e1000: bounds packet size against buffer size
[qemu.git] / hw / xilinx_axienet.c
blobb875aad019119f21bc60ee07928baa63a27e199b
1 /*
2 * QEMU model of Xilinx AXI-Ethernet.
4 * Copyright (c) 2011 Edgar E. Iglesias.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "sysbus.h"
26 #include "qemu-char.h"
27 #include "qemu-log.h"
28 #include "net.h"
29 #include "net/checksum.h"
31 #include "xilinx_axidma.h"
33 #define DPHY(x)
35 /* Advertisement control register. */
36 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
37 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
38 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
39 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
41 struct PHY {
42 uint32_t regs[32];
44 int link;
46 unsigned int (*read)(struct PHY *phy, unsigned int req);
47 void (*write)(struct PHY *phy, unsigned int req,
48 unsigned int data);
51 static unsigned int tdk_read(struct PHY *phy, unsigned int req)
53 int regnum;
54 unsigned r = 0;
56 regnum = req & 0x1f;
58 switch (regnum) {
59 case 1:
60 if (!phy->link) {
61 break;
63 /* MR1. */
64 /* Speeds and modes. */
65 r |= (1 << 13) | (1 << 14);
66 r |= (1 << 11) | (1 << 12);
67 r |= (1 << 5); /* Autoneg complete. */
68 r |= (1 << 3); /* Autoneg able. */
69 r |= (1 << 2); /* link. */
70 r |= (1 << 1); /* link. */
71 break;
72 case 5:
73 /* Link partner ability.
74 We are kind; always agree with whatever best mode
75 the guest advertises. */
76 r = 1 << 14; /* Success. */
77 /* Copy advertised modes. */
78 r |= phy->regs[4] & (15 << 5);
79 /* Autoneg support. */
80 r |= 1;
81 break;
82 case 17:
83 /* Marvel PHY on many xilinx boards. */
84 r = 0x8000; /* 1000Mb */
85 break;
86 case 18:
88 /* Diagnostics reg. */
89 int duplex = 0;
90 int speed_100 = 0;
92 if (!phy->link) {
93 break;
96 /* Are we advertising 100 half or 100 duplex ? */
97 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
98 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
100 /* Are we advertising 10 duplex or 100 duplex ? */
101 duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
102 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
103 r = (speed_100 << 10) | (duplex << 11);
105 break;
107 default:
108 r = phy->regs[regnum];
109 break;
111 DPHY(qemu_log("\n%s %x = reg[%d]\n", __func__, r, regnum));
112 return r;
115 static void
116 tdk_write(struct PHY *phy, unsigned int req, unsigned int data)
118 int regnum;
120 regnum = req & 0x1f;
121 DPHY(qemu_log("%s reg[%d] = %x\n", __func__, regnum, data));
122 switch (regnum) {
123 default:
124 phy->regs[regnum] = data;
125 break;
129 static void
130 tdk_init(struct PHY *phy)
132 phy->regs[0] = 0x3100;
133 /* PHY Id. */
134 phy->regs[2] = 0x0300;
135 phy->regs[3] = 0xe400;
136 /* Autonegotiation advertisement reg. */
137 phy->regs[4] = 0x01E1;
138 phy->link = 1;
140 phy->read = tdk_read;
141 phy->write = tdk_write;
144 struct MDIOBus {
145 /* bus. */
146 int mdc;
147 int mdio;
149 /* decoder. */
150 enum {
151 PREAMBLE,
152 SOF,
153 OPC,
154 ADDR,
155 REQ,
156 TURNAROUND,
157 DATA
158 } state;
159 unsigned int drive;
161 unsigned int cnt;
162 unsigned int addr;
163 unsigned int opc;
164 unsigned int req;
165 unsigned int data;
167 struct PHY *devs[32];
170 static void
171 mdio_attach(struct MDIOBus *bus, struct PHY *phy, unsigned int addr)
173 bus->devs[addr & 0x1f] = phy;
176 #ifdef USE_THIS_DEAD_CODE
177 static void
178 mdio_detach(struct MDIOBus *bus, struct PHY *phy, unsigned int addr)
180 bus->devs[addr & 0x1f] = NULL;
182 #endif
184 static uint16_t mdio_read_req(struct MDIOBus *bus, unsigned int addr,
185 unsigned int reg)
187 struct PHY *phy;
188 uint16_t data;
190 phy = bus->devs[addr];
191 if (phy && phy->read) {
192 data = phy->read(phy, reg);
193 } else {
194 data = 0xffff;
196 DPHY(qemu_log("%s addr=%d reg=%d data=%x\n", __func__, addr, reg, data));
197 return data;
200 static void mdio_write_req(struct MDIOBus *bus, unsigned int addr,
201 unsigned int reg, uint16_t data)
203 struct PHY *phy;
205 DPHY(qemu_log("%s addr=%d reg=%d data=%x\n", __func__, addr, reg, data));
206 phy = bus->devs[addr];
207 if (phy && phy->write) {
208 phy->write(phy, reg, data);
212 #define DENET(x)
214 #define R_RAF (0x000 / 4)
215 enum {
216 RAF_MCAST_REJ = (1 << 1),
217 RAF_BCAST_REJ = (1 << 2),
218 RAF_EMCF_EN = (1 << 12),
219 RAF_NEWFUNC_EN = (1 << 11)
222 #define R_IS (0x00C / 4)
223 enum {
224 IS_HARD_ACCESS_COMPLETE = 1,
225 IS_AUTONEG = (1 << 1),
226 IS_RX_COMPLETE = (1 << 2),
227 IS_RX_REJECT = (1 << 3),
228 IS_TX_COMPLETE = (1 << 5),
229 IS_RX_DCM_LOCK = (1 << 6),
230 IS_MGM_RDY = (1 << 7),
231 IS_PHY_RST_DONE = (1 << 8),
234 #define R_IP (0x010 / 4)
235 #define R_IE (0x014 / 4)
236 #define R_UAWL (0x020 / 4)
237 #define R_UAWU (0x024 / 4)
238 #define R_PPST (0x030 / 4)
239 enum {
240 PPST_LINKSTATUS = (1 << 0),
241 PPST_PHY_LINKSTATUS = (1 << 7),
244 #define R_STATS_RX_BYTESL (0x200 / 4)
245 #define R_STATS_RX_BYTESH (0x204 / 4)
246 #define R_STATS_TX_BYTESL (0x208 / 4)
247 #define R_STATS_TX_BYTESH (0x20C / 4)
248 #define R_STATS_RXL (0x290 / 4)
249 #define R_STATS_RXH (0x294 / 4)
250 #define R_STATS_RX_BCASTL (0x2a0 / 4)
251 #define R_STATS_RX_BCASTH (0x2a4 / 4)
252 #define R_STATS_RX_MCASTL (0x2a8 / 4)
253 #define R_STATS_RX_MCASTH (0x2ac / 4)
255 #define R_RCW0 (0x400 / 4)
256 #define R_RCW1 (0x404 / 4)
257 enum {
258 RCW1_VLAN = (1 << 27),
259 RCW1_RX = (1 << 28),
260 RCW1_FCS = (1 << 29),
261 RCW1_JUM = (1 << 30),
262 RCW1_RST = (1 << 31),
265 #define R_TC (0x408 / 4)
266 enum {
267 TC_VLAN = (1 << 27),
268 TC_TX = (1 << 28),
269 TC_FCS = (1 << 29),
270 TC_JUM = (1 << 30),
271 TC_RST = (1 << 31),
274 #define R_EMMC (0x410 / 4)
275 enum {
276 EMMC_LINKSPEED_10MB = (0 << 30),
277 EMMC_LINKSPEED_100MB = (1 << 30),
278 EMMC_LINKSPEED_1000MB = (2 << 30),
281 #define R_PHYC (0x414 / 4)
283 #define R_MC (0x500 / 4)
284 #define MC_EN (1 << 6)
286 #define R_MCR (0x504 / 4)
287 #define R_MWD (0x508 / 4)
288 #define R_MRD (0x50c / 4)
289 #define R_MIS (0x600 / 4)
290 #define R_MIP (0x620 / 4)
291 #define R_MIE (0x640 / 4)
292 #define R_MIC (0x640 / 4)
294 #define R_UAW0 (0x700 / 4)
295 #define R_UAW1 (0x704 / 4)
296 #define R_FMI (0x708 / 4)
297 #define R_AF0 (0x710 / 4)
298 #define R_AF1 (0x714 / 4)
299 #define R_MAX (0x34 / 4)
301 /* Indirect registers. */
302 struct TEMAC {
303 struct MDIOBus mdio_bus;
304 struct PHY phy;
306 void *parent;
309 struct XilinxAXIEnet {
310 SysBusDevice busdev;
311 qemu_irq irq;
312 void *dmach;
313 NICState *nic;
314 NICConf conf;
317 uint32_t c_rxmem;
318 uint32_t c_txmem;
319 uint32_t c_phyaddr;
321 struct TEMAC TEMAC;
323 /* MII regs. */
324 union {
325 uint32_t regs[4];
326 struct {
327 uint32_t mc;
328 uint32_t mcr;
329 uint32_t mwd;
330 uint32_t mrd;
332 } mii;
334 struct {
335 uint64_t rx_bytes;
336 uint64_t tx_bytes;
338 uint64_t rx;
339 uint64_t rx_bcast;
340 uint64_t rx_mcast;
341 } stats;
343 /* Receive configuration words. */
344 uint32_t rcw[2];
345 /* Transmit config. */
346 uint32_t tc;
347 uint32_t emmc;
348 uint32_t phyc;
350 /* Unicast Address Word. */
351 uint32_t uaw[2];
352 /* Unicast address filter used with extended mcast. */
353 uint32_t ext_uaw[2];
354 uint32_t fmi;
356 uint32_t regs[R_MAX];
358 /* Multicast filter addrs. */
359 uint32_t maddr[4][2];
360 /* 32K x 1 lookup filter. */
361 uint32_t ext_mtable[1024];
364 uint8_t *rxmem;
367 static void axienet_rx_reset(struct XilinxAXIEnet *s)
369 s->rcw[1] = RCW1_JUM | RCW1_FCS | RCW1_RX | RCW1_VLAN;
372 static void axienet_tx_reset(struct XilinxAXIEnet *s)
374 s->tc = TC_JUM | TC_TX | TC_VLAN;
377 static inline int axienet_rx_resetting(struct XilinxAXIEnet *s)
379 return s->rcw[1] & RCW1_RST;
382 static inline int axienet_rx_enabled(struct XilinxAXIEnet *s)
384 return s->rcw[1] & RCW1_RX;
387 static inline int axienet_extmcf_enabled(struct XilinxAXIEnet *s)
389 return !!(s->regs[R_RAF] & RAF_EMCF_EN);
392 static inline int axienet_newfunc_enabled(struct XilinxAXIEnet *s)
394 return !!(s->regs[R_RAF] & RAF_NEWFUNC_EN);
397 static void axienet_reset(struct XilinxAXIEnet *s)
399 axienet_rx_reset(s);
400 axienet_tx_reset(s);
402 s->regs[R_PPST] = PPST_LINKSTATUS | PPST_PHY_LINKSTATUS;
403 s->regs[R_IS] = IS_AUTONEG | IS_RX_DCM_LOCK | IS_MGM_RDY | IS_PHY_RST_DONE;
405 s->emmc = EMMC_LINKSPEED_100MB;
408 static void enet_update_irq(struct XilinxAXIEnet *s)
410 s->regs[R_IP] = s->regs[R_IS] & s->regs[R_IE];
411 qemu_set_irq(s->irq, !!s->regs[R_IP]);
414 static uint32_t enet_readl(void *opaque, target_phys_addr_t addr)
416 struct XilinxAXIEnet *s = opaque;
417 uint32_t r = 0;
418 addr >>= 2;
420 switch (addr) {
421 case R_RCW0:
422 case R_RCW1:
423 r = s->rcw[addr & 1];
424 break;
426 case R_TC:
427 r = s->tc;
428 break;
430 case R_EMMC:
431 r = s->emmc;
432 break;
434 case R_PHYC:
435 r = s->phyc;
436 break;
438 case R_MCR:
439 r = s->mii.regs[addr & 3] | (1 << 7); /* Always ready. */
440 break;
442 case R_STATS_RX_BYTESL:
443 case R_STATS_RX_BYTESH:
444 r = s->stats.rx_bytes >> (32 * (addr & 1));
445 break;
447 case R_STATS_TX_BYTESL:
448 case R_STATS_TX_BYTESH:
449 r = s->stats.tx_bytes >> (32 * (addr & 1));
450 break;
452 case R_STATS_RXL:
453 case R_STATS_RXH:
454 r = s->stats.rx >> (32 * (addr & 1));
455 break;
456 case R_STATS_RX_BCASTL:
457 case R_STATS_RX_BCASTH:
458 r = s->stats.rx_bcast >> (32 * (addr & 1));
459 break;
460 case R_STATS_RX_MCASTL:
461 case R_STATS_RX_MCASTH:
462 r = s->stats.rx_mcast >> (32 * (addr & 1));
463 break;
465 case R_MC:
466 case R_MWD:
467 case R_MRD:
468 r = s->mii.regs[addr & 3];
469 break;
471 case R_UAW0:
472 case R_UAW1:
473 r = s->uaw[addr & 1];
474 break;
476 case R_UAWU:
477 case R_UAWL:
478 r = s->ext_uaw[addr & 1];
479 break;
481 case R_FMI:
482 r = s->fmi;
483 break;
485 case R_AF0:
486 case R_AF1:
487 r = s->maddr[s->fmi & 3][addr & 1];
488 break;
490 case 0x8000 ... 0x83ff:
491 r = s->ext_mtable[addr - 0x8000];
492 break;
494 default:
495 if (addr < ARRAY_SIZE(s->regs)) {
496 r = s->regs[addr];
498 DENET(qemu_log("%s addr=" TARGET_FMT_plx " v=%x\n",
499 __func__, addr * 4, r));
500 break;
502 return r;
505 static void
506 enet_writel(void *opaque, target_phys_addr_t addr, uint32_t value)
508 struct XilinxAXIEnet *s = opaque;
509 struct TEMAC *t = &s->TEMAC;
511 addr >>= 2;
512 switch (addr) {
513 case R_RCW0:
514 case R_RCW1:
515 s->rcw[addr & 1] = value;
516 if ((addr & 1) && value & RCW1_RST) {
517 axienet_rx_reset(s);
519 break;
521 case R_TC:
522 s->tc = value;
523 if (value & TC_RST) {
524 axienet_tx_reset(s);
526 break;
528 case R_EMMC:
529 s->emmc = value;
530 break;
532 case R_PHYC:
533 s->phyc = value;
534 break;
536 case R_MC:
537 value &= ((1 < 7) - 1);
539 /* Enable the MII. */
540 if (value & MC_EN) {
541 unsigned int miiclkdiv = value & ((1 << 6) - 1);
542 if (!miiclkdiv) {
543 qemu_log("AXIENET: MDIO enabled but MDIOCLK is zero!\n");
546 s->mii.mc = value;
547 break;
549 case R_MCR: {
550 unsigned int phyaddr = (value >> 24) & 0x1f;
551 unsigned int regaddr = (value >> 16) & 0x1f;
552 unsigned int op = (value >> 14) & 3;
553 unsigned int initiate = (value >> 11) & 1;
555 if (initiate) {
556 if (op == 1) {
557 mdio_write_req(&t->mdio_bus, phyaddr, regaddr, s->mii.mwd);
558 } else if (op == 2) {
559 s->mii.mrd = mdio_read_req(&t->mdio_bus, phyaddr, regaddr);
560 } else {
561 qemu_log("AXIENET: invalid MDIOBus OP=%d\n", op);
564 s->mii.mcr = value;
565 break;
568 case R_MWD:
569 case R_MRD:
570 s->mii.regs[addr & 3] = value;
571 break;
574 case R_UAW0:
575 case R_UAW1:
576 s->uaw[addr & 1] = value;
577 break;
579 case R_UAWL:
580 case R_UAWU:
581 s->ext_uaw[addr & 1] = value;
582 break;
584 case R_FMI:
585 s->fmi = value;
586 break;
588 case R_AF0:
589 case R_AF1:
590 s->maddr[s->fmi & 3][addr & 1] = value;
591 break;
593 case 0x8000 ... 0x83ff:
594 s->ext_mtable[addr - 0x8000] = value;
595 break;
597 default:
598 DENET(qemu_log("%s addr=" TARGET_FMT_plx " v=%x\n",
599 __func__, addr * 4, value));
600 if (addr < ARRAY_SIZE(s->regs)) {
601 s->regs[addr] = value;
603 break;
605 enet_update_irq(s);
608 static CPUReadMemoryFunc * const enet_read[] = {
609 &enet_readl,
610 &enet_readl,
611 &enet_readl,
614 static CPUWriteMemoryFunc * const enet_write[] = {
615 &enet_writel,
616 &enet_writel,
617 &enet_writel,
620 static int eth_can_rx(VLANClientState *nc)
622 struct XilinxAXIEnet *s = DO_UPCAST(NICState, nc, nc)->opaque;
624 /* RX enabled? */
625 return !axienet_rx_resetting(s) && axienet_rx_enabled(s);
628 static int enet_match_addr(const uint8_t *buf, uint32_t f0, uint32_t f1)
630 int match = 1;
632 if (memcmp(buf, &f0, 4)) {
633 match = 0;
636 if (buf[4] != (f1 & 0xff) || buf[5] != ((f1 >> 8) & 0xff)) {
637 match = 0;
640 return match;
643 static ssize_t eth_rx(VLANClientState *nc, const uint8_t *buf, size_t size)
645 struct XilinxAXIEnet *s = DO_UPCAST(NICState, nc, nc)->opaque;
646 static const unsigned char sa_bcast[6] = {0xff, 0xff, 0xff,
647 0xff, 0xff, 0xff};
648 static const unsigned char sa_ipmcast[3] = {0x01, 0x00, 0x52};
649 uint32_t app[6] = {0};
650 int promisc = s->fmi & (1 << 31);
651 int unicast, broadcast, multicast, ip_multicast = 0;
652 uint32_t csum32;
653 uint16_t csum16;
654 int i;
656 s = s;
657 DENET(qemu_log("%s: %zd bytes\n", __func__, size));
659 unicast = ~buf[0] & 0x1;
660 broadcast = memcmp(buf, sa_bcast, 6) == 0;
661 multicast = !unicast && !broadcast;
662 if (multicast && (memcmp(sa_ipmcast, buf, sizeof sa_ipmcast) == 0)) {
663 ip_multicast = 1;
666 /* Jumbo or vlan sizes ? */
667 if (!(s->rcw[1] & RCW1_JUM)) {
668 if (size > 1518 && size <= 1522 && !(s->rcw[1] & RCW1_VLAN)) {
669 return size;
673 /* Basic Address filters. If you want to use the extended filters
674 you'll generally have to place the ethernet mac into promiscuous mode
675 to avoid the basic filtering from dropping most frames. */
676 if (!promisc) {
677 if (unicast) {
678 if (!enet_match_addr(buf, s->uaw[0], s->uaw[1])) {
679 return size;
681 } else {
682 if (broadcast) {
683 /* Broadcast. */
684 if (s->regs[R_RAF] & RAF_BCAST_REJ) {
685 return size;
687 } else {
688 int drop = 1;
690 /* Multicast. */
691 if (s->regs[R_RAF] & RAF_MCAST_REJ) {
692 return size;
695 for (i = 0; i < 4; i++) {
696 if (enet_match_addr(buf, s->maddr[i][0], s->maddr[i][1])) {
697 drop = 0;
698 break;
702 if (drop) {
703 return size;
709 /* Extended mcast filtering enabled? */
710 if (axienet_newfunc_enabled(s) && axienet_extmcf_enabled(s)) {
711 if (unicast) {
712 if (!enet_match_addr(buf, s->ext_uaw[0], s->ext_uaw[1])) {
713 return size;
715 } else {
716 if (broadcast) {
717 /* Broadcast. ??? */
718 if (s->regs[R_RAF] & RAF_BCAST_REJ) {
719 return size;
721 } else {
722 int idx, bit;
724 /* Multicast. */
725 if (!memcmp(buf, sa_ipmcast, 3)) {
726 return size;
729 idx = (buf[4] & 0x7f) << 8;
730 idx |= buf[5];
732 bit = 1 << (idx & 0x1f);
733 idx >>= 5;
735 if (!(s->ext_mtable[idx] & bit)) {
736 return size;
742 if (size < 12) {
743 s->regs[R_IS] |= IS_RX_REJECT;
744 enet_update_irq(s);
745 return -1;
748 if (size > (s->c_rxmem - 4)) {
749 size = s->c_rxmem - 4;
752 memcpy(s->rxmem, buf, size);
753 memset(s->rxmem + size, 0, 4); /* Clear the FCS. */
755 if (s->rcw[1] & RCW1_FCS) {
756 size += 4; /* fcs is inband. */
759 app[0] = 5 << 28;
760 csum32 = net_checksum_add(size - 14, (uint8_t *)s->rxmem + 14);
761 /* Fold it once. */
762 csum32 = (csum32 & 0xffff) + (csum32 >> 16);
763 /* And twice to get rid of possible carries. */
764 csum16 = (csum32 & 0xffff) + (csum32 >> 16);
765 app[3] = csum16;
766 app[4] = size & 0xffff;
768 s->stats.rx_bytes += size;
769 s->stats.rx++;
770 if (multicast) {
771 s->stats.rx_mcast++;
772 app[2] |= 1 | (ip_multicast << 1);
773 } else if (broadcast) {
774 s->stats.rx_bcast++;
775 app[2] |= 1 << 3;
778 /* Good frame. */
779 app[2] |= 1 << 6;
781 xlx_dma_push_to_dma(s->dmach, (void *)s->rxmem, size, app);
783 s->regs[R_IS] |= IS_RX_COMPLETE;
784 enet_update_irq(s);
785 return size;
788 static void eth_cleanup(VLANClientState *nc)
790 /* FIXME. */
791 struct XilinxAXIEnet *s = DO_UPCAST(NICState, nc, nc)->opaque;
792 g_free(s->rxmem);
793 g_free(s);
796 static void
797 axienet_stream_push(void *opaque, uint8_t *buf, size_t size, uint32_t *hdr)
799 struct XilinxAXIEnet *s = opaque;
801 /* TX enable ? */
802 if (!(s->tc & TC_TX)) {
803 return;
806 /* Jumbo or vlan sizes ? */
807 if (!(s->tc & TC_JUM)) {
808 if (size > 1518 && size <= 1522 && !(s->tc & TC_VLAN)) {
809 return;
813 if (hdr[0] & 1) {
814 unsigned int start_off = hdr[1] >> 16;
815 unsigned int write_off = hdr[1] & 0xffff;
816 uint32_t tmp_csum;
817 uint16_t csum;
819 tmp_csum = net_checksum_add(size - start_off,
820 (uint8_t *)buf + start_off);
821 /* Accumulate the seed. */
822 tmp_csum += hdr[2] & 0xffff;
824 /* Fold the 32bit partial checksum. */
825 csum = net_checksum_finish(tmp_csum);
827 /* Writeback. */
828 buf[write_off] = csum >> 8;
829 buf[write_off + 1] = csum & 0xff;
832 qemu_send_packet(&s->nic->nc, buf, size);
834 s->stats.tx_bytes += size;
835 s->regs[R_IS] |= IS_TX_COMPLETE;
836 enet_update_irq(s);
839 static NetClientInfo net_xilinx_enet_info = {
840 .type = NET_CLIENT_TYPE_NIC,
841 .size = sizeof(NICState),
842 .can_receive = eth_can_rx,
843 .receive = eth_rx,
844 .cleanup = eth_cleanup,
847 static int xilinx_enet_init(SysBusDevice *dev)
849 struct XilinxAXIEnet *s = FROM_SYSBUS(typeof(*s), dev);
850 int enet_regs;
852 sysbus_init_irq(dev, &s->irq);
854 if (!s->dmach) {
855 hw_error("Unconnected Xilinx Ethernet MAC.\n");
858 xlx_dma_connect_client(s->dmach, s, axienet_stream_push);
860 enet_regs = cpu_register_io_memory(enet_read, enet_write, s,
861 DEVICE_LITTLE_ENDIAN);
862 sysbus_init_mmio(dev, 0x40000, enet_regs);
864 qemu_macaddr_default_if_unset(&s->conf.macaddr);
865 s->nic = qemu_new_nic(&net_xilinx_enet_info, &s->conf,
866 dev->qdev.info->name, dev->qdev.id, s);
867 qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
869 tdk_init(&s->TEMAC.phy);
870 mdio_attach(&s->TEMAC.mdio_bus, &s->TEMAC.phy, s->c_phyaddr);
872 s->TEMAC.parent = s;
874 s->rxmem = g_malloc(s->c_rxmem);
875 axienet_reset(s);
877 return 0;
880 static SysBusDeviceInfo xilinx_enet_info = {
881 .init = xilinx_enet_init,
882 .qdev.name = "xilinx,axienet",
883 .qdev.size = sizeof(struct XilinxAXIEnet),
884 .qdev.props = (Property[]) {
885 DEFINE_PROP_UINT32("phyaddr", struct XilinxAXIEnet, c_phyaddr, 7),
886 DEFINE_PROP_UINT32("c_rxmem", struct XilinxAXIEnet, c_rxmem, 0x1000),
887 DEFINE_PROP_UINT32("c_txmem", struct XilinxAXIEnet, c_txmem, 0x1000),
888 DEFINE_PROP_PTR("dmach", struct XilinxAXIEnet, dmach),
889 DEFINE_NIC_PROPERTIES(struct XilinxAXIEnet, conf),
890 DEFINE_PROP_END_OF_LIST(),
893 static void xilinx_enet_register(void)
895 sysbus_register_withprop(&xilinx_enet_info);
898 device_init(xilinx_enet_register)