virtio-serial: Turn props any virtio-serial-bus device must have into bus props
[qemu.git] / hw / mips_malta.c
blobed2a483c9bdd587f0186a1f501ae4f723fdbd9b5
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "usb-uhci.h"
37 #include "vmware_vga.h"
38 #include "qemu-char.h"
39 #include "sysemu.h"
40 #include "arch_init.h"
41 #include "boards.h"
42 #include "qemu-log.h"
43 #include "mips-bios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
47 #include "mc146818rtc.h"
48 #include "blockdev.h"
50 //#define DEBUG_BOARD_INIT
52 #define ENVP_ADDR 0x80002000l
53 #define ENVP_NB_ENTRIES 16
54 #define ENVP_ENTRY_SIZE 256
56 #define MAX_IDE_BUS 2
58 typedef struct {
59 uint32_t leds;
60 uint32_t brk;
61 uint32_t gpout;
62 uint32_t i2cin;
63 uint32_t i2coe;
64 uint32_t i2cout;
65 uint32_t i2csel;
66 CharDriverState *display;
67 char display_text[9];
68 SerialState *uart;
69 } MaltaFPGAState;
71 static ISADevice *pit;
73 static struct _loaderparams {
74 int ram_size;
75 const char *kernel_filename;
76 const char *kernel_cmdline;
77 const char *initrd_filename;
78 } loaderparams;
80 /* Malta FPGA */
81 static void malta_fpga_update_display(void *opaque)
83 char leds_text[9];
84 int i;
85 MaltaFPGAState *s = opaque;
87 for (i = 7 ; i >= 0 ; i--) {
88 if (s->leds & (1 << i))
89 leds_text[i] = '#';
90 else
91 leds_text[i] = ' ';
93 leds_text[8] = '\0';
95 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
96 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
100 * EEPROM 24C01 / 24C02 emulation.
102 * Emulation for serial EEPROMs:
103 * 24C01 - 1024 bit (128 x 8)
104 * 24C02 - 2048 bit (256 x 8)
106 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
109 //~ #define DEBUG
111 #if defined(DEBUG)
112 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
113 #else
114 # define logout(fmt, ...) ((void)0)
115 #endif
117 struct _eeprom24c0x_t {
118 uint8_t tick;
119 uint8_t address;
120 uint8_t command;
121 uint8_t ack;
122 uint8_t scl;
123 uint8_t sda;
124 uint8_t data;
125 //~ uint16_t size;
126 uint8_t contents[256];
129 typedef struct _eeprom24c0x_t eeprom24c0x_t;
131 static eeprom24c0x_t eeprom = {
132 .contents = {
133 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
134 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
135 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
136 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
137 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
138 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
141 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
152 static uint8_t eeprom24c0x_read(void)
154 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
155 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
156 return eeprom.sda;
159 static void eeprom24c0x_write(int scl, int sda)
161 if (eeprom.scl && scl && (eeprom.sda != sda)) {
162 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
163 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
164 if (!sda) {
165 eeprom.tick = 1;
166 eeprom.command = 0;
168 } else if (eeprom.tick == 0 && !eeprom.ack) {
169 /* Waiting for start. */
170 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
171 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
172 } else if (!eeprom.scl && scl) {
173 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
174 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
175 if (eeprom.ack) {
176 logout("\ti2c ack bit = 0\n");
177 sda = 0;
178 eeprom.ack = 0;
179 } else if (eeprom.sda == sda) {
180 uint8_t bit = (sda != 0);
181 logout("\ti2c bit = %d\n", bit);
182 if (eeprom.tick < 9) {
183 eeprom.command <<= 1;
184 eeprom.command += bit;
185 eeprom.tick++;
186 if (eeprom.tick == 9) {
187 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
188 eeprom.ack = 1;
190 } else if (eeprom.tick < 17) {
191 if (eeprom.command & 1) {
192 sda = ((eeprom.data & 0x80) != 0);
194 eeprom.address <<= 1;
195 eeprom.address += bit;
196 eeprom.tick++;
197 eeprom.data <<= 1;
198 if (eeprom.tick == 17) {
199 eeprom.data = eeprom.contents[eeprom.address];
200 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
201 eeprom.ack = 1;
202 eeprom.tick = 0;
204 } else if (eeprom.tick >= 17) {
205 sda = 0;
207 } else {
208 logout("\tsda changed with raising scl\n");
210 } else {
211 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
213 eeprom.scl = scl;
214 eeprom.sda = sda;
217 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
219 MaltaFPGAState *s = opaque;
220 uint32_t val = 0;
221 uint32_t saddr;
223 saddr = (addr & 0xfffff);
225 switch (saddr) {
227 /* SWITCH Register */
228 case 0x00200:
229 val = 0x00000000; /* All switches closed */
230 break;
232 /* STATUS Register */
233 case 0x00208:
234 #ifdef TARGET_WORDS_BIGENDIAN
235 val = 0x00000012;
236 #else
237 val = 0x00000010;
238 #endif
239 break;
241 /* JMPRS Register */
242 case 0x00210:
243 val = 0x00;
244 break;
246 /* LEDBAR Register */
247 case 0x00408:
248 val = s->leds;
249 break;
251 /* BRKRES Register */
252 case 0x00508:
253 val = s->brk;
254 break;
256 /* UART Registers are handled directly by the serial device */
258 /* GPOUT Register */
259 case 0x00a00:
260 val = s->gpout;
261 break;
263 /* XXX: implement a real I2C controller */
265 /* GPINP Register */
266 case 0x00a08:
267 /* IN = OUT until a real I2C control is implemented */
268 if (s->i2csel)
269 val = s->i2cout;
270 else
271 val = 0x00;
272 break;
274 /* I2CINP Register */
275 case 0x00b00:
276 val = ((s->i2cin & ~1) | eeprom24c0x_read());
277 break;
279 /* I2COE Register */
280 case 0x00b08:
281 val = s->i2coe;
282 break;
284 /* I2COUT Register */
285 case 0x00b10:
286 val = s->i2cout;
287 break;
289 /* I2CSEL Register */
290 case 0x00b18:
291 val = s->i2csel;
292 break;
294 default:
295 #if 0
296 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
297 addr);
298 #endif
299 break;
301 return val;
304 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
305 uint32_t val)
307 MaltaFPGAState *s = opaque;
308 uint32_t saddr;
310 saddr = (addr & 0xfffff);
312 switch (saddr) {
314 /* SWITCH Register */
315 case 0x00200:
316 break;
318 /* JMPRS Register */
319 case 0x00210:
320 break;
322 /* LEDBAR Register */
323 /* XXX: implement a 8-LED array */
324 case 0x00408:
325 s->leds = val & 0xff;
326 break;
328 /* ASCIIWORD Register */
329 case 0x00410:
330 snprintf(s->display_text, 9, "%08X", val);
331 malta_fpga_update_display(s);
332 break;
334 /* ASCIIPOS0 to ASCIIPOS7 Registers */
335 case 0x00418:
336 case 0x00420:
337 case 0x00428:
338 case 0x00430:
339 case 0x00438:
340 case 0x00440:
341 case 0x00448:
342 case 0x00450:
343 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
344 malta_fpga_update_display(s);
345 break;
347 /* SOFTRES Register */
348 case 0x00500:
349 if (val == 0x42)
350 qemu_system_reset_request ();
351 break;
353 /* BRKRES Register */
354 case 0x00508:
355 s->brk = val & 0xff;
356 break;
358 /* UART Registers are handled directly by the serial device */
360 /* GPOUT Register */
361 case 0x00a00:
362 s->gpout = val & 0xff;
363 break;
365 /* I2COE Register */
366 case 0x00b08:
367 s->i2coe = val & 0x03;
368 break;
370 /* I2COUT Register */
371 case 0x00b10:
372 eeprom24c0x_write(val & 0x02, val & 0x01);
373 s->i2cout = val;
374 break;
376 /* I2CSEL Register */
377 case 0x00b18:
378 s->i2csel = val & 0x01;
379 break;
381 default:
382 #if 0
383 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
384 addr);
385 #endif
386 break;
390 static CPUReadMemoryFunc * const malta_fpga_read[] = {
391 malta_fpga_readl,
392 malta_fpga_readl,
393 malta_fpga_readl
396 static CPUWriteMemoryFunc * const malta_fpga_write[] = {
397 malta_fpga_writel,
398 malta_fpga_writel,
399 malta_fpga_writel
402 static void malta_fpga_reset(void *opaque)
404 MaltaFPGAState *s = opaque;
406 s->leds = 0x00;
407 s->brk = 0x0a;
408 s->gpout = 0x00;
409 s->i2cin = 0x3;
410 s->i2coe = 0x0;
411 s->i2cout = 0x3;
412 s->i2csel = 0x1;
414 s->display_text[8] = '\0';
415 snprintf(s->display_text, 9, " ");
418 static void malta_fpga_led_init(CharDriverState *chr)
420 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
421 qemu_chr_printf(chr, "+--------+\r\n");
422 qemu_chr_printf(chr, "+ +\r\n");
423 qemu_chr_printf(chr, "+--------+\r\n");
424 qemu_chr_printf(chr, "\n");
425 qemu_chr_printf(chr, "Malta ASCII\r\n");
426 qemu_chr_printf(chr, "+--------+\r\n");
427 qemu_chr_printf(chr, "+ +\r\n");
428 qemu_chr_printf(chr, "+--------+\r\n");
431 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
433 MaltaFPGAState *s;
434 int malta;
436 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
438 malta = cpu_register_io_memory(malta_fpga_read,
439 malta_fpga_write, s,
440 DEVICE_NATIVE_ENDIAN);
442 cpu_register_physical_memory(base, 0x900, malta);
443 /* 0xa00 is less than a page, so will still get the right offsets. */
444 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
446 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
448 #ifdef TARGET_WORDS_BIGENDIAN
449 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
450 #else
451 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
452 #endif
454 malta_fpga_reset(s);
455 qemu_register_reset(malta_fpga_reset, s);
457 return s;
460 /* Network support */
461 static void network_init(void)
463 int i;
465 for(i = 0; i < nb_nics; i++) {
466 NICInfo *nd = &nd_table[i];
467 const char *default_devaddr = NULL;
469 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
470 /* The malta board has a PCNet card using PCI SLOT 11 */
471 default_devaddr = "0b";
473 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
477 /* ROM and pseudo bootloader
479 The following code implements a very very simple bootloader. It first
480 loads the registers a0 to a3 to the values expected by the OS, and
481 then jump at the kernel address.
483 The bootloader should pass the locations of the kernel arguments and
484 environment variables tables. Those tables contain the 32-bit address
485 of NULL terminated strings. The environment variables table should be
486 terminated by a NULL address.
488 For a simpler implementation, the number of kernel arguments is fixed
489 to two (the name of the kernel and the command line), and the two
490 tables are actually the same one.
492 The registers a0 to a3 should contain the following values:
493 a0 - number of kernel arguments
494 a1 - 32-bit address of the kernel arguments table
495 a2 - 32-bit address of the environment variables table
496 a3 - RAM size in bytes
499 static void write_bootloader (CPUState *env, uint8_t *base,
500 int64_t kernel_entry)
502 uint32_t *p;
504 /* Small bootloader */
505 p = (uint32_t *)base;
506 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
507 stl_raw(p++, 0x00000000); /* nop */
509 /* YAMON service vector */
510 stl_raw(base + 0x500, 0xbfc00580); /* start: */
511 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
512 stl_raw(base + 0x520, 0xbfc00580); /* start: */
513 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
514 stl_raw(base + 0x534, 0xbfc00808); /* print: */
515 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
516 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
517 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
518 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
519 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
520 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
521 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
522 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
525 /* Second part of the bootloader */
526 p = (uint32_t *) (base + 0x580);
527 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
528 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
529 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
530 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
531 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
532 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
533 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
534 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
535 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
537 /* Load BAR registers as done by YAMON */
538 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
540 #ifdef TARGET_WORDS_BIGENDIAN
541 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
542 #else
543 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
544 #endif
545 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
547 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
549 #ifdef TARGET_WORDS_BIGENDIAN
550 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
551 #else
552 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
553 #endif
554 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
555 #ifdef TARGET_WORDS_BIGENDIAN
556 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
557 #else
558 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
559 #endif
560 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
562 #ifdef TARGET_WORDS_BIGENDIAN
563 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
564 #else
565 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
566 #endif
567 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
568 #ifdef TARGET_WORDS_BIGENDIAN
569 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
570 #else
571 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
572 #endif
573 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
575 #ifdef TARGET_WORDS_BIGENDIAN
576 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
577 #else
578 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
579 #endif
580 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
581 #ifdef TARGET_WORDS_BIGENDIAN
582 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
583 #else
584 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
585 #endif
586 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
588 /* Jump to kernel code */
589 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
590 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
591 stl_raw(p++, 0x03e00008); /* jr ra */
592 stl_raw(p++, 0x00000000); /* nop */
594 /* YAMON subroutines */
595 p = (uint32_t *) (base + 0x800);
596 stl_raw(p++, 0x03e00008); /* jr ra */
597 stl_raw(p++, 0x24020000); /* li v0,0 */
598 /* 808 YAMON print */
599 stl_raw(p++, 0x03e06821); /* move t5,ra */
600 stl_raw(p++, 0x00805821); /* move t3,a0 */
601 stl_raw(p++, 0x00a05021); /* move t2,a1 */
602 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
603 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
604 stl_raw(p++, 0x10800005); /* beqz a0,834 */
605 stl_raw(p++, 0x00000000); /* nop */
606 stl_raw(p++, 0x0ff0021c); /* jal 870 */
607 stl_raw(p++, 0x00000000); /* nop */
608 stl_raw(p++, 0x08000205); /* j 814 */
609 stl_raw(p++, 0x00000000); /* nop */
610 stl_raw(p++, 0x01a00008); /* jr t5 */
611 stl_raw(p++, 0x01602021); /* move a0,t3 */
612 /* 0x83c YAMON print_count */
613 stl_raw(p++, 0x03e06821); /* move t5,ra */
614 stl_raw(p++, 0x00805821); /* move t3,a0 */
615 stl_raw(p++, 0x00a05021); /* move t2,a1 */
616 stl_raw(p++, 0x00c06021); /* move t4,a2 */
617 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
618 stl_raw(p++, 0x0ff0021c); /* jal 870 */
619 stl_raw(p++, 0x00000000); /* nop */
620 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
621 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
622 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
623 stl_raw(p++, 0x00000000); /* nop */
624 stl_raw(p++, 0x01a00008); /* jr t5 */
625 stl_raw(p++, 0x01602021); /* move a0,t3 */
626 /* 0x870 */
627 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
628 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
629 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
630 stl_raw(p++, 0x00000000); /* nop */
631 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
632 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
633 stl_raw(p++, 0x00000000); /* nop */
634 stl_raw(p++, 0x03e00008); /* jr ra */
635 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
639 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
640 const char *string, ...)
642 va_list ap;
643 int32_t table_addr;
645 if (index >= ENVP_NB_ENTRIES)
646 return;
648 if (string == NULL) {
649 prom_buf[index] = 0;
650 return;
653 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
654 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
656 va_start(ap, string);
657 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
658 va_end(ap);
661 /* Kernel */
662 static int64_t load_kernel (void)
664 int64_t kernel_entry, kernel_high;
665 long initrd_size;
666 ram_addr_t initrd_offset;
667 int big_endian;
668 uint32_t *prom_buf;
669 long prom_size;
670 int prom_index = 0;
672 #ifdef TARGET_WORDS_BIGENDIAN
673 big_endian = 1;
674 #else
675 big_endian = 0;
676 #endif
678 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
679 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
680 big_endian, ELF_MACHINE, 1) < 0) {
681 fprintf(stderr, "qemu: could not load kernel '%s'\n",
682 loaderparams.kernel_filename);
683 exit(1);
686 /* load initrd */
687 initrd_size = 0;
688 initrd_offset = 0;
689 if (loaderparams.initrd_filename) {
690 initrd_size = get_image_size (loaderparams.initrd_filename);
691 if (initrd_size > 0) {
692 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
693 if (initrd_offset + initrd_size > ram_size) {
694 fprintf(stderr,
695 "qemu: memory too small for initial ram disk '%s'\n",
696 loaderparams.initrd_filename);
697 exit(1);
699 initrd_size = load_image_targphys(loaderparams.initrd_filename,
700 initrd_offset,
701 ram_size - initrd_offset);
703 if (initrd_size == (target_ulong) -1) {
704 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
705 loaderparams.initrd_filename);
706 exit(1);
710 /* Setup prom parameters. */
711 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
712 prom_buf = qemu_malloc(prom_size);
714 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
715 if (initrd_size > 0) {
716 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
717 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
718 loaderparams.kernel_cmdline);
719 } else {
720 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
723 prom_set(prom_buf, prom_index++, "memsize");
724 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
725 prom_set(prom_buf, prom_index++, "modetty0");
726 prom_set(prom_buf, prom_index++, "38400n8r");
727 prom_set(prom_buf, prom_index++, NULL);
729 rom_add_blob_fixed("prom", prom_buf, prom_size,
730 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
732 return kernel_entry;
735 static void main_cpu_reset(void *opaque)
737 CPUState *env = opaque;
738 cpu_reset(env);
740 /* The bootloader does not need to be rewritten as it is located in a
741 read only location. The kernel location and the arguments table
742 location does not change. */
743 if (loaderparams.kernel_filename) {
744 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
748 static void cpu_request_exit(void *opaque, int irq, int level)
750 CPUState *env = cpu_single_env;
752 if (env && level) {
753 cpu_exit(env);
757 static
758 void mips_malta_init (ram_addr_t ram_size,
759 const char *boot_device,
760 const char *kernel_filename, const char *kernel_cmdline,
761 const char *initrd_filename, const char *cpu_model)
763 char *filename;
764 ram_addr_t ram_offset;
765 ram_addr_t bios_offset;
766 target_long bios_size;
767 int64_t kernel_entry;
768 PCIBus *pci_bus;
769 CPUState *env;
770 qemu_irq *i8259;
771 qemu_irq *cpu_exit_irq;
772 int piix4_devfn;
773 i2c_bus *smbus;
774 int i;
775 DriveInfo *dinfo;
776 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
777 DriveInfo *fd[MAX_FD];
778 int fl_idx = 0;
779 int fl_sectors = 0;
780 int be;
782 /* Make sure the first 3 serial ports are associated with a device. */
783 for(i = 0; i < 3; i++) {
784 if (!serial_hds[i]) {
785 char label[32];
786 snprintf(label, sizeof(label), "serial%d", i);
787 serial_hds[i] = qemu_chr_open(label, "null", NULL);
791 /* init CPUs */
792 if (cpu_model == NULL) {
793 #ifdef TARGET_MIPS64
794 cpu_model = "20Kc";
795 #else
796 cpu_model = "24Kf";
797 #endif
799 env = cpu_init(cpu_model);
800 if (!env) {
801 fprintf(stderr, "Unable to find CPU definition\n");
802 exit(1);
804 qemu_register_reset(main_cpu_reset, env);
806 /* allocate RAM */
807 if (ram_size > (256 << 20)) {
808 fprintf(stderr,
809 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
810 ((unsigned int)ram_size / (1 << 20)));
811 exit(1);
813 ram_offset = qemu_ram_alloc(NULL, "mips_malta.ram", ram_size);
814 bios_offset = qemu_ram_alloc(NULL, "mips_malta.bios", BIOS_SIZE);
817 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
819 /* Map the bios at two physical locations, as on the real board. */
820 cpu_register_physical_memory(0x1e000000LL,
821 BIOS_SIZE, bios_offset | IO_MEM_ROM);
822 cpu_register_physical_memory(0x1fc00000LL,
823 BIOS_SIZE, bios_offset | IO_MEM_ROM);
825 #ifdef TARGET_WORDS_BIGENDIAN
826 be = 1;
827 #else
828 be = 0;
829 #endif
830 /* FPGA */
831 malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
833 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
834 if (kernel_filename) {
835 /* Write a small bootloader to the flash location. */
836 loaderparams.ram_size = ram_size;
837 loaderparams.kernel_filename = kernel_filename;
838 loaderparams.kernel_cmdline = kernel_cmdline;
839 loaderparams.initrd_filename = initrd_filename;
840 kernel_entry = load_kernel();
841 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
842 } else {
843 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
844 if (dinfo) {
845 /* Load firmware from flash. */
846 bios_size = 0x400000;
847 fl_sectors = bios_size >> 16;
848 #ifdef DEBUG_BOARD_INIT
849 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
850 "offset %08lx addr %08llx '%s' %x\n",
851 fl_idx, bios_size, bios_offset, 0x1e000000LL,
852 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
853 #endif
854 pflash_cfi01_register(0x1e000000LL, bios_offset,
855 dinfo->bdrv, 65536, fl_sectors,
856 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
857 fl_idx++;
858 } else {
859 /* Load a BIOS image. */
860 if (bios_name == NULL)
861 bios_name = BIOS_FILENAME;
862 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
863 if (filename) {
864 bios_size = load_image_targphys(filename, 0x1fc00000LL,
865 BIOS_SIZE);
866 qemu_free(filename);
867 } else {
868 bios_size = -1;
870 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
871 fprintf(stderr,
872 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
873 bios_name);
874 exit(1);
877 /* In little endian mode the 32bit words in the bios are swapped,
878 a neat trick which allows bi-endian firmware. */
879 #ifndef TARGET_WORDS_BIGENDIAN
881 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
882 uint32_t *end = addr + bios_size;
883 while (addr < end) {
884 bswap32s(addr);
887 #endif
890 /* Board ID = 0x420 (Malta Board with CoreLV)
891 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
892 map to the board ID. */
893 stl_p(qemu_get_ram_ptr(bios_offset) + 0x10, 0x00000420);
895 /* Init internal devices */
896 cpu_mips_irq_init_cpu(env);
897 cpu_mips_clock_init(env);
899 /* Interrupt controller */
900 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
901 i8259 = i8259_init(env->irq[2]);
903 /* Northbridge */
904 pci_bus = gt64120_register(i8259);
906 /* Southbridge */
907 ide_drive_get(hd, MAX_IDE_BUS);
909 piix4_devfn = piix4_init(pci_bus, 80);
910 isa_bus_irqs(i8259);
911 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
912 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
913 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_get_irq(9),
914 NULL, NULL, 0);
915 /* TODO: Populate SPD eeprom data. */
916 smbus_eeprom_init(smbus, 8, NULL, 0);
917 pit = pit_init(0x40, 0);
918 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
919 DMA_init(0, cpu_exit_irq);
921 /* Super I/O */
922 isa_create_simple("i8042");
924 rtc_init(2000, NULL);
925 serial_isa_init(0, serial_hds[0]);
926 serial_isa_init(1, serial_hds[1]);
927 if (parallel_hds[0])
928 parallel_init(0, parallel_hds[0]);
929 for(i = 0; i < MAX_FD; i++) {
930 fd[i] = drive_get(IF_FLOPPY, 0, i);
932 fdctrl_init_isa(fd);
934 /* Sound card */
935 audio_init(NULL, pci_bus);
937 /* Network card */
938 network_init();
940 /* Optional PCI video card */
941 if (cirrus_vga_enabled) {
942 pci_cirrus_vga_init(pci_bus);
943 } else if (vmsvga_enabled) {
944 if (!pci_vmsvga_init(pci_bus)) {
945 fprintf(stderr, "Warning: vmware_vga not available,"
946 " using standard VGA instead\n");
947 pci_vga_init(pci_bus);
949 } else if (std_vga_enabled) {
950 pci_vga_init(pci_bus);
954 static QEMUMachine mips_malta_machine = {
955 .name = "malta",
956 .desc = "MIPS Malta Core LV",
957 .init = mips_malta_init,
958 .is_default = 1,
961 static void mips_malta_machine_init(void)
963 qemu_register_machine(&mips_malta_machine);
966 machine_init(mips_malta_machine_init);