936 env->fptags[i] = !((fpu.ftwx >> i) & 1);
938 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
939 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
940 env->mxcsr = fpu.mxcsr;
942 return 0;
945 static int kvm_get_xsave(CPUState *env)
947 struct kvm_xsave* xsave;
948 int ret, i;
949 uint16_t cwd, swd, twd;
951 if (!kvm_has_xsave()) {
952 return kvm_get_fpu(env);
955 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
956 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
957 if (ret < 0) {
958 qemu_free(xsave);
959 return ret;
962 cwd = (uint16_t)xsave->region[0];
963 swd = (uint16_t)(xsave->region[0] >> 16);
964 twd = (uint16_t)xsave->region[1];
965 env->fpop = (uint16_t)(xsave->region[1] >> 16);
966 env->fpstt = (swd >> 11) & 7;
967 env->fpus = swd;
968 env->fpuc = cwd;
969 for (i = 0; i < 8; ++i) {
970 env->fptags[i] = !((twd >> i) & 1);
972 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
973 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
974 env->mxcsr = xsave->region[XSAVE_MXCSR];
975 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
976 sizeof env->fpregs);
977 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
978 sizeof env->xmm_regs);
979 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
980 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
981 sizeof env->ymmh_regs);
982 qemu_free(xsave);
983 return 0;
986 static int kvm_get_xcrs(CPUState *env)
988 int i, ret;
989 struct kvm_xcrs xcrs;
991 if (!kvm_has_xcrs()) {
992 return 0;
995 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
996 if (ret < 0) {
997 return ret;
1000 for (i = 0; i < xcrs.nr_xcrs; i++) {
1001 /* Only support xcr0 now */
1002 if (xcrs.xcrs[0].xcr == 0) {
1003 env->xcr0 = xcrs.xcrs[0].value;
1004 break;
1007 return 0;
1010 static int kvm_get_sregs(CPUState *env)
1012 struct kvm_sregs sregs;
1013 uint32_t hflags;
1014 int bit, i, ret;
1016 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1017 if (ret < 0) {
1018 return ret;
1021 /* There can only be one pending IRQ set in the bitmap at a time, so try
1022 to find it and save its number instead (-1 for none). */
1023 env->interrupt_injected = -1;
1024 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1025 if (sregs.interrupt_bitmap[i]) {
1026 bit = ctz64(sregs.interrupt_bitmap[i]);
1027 env->interrupt_injected = i * 64 + bit;
1028 break;
1032 get_seg(&env->segs[R_CS], &sregs.cs);
1033 get_seg(&env->segs[R_DS], &sregs.ds);
1034 get_seg(&env->segs[R_ES], &sregs.es);
1035 get_seg(&env->segs[R_FS], &sregs.fs);
1036 get_seg(&env->segs[R_GS], &sregs.gs);
1037 get_seg(&env->segs[R_SS], &sregs.ss);
1039 get_seg(&env->tr, &sregs.tr);
1040 get_seg(&env->ldt, &sregs.ldt);
1042 env->idt.limit = sregs.idt.limit;
1043 env->idt.base = sregs.idt.base;
1044 env->gdt.limit = sregs.gdt.limit;
1045 env->gdt.base = sregs.gdt.base;
1047 env->cr[0] = sregs.cr0;
1048 env->cr[2] = sregs.cr2;
1049 env->cr[3] = sregs.cr3;
1050 env->cr[4] = sregs.cr4;
1052 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1054 env->efer = sregs.efer;
1055 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1057 #define HFLAG_COPY_MASK \
1058 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1059 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1060 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1061 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1063 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1064 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1065 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1066 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1067 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1068 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1069 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1071 if (env->efer & MSR_EFER_LMA) {
1072 hflags |= HF_LMA_MASK;
1075 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1076 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1077 } else {
1078 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1079 (DESC_B_SHIFT - HF_CS32_SHIFT);
1080 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1081 (DESC_B_SHIFT - HF_SS32_SHIFT);
1082 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1083 !(hflags & HF_CS32_MASK)) {
1084 hflags |= HF_ADDSEG_MASK;
1085 } else {
1086 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1087 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1090 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1092 return 0;
1095 static int kvm_get_msrs(CPUState *env)
1097 struct {
1098 struct kvm_msrs info;
1099 struct kvm_msr_entry entries[100];
1100 } msr_data;
1101 struct kvm_msr_entry *msrs = msr_data.entries;
1102 int ret, i, n;
1104 n = 0;
1105 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1106 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1107 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1108 msrs[n++].index = MSR_PAT;
1109 if (has_msr_star) {
1110 msrs[n++].index = MSR_STAR;
1112 if (has_msr_hsave_pa) {
1113 msrs[n++].index = MSR_VM_HSAVE_PA;
1116 if (!env->tsc_valid) {
1117 msrs[n++].index = MSR_IA32_TSC;
1118 env->tsc_valid = !vm_running;
1121 #ifdef TARGET_X86_64
1122 if (lm_capable_kernel) {
1123 msrs[n++].index = MSR_CSTAR;
1124 msrs[n++].index = MSR_KERNELGSBASE;
1125 msrs[n++].index = MSR_FMASK;
1126 msrs[n++].index = MSR_LSTAR;
1128 #endif
1129 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1130 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1131 if (has_msr_async_pf_en) {
1132 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1135 if (env->mcg_cap) {
1136 msrs[n++].index = MSR_MCG_STATUS;
1137 msrs[n++].index = MSR_MCG_CTL;
1138 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1139 msrs[n++].index = MSR_MC0_CTL + i;
1143 msr_data.info.nmsrs = n;
1144 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1145 if (ret < 0) {
1146 return ret;
1149 for (i = 0; i < ret; i++) {
1150 switch (msrs[i].index) {
1151 case MSR_IA32_SYSENTER_CS:
1152 env->sysenter_cs = msrs[i].data;
1153 break;
1154 case MSR_IA32_SYSENTER_ESP:
1155 env->sysenter_esp = msrs[i].data;
1156 break;
1157 case MSR_IA32_SYSENTER_EIP:
1158 env->sysenter_eip = msrs[i].data;
1159 break;
1160 case MSR_PAT:
1161 env->pat = msrs[i].data;
1162 break;
1163 case MSR_STAR:
1164 env->star = msrs[i].data;
1165 break;
1166 #ifdef TARGET_X86_64
1167 case MSR_CSTAR:
1168 env->cstar = msrs[i].data;
1169 break;
1170 case MSR_KERNELGSBASE:
1171 env->kernelgsbase = msrs[i].data;
1172 break;
1173 case MSR_FMASK:
1174 env->fmask = msrs[i].data;
1175 break;
1176 case MSR_LSTAR:
1177 env->lstar = msrs[i].data;
1178 break;
1179 #endif
1180 case MSR_IA32_TSC:
1181 env->tsc = msrs[i].data;
1182 break;
1183 case MSR_VM_HSAVE_PA:
1184 env->vm_hsave = msrs[i].data;
1185 break;
1186 case MSR_KVM_SYSTEM_TIME:
1187 env->system_time_msr = msrs[i].data;
1188 break;
1189 case MSR_KVM_WALL_CLOCK:
1190 env->wall_clock_msr = msrs[i].data;
1191 break;
1192 case MSR_MCG_STATUS:
1193 env->mcg_status = msrs[i].data;
1194 break;
1195 case MSR_MCG_CTL:
1196 env->mcg_ctl = msrs[i].data;
1197 break;
1198 default:
1199 if (msrs[i].index >= MSR_MC0_CTL &&
1200 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1201 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1203 break;
1204 case MSR_KVM_ASYNC_PF_EN:
1205 env->async_pf_en_msr = msrs[i].data;
1206 break;
1210 return 0;
1213 static int kvm_put_mp_state(CPUState *env)
1215 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1217 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1220 static int kvm_get_mp_state(CPUState *env)
1222 struct kvm_mp_state mp_state;
1223 int ret;
1225 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1226 if (ret < 0) {
1227 return ret;
1229 env->mp_state = mp_state.mp_state;
1230 if (kvm_irqchip_in_kernel()) {
1231 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1233 return 0;
1236 static int kvm_put_vcpu_events(CPUState *env, int level)
1238 struct kvm_vcpu_events events;
1240 if (!kvm_has_vcpu_events()) {
1241 return 0;
1244 events.exception.injected = (env->exception_injected >= 0);
1245 events.exception.nr = env->exception_injected;
1246 events.exception.has_error_code = env->has_error_code;
1247 events.exception.error_code = env->error_code;
1249 events.interrupt.injected = (env->interrupt_injected >= 0);
1250 events.interrupt.nr = env->interrupt_injected;
1251 events.interrupt.soft = env->soft_interrupt;
1253 events.nmi.injected = env->nmi_injected;
1254 events.nmi.pending = env->nmi_pending;
1255 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1257 events.sipi_vector = env->sipi_vector;
1259 events.flags = 0;
1260 if (level >= KVM_PUT_RESET_STATE) {
1261 events.flags |=
1262 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1265 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1268 static int kvm_get_vcpu_events(CPUState *env)
1270 struct kvm_vcpu_events events;
1271 int ret;
1273 if (!kvm_has_vcpu_events()) {
1274 return 0;
1277 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1278 if (ret < 0) {
1279 return ret;
1281 env->exception_injected =
1282 events.exception.injected ? events.exception.nr : -1;
1283 env->has_error_code = events.exception.has_error_code;
1284 env->error_code = events.exception.error_code;
1286 env->interrupt_injected =
1287 events.interrupt.injected ? events.interrupt.nr : -1;
1288 env->soft_interrupt = events.interrupt.soft;
1290 env->nmi_injected = events.nmi.injected;
1291 env->nmi_pending = events.nmi.pending;
1292 if (events.nmi.masked) {
1293 env->hflags2 |= HF2_NMI_MASK;
1294 } else {
1295 env->hflags2 &= ~HF2_NMI_MASK;
1298 env->sipi_vector = events.sipi_vector;
1300 return 0;
1303 static int kvm_guest_debug_workarounds(CPUState *env)
1305 int ret = 0;
1306 unsigned long reinject_trap = 0;
1308 if (!kvm_has_vcpu_events()) {
1309 if (env->exception_injected == 1) {
1310 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1311 } else if (env->exception_injected == 3) {
1312 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1314 env->exception_injected = -1;
1318 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1319 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1320 * by updating the debug state once again if single-stepping is on.
1321 * Another reason to call kvm_update_guest_debug here is a pending debug
1322 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1323 * reinject them via SET_GUEST_DEBUG.
1325 if (reinject_trap ||
1326 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1327 ret = kvm_update_guest_debug(env, reinject_trap);
1329 return ret;
1332 static int kvm_put_debugregs(CPUState *env)
1334 struct kvm_debugregs dbgregs;
1335 int i;
1337 if (!kvm_has_debugregs()) {
1338 return 0;
1341 for (i = 0; i < 4; i++) {
1342 dbgregs.db[i] = env->dr[i];
1344 dbgregs.dr6 = env->dr[6];
1345 dbgregs.dr7 = env->dr[7];
1346 dbgregs.flags = 0;
1348 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1351 static int kvm_get_debugregs(CPUState *env)
1353 struct kvm_debugregs dbgregs;
1354 int i, ret;
1356 if (!kvm_has_debugregs()) {
1357 return 0;
1360 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1361 if (ret < 0) {
1362 return ret;
1364 for (i = 0; i < 4; i++) {
1365 env->dr[i] = dbgregs.db[i];
1367 env->dr[4] = env->dr[6] = dbgregs.dr6;
1368 env->dr[5] = env->dr[7] = dbgregs.dr7;
1370 return 0;
1373 int kvm_arch_put_registers(CPUState *env, int level)
1375 int ret;
1377 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1379 ret = kvm_getput_regs(env, 1);
1380 if (ret < 0) {
1381 return ret;
1383 ret = kvm_put_xsave(env);
1384 if (ret < 0) {
1385 return ret;
1387 ret = kvm_put_xcrs(env);
1388 if (ret < 0) {
1389 return ret;
1391 ret = kvm_put_sregs(env);
1392 if (ret < 0) {
1393 return ret;
1395 /* must be before kvm_put_msrs */
1396 ret = kvm_inject_mce_oldstyle(env);
1397 if (ret < 0) {
1398 return ret;
1400 ret = kvm_put_msrs(env, level);
1401 if (ret < 0) {
1402 return ret;
1404 if (level >= KVM_PUT_RESET_STATE) {
1405 ret = kvm_put_mp_state(env);
1406 if (ret < 0) {
1407 return ret;
1410 ret = kvm_put_vcpu_events(env, level);
1411 if (ret < 0) {
1412 return ret;
1414 ret = kvm_put_debugregs(env);
1415 if (ret < 0) {
1416 return ret;
1418 /* must be last */
1419 ret = kvm_guest_debug_workarounds(env);
1420 if (ret < 0) {
1421 return ret;
1423 return 0;
1426 int kvm_arch_get_registers(CPUState *env)
1428 int ret;
1430 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1432 ret = kvm_getput_regs(env, 0);
1433 if (ret < 0) {
1434 return ret;
1436 ret = kvm_get_xsave(env);
1437 if (ret < 0) {
1438 return ret;
1440 ret = kvm_get_xcrs(env);
1441 if (ret < 0) {
1442 return ret;
1444 ret = kvm_get_sregs(env);
1445 if (ret < 0) {
1446 return ret;
1448 ret = kvm_get_msrs(env);
1449 if (ret < 0) {
1450 return ret;
1452 ret = kvm_get_mp_state(env);
1453 if (ret < 0) {
1454 return ret;
1456 ret = kvm_get_vcpu_events(env);
1457 if (ret < 0) {
1458 return ret;
1460 ret = kvm_get_debugregs(env);
1461 if (ret < 0) {
1462 return ret;
1464 return 0;
1467 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1469 int ret;
1471 /* Inject NMI */
1472 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1473 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1474 DPRINTF("injected NMI\n");
1475 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1476 if (ret < 0) {
1477 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1478 strerror(-ret));
1482 if (!kvm_irqchip_in_kernel()) {
1483 /* Force the VCPU out of its inner loop to process the INIT request */
1484 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1485 env->exit_request = 1;
1488 /* Try to inject an interrupt if the guest can accept it */
1489 if (run->ready_for_interrupt_injection &&
1490 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1491 (env->eflags & IF_MASK)) {
1492 int irq;
1494 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1495 irq = cpu_get_pic_interrupt(env);
1496 if (irq >= 0) {
1497 struct kvm_interrupt intr;
1499 intr.irq = irq;
1500 DPRINTF("injected interrupt %d\n", irq);
1501 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1502 if (ret < 0) {
1503 fprintf(stderr,
1504 "KVM: injection failed, interrupt lost (%s)\n",
1505 strerror(-ret));
1510 /* If we have an interrupt but the guest is not ready to receive an
1511 * interrupt, request an interrupt window exit. This will
1512 * cause a return to userspace as soon as the guest is ready to
1513 * receive interrupts. */
1514 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1515 run->request_interrupt_window = 1;
1516 } else {
1517 run->request_interrupt_window = 0;
1520 DPRINTF("setting tpr\n");
1521 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1525 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1527 if (run->if_flag) {
1528 env->eflags |= IF_MASK;
1529 } else {
1530 env->eflags &= ~IF_MASK;
1532 cpu_set_apic_tpr(env->apic_state, run->cr8);
1533 cpu_set_apic_base(env->apic_state, run->apic_base);
1536 int kvm_arch_process_async_events(CPUState *env)
1538 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1539 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1540 assert(env->mcg_cap);
1542 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1544 kvm_cpu_synchronize_state(env);
1546 if (env->exception_injected == EXCP08_DBLE) {
1547 /* this means triple fault */
1548 qemu_system_reset_request();
1549 env->exit_request = 1;
1550 return 0;
1552 env->exception_injected = EXCP12_MCHK;
1553 env->has_error_code = 0;
1555 env->halted = 0;
1556 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1557 env->mp_state = KVM_MP_STATE_RUNNABLE;
1561 if (kvm_irqchip_in_kernel()) {
1562 return 0;
1565 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1566 (env->eflags & IF_MASK)) ||
1567 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1568 env->halted = 0;
1570 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1571 kvm_cpu_synchronize_state(env);
1572 do_cpu_init(env);
1574 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1575 kvm_cpu_synchronize_state(env);
1576 do_cpu_sipi(env);
1579 return env->halted;
1582 static int kvm_handle_halt(CPUState *env)
1584 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1585 (env->eflags & IF_MASK)) &&
1586 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1587 env->halted = 1;
1588 return EXCP_HLT;
1591 return 0;
1594 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1596 static const uint8_t int3 = 0xcc;
1598 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1599 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1600 return -EINVAL;
1602 return 0;
1605 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1607 uint8_t int3;
1609 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1610 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1611 return -EINVAL;
1613 return 0;
1616 static struct {
1617 target_ulong addr;
1618 int len;
1619 int type;
1620 } hw_breakpoint[4];
1622 static int nb_hw_breakpoint;
1624 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1626 int n;
1628 for (n = 0; n < nb_hw_breakpoint; n++) {
1629 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1630 (hw_breakpoint[n].len == len || len == -1)) {
1631 return n;
1634 return -1;
1637 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1638 target_ulong len, int type)
1640 switch (type) {
1641 case GDB_BREAKPOINT_HW:
1642 len = 1;
1643 break;
1644 case GDB_WATCHPOINT_WRITE:
1645 case GDB_WATCHPOINT_ACCESS:
1646 switch (len) {
1647 case 1:
1648 break;
1649 case 2:
1650 case 4:
1651 case 8:
1652 if (addr & (len - 1)) {
1653 return -EINVAL;
1655 break;
1656 default:
1657 return -EINVAL;
1659 break;
1660 default:
1661 return -ENOSYS;
1664 if (nb_hw_breakpoint == 4) {
1665 return -ENOBUFS;
1667 if (find_hw_breakpoint(addr, len, type) >= 0) {
1668 return -EEXIST;
1670 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1671 hw_breakpoint[nb_hw_breakpoint].len = len;
1672 hw_breakpoint[nb_hw_breakpoint].type = type;
1673 nb_hw_breakpoint++;
1675 return 0;
1678 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1679 target_ulong len, int type)
1681 int n;
1683 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1684 if (n < 0) {
1685 return -ENOENT;
1687 nb_hw_breakpoint--;
1688 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1690 return 0;
1693 void kvm_arch_remove_all_hw_breakpoints(void)
1695 nb_hw_breakpoint = 0;
1698 static CPUWatchpoint hw_watchpoint;
1700 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1702 int ret = 0;
1703 int n;
1705 if (arch_info->exception == 1) {
1706 if (arch_info->dr6 & (1 << 14)) {
1707 if (cpu_single_env->singlestep_enabled) {
1708 ret = EXCP_DEBUG;
1710 } else {
1711 for (n = 0; n < 4; n++) {
1712 if (arch_info->dr6 & (1 << n)) {
1713 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1714 case 0x0:
1715 ret = EXCP_DEBUG;
1716 break;
1717 case 0x1:
1718 ret = EXCP_DEBUG;
1719 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1720 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1721 hw_watchpoint.flags = BP_MEM_WRITE;
1722 break;
1723 case 0x3:
1724 ret = EXCP_DEBUG;
1725 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1726 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1727 hw_watchpoint.flags = BP_MEM_ACCESS;
1728 break;
1733 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1734 ret = EXCP_DEBUG;
1736 if (ret == 0) {
1737 cpu_synchronize_state(cpu_single_env);
1738 assert(cpu_single_env->exception_injected == -1);
1740 /* pass to guest */
1741 cpu_single_env->exception_injected = arch_info->exception;
1742 cpu_single_env->has_error_code = 0;
1745 return ret;
1748 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1750 const uint8_t type_code[] = {
1751 [GDB_BREAKPOINT_HW] = 0x0,
1752 [GDB_WATCHPOINT_WRITE] = 0x1,
1753 [GDB_WATCHPOINT_ACCESS] = 0x3
1755 const uint8_t len_code[] = {
1756 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1758 int n;
1760 if (kvm_sw_breakpoints_active(env)) {
1761 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1763 if (nb_hw_breakpoint > 0) {
1764 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1765 dbg->arch.debugreg[7] = 0x0600;
1766 for (n = 0; n < nb_hw_breakpoint; n++) {
1767 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1768 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1769 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1770 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1775 static bool host_supports_vmx(void)
1777 uint32_t ecx, unused;
1779 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1780 return ecx & CPUID_EXT_VMX;
1783 #define VMX_INVALID_GUEST_STATE 0x80000021
1785 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1787 uint64_t code;
1788 int ret;
1790 switch (run->exit_reason) {
1791 case KVM_EXIT_HLT:
1792 DPRINTF("handle_hlt\n");
1793 ret = kvm_handle_halt(env);
1794 break;
1795 case KVM_EXIT_SET_TPR:
1796 ret = 0;
1797 break;
1798 case KVM_EXIT_FAIL_ENTRY:
1799 code = run->fail_entry.hardware_entry_failure_reason;
1800 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1801 code);
1802 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1803 fprintf(stderr,
1804 "\nIf you're runnning a guest on an Intel machine without "
1805 "unrestricted mode\n"
1806 "support, the failure can be most likely due to the guest "
1807 "entering an invalid\n"
1808 "state for Intel VT. For example, the guest maybe running "
1809 "in big real mode\n"
1810 "which is not supported on less recent Intel processors."
1811 "\n\n");
1813 ret = -1;
1814 break;
1815 case KVM_EXIT_EXCEPTION:
1816 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1817 run->ex.exception, run->ex.error_code);
1818 ret = -1;
1819 break;
1820 case KVM_EXIT_DEBUG:
1821 DPRINTF("kvm_exit_debug\n");
1822 ret = kvm_handle_debug(&run->debug.arch);
1823 break;
1824 default:
1825 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1826 ret = -1;
1827 break;
1830 return ret;
1833 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1835 return !(env->cr[0] & CR0_PE_MASK) ||
1836 ((env->segs[R_CS].selector & 3) != 3);